1 /* 2 * Cryptographic API for algorithms (i.e., low-level API). 3 * 4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 * 11 */ 12 #ifndef _CRYPTO_ALGAPI_H 13 #define _CRYPTO_ALGAPI_H 14 15 #include <linux/crypto.h> 16 #include <linux/list.h> 17 #include <linux/kernel.h> 18 #include <linux/skbuff.h> 19 20 struct crypto_aead; 21 struct crypto_instance; 22 struct module; 23 struct rtattr; 24 struct seq_file; 25 26 struct crypto_type { 27 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); 28 unsigned int (*extsize)(struct crypto_alg *alg); 29 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); 30 int (*init_tfm)(struct crypto_tfm *tfm); 31 void (*show)(struct seq_file *m, struct crypto_alg *alg); 32 int (*report)(struct sk_buff *skb, struct crypto_alg *alg); 33 struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask); 34 void (*free)(struct crypto_instance *inst); 35 36 unsigned int type; 37 unsigned int maskclear; 38 unsigned int maskset; 39 unsigned int tfmsize; 40 }; 41 42 struct crypto_instance { 43 struct crypto_alg alg; 44 45 struct crypto_template *tmpl; 46 struct hlist_node list; 47 48 void *__ctx[] CRYPTO_MINALIGN_ATTR; 49 }; 50 51 struct crypto_template { 52 struct list_head list; 53 struct hlist_head instances; 54 struct module *module; 55 56 struct crypto_instance *(*alloc)(struct rtattr **tb); 57 void (*free)(struct crypto_instance *inst); 58 int (*create)(struct crypto_template *tmpl, struct rtattr **tb); 59 60 char name[CRYPTO_MAX_ALG_NAME]; 61 }; 62 63 struct crypto_spawn { 64 struct list_head list; 65 struct crypto_alg *alg; 66 struct crypto_instance *inst; 67 const struct crypto_type *frontend; 68 u32 mask; 69 }; 70 71 struct crypto_queue { 72 struct list_head list; 73 struct list_head *backlog; 74 75 unsigned int qlen; 76 unsigned int max_qlen; 77 }; 78 79 struct scatter_walk { 80 struct scatterlist *sg; 81 unsigned int offset; 82 }; 83 84 struct blkcipher_walk { 85 union { 86 struct { 87 struct page *page; 88 unsigned long offset; 89 } phys; 90 91 struct { 92 u8 *page; 93 u8 *addr; 94 } virt; 95 } src, dst; 96 97 struct scatter_walk in; 98 unsigned int nbytes; 99 100 struct scatter_walk out; 101 unsigned int total; 102 103 void *page; 104 u8 *buffer; 105 u8 *iv; 106 unsigned int ivsize; 107 108 int flags; 109 unsigned int walk_blocksize; 110 unsigned int cipher_blocksize; 111 unsigned int alignmask; 112 }; 113 114 struct ablkcipher_walk { 115 struct { 116 struct page *page; 117 unsigned int offset; 118 } src, dst; 119 120 struct scatter_walk in; 121 unsigned int nbytes; 122 struct scatter_walk out; 123 unsigned int total; 124 struct list_head buffers; 125 u8 *iv_buffer; 126 u8 *iv; 127 int flags; 128 unsigned int blocksize; 129 }; 130 131 extern const struct crypto_type crypto_ablkcipher_type; 132 extern const struct crypto_type crypto_blkcipher_type; 133 134 void crypto_mod_put(struct crypto_alg *alg); 135 136 int crypto_register_template(struct crypto_template *tmpl); 137 void crypto_unregister_template(struct crypto_template *tmpl); 138 struct crypto_template *crypto_lookup_template(const char *name); 139 140 int crypto_register_instance(struct crypto_template *tmpl, 141 struct crypto_instance *inst); 142 int crypto_unregister_instance(struct crypto_instance *inst); 143 144 int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg, 145 struct crypto_instance *inst, u32 mask); 146 int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg, 147 struct crypto_instance *inst, 148 const struct crypto_type *frontend); 149 int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name, 150 u32 type, u32 mask); 151 152 void crypto_drop_spawn(struct crypto_spawn *spawn); 153 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, 154 u32 mask); 155 void *crypto_spawn_tfm2(struct crypto_spawn *spawn); 156 157 static inline void crypto_set_spawn(struct crypto_spawn *spawn, 158 struct crypto_instance *inst) 159 { 160 spawn->inst = inst; 161 } 162 163 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); 164 int crypto_check_attr_type(struct rtattr **tb, u32 type); 165 const char *crypto_attr_alg_name(struct rtattr *rta); 166 struct crypto_alg *crypto_attr_alg2(struct rtattr *rta, 167 const struct crypto_type *frontend, 168 u32 type, u32 mask); 169 170 static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta, 171 u32 type, u32 mask) 172 { 173 return crypto_attr_alg2(rta, NULL, type, mask); 174 } 175 176 int crypto_attr_u32(struct rtattr *rta, u32 *num); 177 int crypto_inst_setname(struct crypto_instance *inst, const char *name, 178 struct crypto_alg *alg); 179 void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg, 180 unsigned int head); 181 struct crypto_instance *crypto_alloc_instance(const char *name, 182 struct crypto_alg *alg); 183 184 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); 185 int crypto_enqueue_request(struct crypto_queue *queue, 186 struct crypto_async_request *request); 187 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); 188 int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm); 189 static inline unsigned int crypto_queue_len(struct crypto_queue *queue) 190 { 191 return queue->qlen; 192 } 193 194 void crypto_inc(u8 *a, unsigned int size); 195 void __crypto_xor(u8 *dst, const u8 *src, unsigned int size); 196 197 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) 198 { 199 