1 /* 2 * Cryptographic API for algorithms (i.e., low-level API). 3 * 4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 #ifndef _CRYPTO_ALGAPI_H 13 #define _CRYPTO_ALGAPI_H 14 15 #include <linux/crypto.h> 16 #include <linux/list.h> 17 #include <linux/kernel.h> 18 #include <linux/kthread.h> 19 #include <linux/skbuff.h> 20 21 struct crypto_aead; 22 struct crypto_instance; 23 struct module; 24 struct rtattr; 25 struct seq_file; 26 27 struct crypto_type { 28 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); 29 unsigned int (*extsize)(struct crypto_alg *alg); 30 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); 31 int (*init_tfm)(struct crypto_tfm *tfm); 32 void (*show)(struct seq_file *m, struct crypto_alg *alg); 33 int (*report)(struct sk_buff *skb, struct crypto_alg *alg); 34 struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask); 35 void (*free)(struct crypto_instance *inst); 36 37 unsigned int type; 38 unsigned int maskclear; 39 unsigned int maskset; 40 unsigned int tfmsize; 41 }; 42 43 struct crypto_instance { 44 struct crypto_alg alg; 45 46 struct crypto_template *tmpl; 47 struct hlist_node list; 48 49 void *__ctx[] CRYPTO_MINALIGN_ATTR; 50 }; 51 52 struct crypto_template { 53 struct list_head list; 54 struct hlist_head instances; 55 struct module *module; 56 57 struct crypto_instance *(*alloc)(struct rtattr **tb); 58 void (*free)(struct crypto_instance *inst); 59 int (*create)(struct crypto_template *tmpl, struct rtattr **tb); 60 61 char name[CRYPTO_MAX_ALG_NAME]; 62 }; 63 64 struct crypto_spawn { 65 struct list_head list; 66 struct crypto_alg *alg; 67 struct crypto_instance *inst; 68 const struct crypto_type *frontend; 69 u32 mask; 70 }; 71 72 struct crypto_queue { 73 struct list_head list; 74 struct list_head *backlog; 75 76 unsigned int qlen; 77 unsigned int max_qlen; 78 }; 79 80 struct scatter_walk { 81 struct scatterlist *sg; 82 unsigned int offset; 83 }; 84 85 struct blkcipher_walk { 86 union { 87 struct { 88 struct page *page; 89 unsigned long offset; 90 } phys; 91 92 struct { 93 u8 *page; 94 u8 *addr; 95 } virt; 96 } src, dst; 97 98 struct scatter_walk in; 99 unsigned int nbytes; 100 101 struct scatter_walk out; 102 unsigned int total; 103 104 void *page; 105 u8 *buffer; 106 u8 *iv; 107 unsigned int ivsize; 108 109 int flags; 110 unsigned int walk_blocksize; 111 unsigned int cipher_blocksize; 112 unsigned int alignmask; 113 }; 114 115 struct ablkcipher_walk { 116 struct { 117 struct page *page; 118 unsigned int offset; 119 } src, dst; 120 121 struct scatter_walk in; 122 unsigned int nbytes; 123 struct scatter_walk out; 124 unsigned int total; 125 struct list_head buffers; 126 u8 *iv_buffer; 127 u8 *iv; 128 int flags; 129 unsigned int blocksize; 130 }; 131 132 #define ENGINE_NAME_LEN 30 133 /* 134 * struct crypto_engine - crypto hardware engine 135 * @name: the engine name 136 * @idling: the engine is entering idle state 137 * @busy: request pump is busy 138 * @running: the engine is on working 139 * @cur_req_prepared: current request is prepared 140 * @list: link with the global crypto engine list 141 * @queue_lock: spinlock to syncronise access to request queue 142 * @queue: the crypto queue of the engine 143 * @rt: whether this queue is set to run as a realtime task 144 * @prepare_crypt_hardware: a request will soon arrive from the queue 145 * so the subsystem requests the driver to prepare the hardware 146 * by issuing this call 147 * @unprepare_crypt_hardware: there are currently no more requests on the 148 * queue so the subsystem notifies the driver that it may relax the 149 * hardware by issuing this call 150 * @prepare_request: do some prepare if need before handle the current request 151 * @unprepare_request: undo any work done by prepare_message() 152 * @crypt_one_request: do encryption for current request 153 * @kworker: thread struct for request pump 154 * @kworker_task: pointer to task for request pump kworker thread 155 * @pump_requests: work struct for scheduling work to the request pump 156 * @priv_data: the engine private data 157 * @cur_req: the current request which is on processing 158 */ 159 struct crypto_engine { 160 char name[ENGINE_NAME_LEN]; 161 bool idling; 162 bool busy; 163 bool running; 164 bool cur_req_prepared; 165 166 struct list_head list; 167 spinlock_t queue_lock; 168 struct crypto_queue queue; 169 170 bool rt; 171 172 int (*prepare_crypt_hardware)(struct crypto_engine *engine); 173 int (*unprepare_crypt_hardware)(struct crypto_engine *engine); 174 175 int (*prepare_request)(struct crypto_engine *engine, 176 struct ablkcipher_request *req); 177 int (*unprepare_request)(struct crypto_engine *engine, 178 struct ablkcipher_request *req); 179 int (*crypt_one_request)(struct crypto_engine *engine, 180 struct ablkcipher_request *req); 181 182 struct kthread_worker kworker; 183 struct task_struct *kworker_task; 184 struct kthread_work pump_requests; 185 186 void *priv_data; 187 struct ablkcipher_request *cur_req; 188 }; 189 190 int crypto_transfer_request(struct crypto_engine *engine, 191 struct ablkcipher_request *req, bool need_pump); 192 int crypto_transfer_request_to_engine(struct crypto_engine *engine, 193 struct ablkcipher_request *req); 194 void crypto_finalize_request(struct crypto_engine *engine, 195 struct ablkcipher_request *req, int err); 196 int crypto_engine_start(struct crypto_engine *engine); 197 int crypto_engine_stop(struct crypto_engine *engine); 198 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt); 199 int crypto_engine_exit(struct crypto_engine *engine); 200 201 extern const struct crypto_type crypto_ablkcipher_type; 202 extern const struct crypto_type crypto_blkcipher_type; 203 204 void crypto_mod_put(struct crypto_alg *alg); 205 206 int crypto_register_template(struct crypto_template *tmpl); 207 void crypto_unregister_template(struct crypto_template *tmpl); 208 struct crypto_template *crypto_lookup_template(const char *name); 209 210 int crypto_register_instance(struct crypto_template *tmpl, 211 struct crypto_instance *inst); 212 int crypto_unregister_instance(struct crypto_instance *inst); 213 214 int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg, 215 struct crypto_instance *inst, u32 mask); 216 int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg, 217 struct crypto_instance *inst, 218 const struct crypto_type *frontend); 219 int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name, 220 u32 type, u32 mask); 221 222 void crypto_drop_spawn(struct crypto_spawn *spawn); 223 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, 224 u32 mask); 225 void *crypto_spawn_tfm2(struct crypto_spawn *spawn); 226 227 static inline void crypto_set_spawn(struct crypto_spawn *spawn, 228 struct crypto_instance *inst) 229 { 230 spawn->inst = inst; 231 } 232 233 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); 234 int crypto_check_attr_type(struct rtattr **tb, u32 type); 235 const char *crypto_attr_alg_name(struct rtattr *rta); 236 struct crypto_alg *crypto_attr_alg2(struct rtattr *rta, 237 const struct crypto_type *frontend, 238 u32 type, u32 mask); 239 240 static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta, 241 u32 type, u32 mask) 242 { 243 return crypto_attr_alg2(rta, NULL, type, mask); 244 } 245 246 int crypto_attr_u32(struct rtattr *rta, u32 *num); 247 int crypto_inst_setname(struct crypto_instance *inst, const char *name, 248 struct crypto_alg *alg); 249 void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg, 250 unsigned int head); 251 struct crypto_instance *crypto_alloc_instance(const char *name, 252 struct crypto_alg *alg); 253 254 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); 255 int crypto_enqueue_request(struct crypto_queue *queue, 256 struct crypto_async_request *request); 257 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); 258 int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm); 259 static inline unsigned int crypto_queue_len(struct crypto_queue *queue) 260 { 261 return queue->qlen; 262 } 263 264 /* These functions require the input/output to be aligned as u32. */ 265 void crypto_inc(u8 *a, unsigned int size); 266 void crypto_xor(u8 *dst, const u8 *src, unsigned int size); 267 268 int blkcipher_walk_done(struct blkcipher_desc *desc, 269 struct blkcipher_walk *walk, int err); 270 int blkcipher_walk_virt(struct blkcipher_desc *desc, 271 struct blkcipher_walk *walk); 272 int blkcipher_walk_phys(struct blkcipher_desc *desc, 273 struct blkcipher_walk *walk); 274 int blkcipher_walk_virt_block(struct blkcipher_desc *desc, 275 struct blkcipher_walk *walk, 276 unsigned int blocksize); 277 int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc, 278 struct blkcipher_walk *walk, 279 struct crypto_aead *tfm, 280 unsigned int blocksize); 281 282 int ablkcipher_walk_done(struct ablkcipher_request *req, 283 struct ablkcipher_walk *walk, int err); 284 int ablkcipher_walk_phys(struct ablkcipher_request *req, 285 struct ablkcipher_walk *walk); 286 void __ablkcipher_walk_complete(struct ablkcipher_walk *walk); 287 288 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) 289 { 290 return PTR_ALIGN(crypto_tfm_ctx(tfm), 291 crypto_tfm_alg_alignmask(tfm) + 1); 292 } 293 294 static inline struct crypto_instance *crypto_tfm_alg_instance( 295 struct crypto_tfm *tfm) 296 { 297 return container_of(tfm->__crt_alg, struct crypto_instance, alg); 298 } 299 300 static inline void *crypto_instance_ctx(struct crypto_instance *inst) 301 { 302 return inst->__ctx; 303 } 304 305 static inline struct ablkcipher_alg *crypto_ablkcipher_alg( 306 struct crypto_ablkcipher *tfm) 307 { 308 return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher; 309 } 310 311 static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm) 312 { 313 return crypto_tfm_ctx(&tfm->base); 314 } 315 316 static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm) 317 { 318 return crypto_tfm_ctx_aligned(&tfm->base); 319 } 320 321 static inline struct crypto_blkcipher *crypto_spawn_blkcipher( 322 struct crypto_spawn *spawn) 323 { 324 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER; 325 u32 mask = CRYPTO_ALG_TYPE_MASK; 326 327 return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask)); 328 } 329 330 static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm) 331 { 332 return crypto_tfm_ctx(&tfm->base); 333 } 334 335 static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm) 336 { 337 return crypto_tfm_ctx_aligned(&tfm->base); 338 } 339 340 static inline struct crypto_cipher *crypto_spawn_cipher( 341 struct crypto_spawn *spawn) 342 { 343 u32 type = CRYPTO_ALG_TYPE_CIPHER; 344 u32 mask = CRYPTO_ALG_TYPE_MASK; 345 346 return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask)); 347 } 348 349 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) 350 { 351 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; 352 } 353 354 static inline void blkcipher_walk_init(struct blkcipher_walk *walk, 355 struct scatterlist *dst, 356 struct scatterlist *src, 357 unsigned int nbytes) 358 { 359 walk->in.sg = src; 360 walk->out.sg = dst; 361 walk->total = nbytes; 362 } 363 364 static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk, 365 struct scatterlist *dst, 366 struct scatterlist *src, 367 unsigned int nbytes) 368 { 369 walk->in.sg = src; 370 walk->out.sg = dst; 371 walk->total = nbytes; 372 INIT_LIST_HEAD(&walk->buffers); 373 } 374 375 static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk) 376 { 377 if (unlikely(!list_empty(&walk->buffers))) 378 __ablkcipher_walk_complete(walk); 379 } 380 381 static inline struct crypto_async_request *crypto_get_backlog( 382 struct crypto_queue *queue) 383 { 384 return queue->backlog == &queue->list ? NULL : 385 container_of(queue->backlog, struct crypto_async_request, list); 386 } 387 388 static inline int ablkcipher_enqueue_request(struct crypto_queue *queue, 389 struct ablkcipher_request *request) 390 { 391 return crypto_enqueue_request(queue, &request->base); 392 } 393 394 static inline struct ablkcipher_request *ablkcipher_dequeue_request( 395 struct crypto_queue *queue) 396 { 397 return ablkcipher_request_cast(crypto_dequeue_request(queue)); 398 } 399 400 static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req) 401 { 402 return req->__ctx; 403 } 404 405 static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue, 406 struct crypto_ablkcipher *tfm) 407 { 408 return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm)); 409 } 410 411 static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb, 412 u32 type, u32 mask) 413 { 414 return crypto_attr_alg(tb[1], type, mask); 415 } 416 417 /* 418 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms. 419 * Otherwise returns zero. 420 */ 421 static inline int crypto_requires_sync(u32 type, u32 mask) 422 { 423 return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC; 424 } 425 426 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); 427 428 /** 429 * crypto_memneq - Compare two areas of memory without leaking 430 * timing information. 431 * 432 * @a: One area of memory 433 * @b: Another area of memory 434 * @size: The size of the area. 435 * 436 * Returns 0 when data is equal, 1 otherwise. 437 */ 438 static inline int crypto_memneq(const void *a, const void *b, size_t size) 439 { 440 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; 441 } 442 443 static inline void crypto_yield(u32 flags) 444 { 445 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY) 446 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) 447 cond_resched(); 448 #endif 449 } 450 451 #endif /* _CRYPTO_ALGAPI_H */ 452