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && 200 __builtin_constant_p(size) && 201 (size % sizeof(unsigned long)) == 0) { 202 unsigned long *d = (unsigned long *)dst; 203 unsigned long *s = (unsigned long *)src; 204 205 while (size > 0) { 206 *d++ ^= *s++; 207 size -= sizeof(unsigned long); 208 } 209 } else { 210 __crypto_xor(dst, src, size); 211 } 212 } 213 214 int blkcipher_walk_done(struct blkcipher_desc *desc, 215 struct blkcipher_walk *walk, int err); 216 int blkcipher_walk_virt(struct blkcipher_desc *desc, 217 struct blkcipher_walk *walk); 218 int blkcipher_walk_phys(struct blkcipher_desc *desc, 219 struct blkcipher_walk *walk); 220 int blkcipher_walk_virt_block(struct blkcipher_desc *desc, 221 struct blkcipher_walk *walk, 222 unsigned int blocksize); 223 int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc, 224 struct blkcipher_walk *walk, 225 struct crypto_aead *tfm, 226 unsigned int blocksize); 227 228 int ablkcipher_walk_done(struct ablkcipher_request *req, 229 struct ablkcipher_walk *walk, int err); 230 int ablkcipher_walk_phys(struct ablkcipher_request *req, 231 struct ablkcipher_walk *walk); 232 void __ablkcipher_walk_complete(struct ablkcipher_walk *walk); 233 234 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) 235 { 236 return PTR_ALIGN(crypto_tfm_ctx(tfm), 237 crypto_tfm_alg_alignmask(tfm) + 1); 238 } 239 240 static inline struct crypto_instance *crypto_tfm_alg_instance( 241 struct crypto_tfm *tfm) 242 { 243 return container_of(tfm->__crt_alg, struct crypto_instance, alg); 244 } 245 246 static inline void *crypto_instance_ctx(struct crypto_instance *inst) 247 { 248 return inst->__ctx; 249 } 250 251 static inline struct ablkcipher_alg *crypto_ablkcipher_alg( 252 struct crypto_ablkcipher *tfm) 253 { 254 return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher; 255 } 256 257 static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm) 258 { 259 return crypto_tfm_ctx(&tfm->base); 260 } 261 262 static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm) 263 { 264 return crypto_tfm_ctx_aligned(&tfm->base); 265 } 266 267 static inline struct crypto_blkcipher *crypto_spawn_blkcipher( 268 struct crypto_spawn *spawn) 269 { 270 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER; 271 u32 mask = CRYPTO_ALG_TYPE_MASK; 272 273 return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask)); 274 } 275 276 static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm) 277 { 278 return crypto_tfm_ctx(&tfm->base); 279 } 280 281 static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm) 282 { 283 return crypto_tfm_ctx_aligned(&tfm->base); 284 } 285 286 static inline struct crypto_cipher *crypto_spawn_cipher( 287 struct crypto_spawn *spawn) 288 { 289 u32 type = CRYPTO_ALG_TYPE_CIPHER; 290 u32 mask = CRYPTO_ALG_TYPE_MASK; 291 292 return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask)); 293 } 294 295 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) 296 { 297 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; 298 } 299 300 static inline void blkcipher_walk_init(struct blkcipher_walk *walk, 301 struct scatterlist *dst, 302 struct scatterlist *src, 303 unsigned int nbytes) 304 { 305 walk->in.sg = src; 306 walk->out.sg = dst; 307 walk->total = nbytes; 308 } 309 310 static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk, 311 struct scatterlist *dst, 312 struct scatterlist *src, 313 unsigned int nbytes) 314 { 315 walk->in.sg = src; 316 walk->out.sg = dst; 317 walk->total = nbytes; 318 INIT_LIST_HEAD(&walk->buffers); 319 } 320 321 static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk) 322 { 323 if (unlikely(!list_empty(&walk->buffers))) 324 __ablkcipher_walk_complete(walk); 325 } 326 327 static inline struct crypto_async_request *crypto_get_backlog( 328 struct crypto_queue *queue) 329 { 330 return queue->backlog == &queue->list ? NULL : 331 container_of(queue->backlog, struct crypto_async_request, list); 332 } 333 334 static inline int ablkcipher_enqueue_request(struct crypto_queue *queue, 335 struct ablkcipher_request *request) 336 { 337 return crypto_enqueue_request(queue, &request->base); 338 } 339 340 static inline struct ablkcipher_request *ablkcipher_dequeue_request( 341 struct crypto_queue *queue) 342 { 343 return ablkcipher_request_cast(crypto_dequeue_request(queue)); 344 } 345 346 static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req) 347 { 348 return req->__ctx; 349 } 350 351 static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue, 352 struct crypto_ablkcipher *tfm) 353 { 354 return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm)); 355 } 356 357 static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb, 358 u32 type, u32 mask) 359 { 360 return crypto_attr_alg(tb[1], type, mask); 361 } 362 363 static inline int crypto_requires_off(u32 type, u32 mask, u32 off) 364 { 365 return (type ^ off) & mask & off; 366 } 367 368 /* 369 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms. 370 * Otherwise returns zero. 371 */ 372 static inline int crypto_requires_sync(u32 type, u32 mask) 373 { 374 return crypto_requires_off(type, mask, CRYPTO_ALG_ASYNC); 375 } 376 377 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); 378 379 /** 380 * crypto_memneq - Compare two areas of memory without leaking 381 * timing information. 382 * 383 * @a: One area of memory 384 * @b: Another area of memory 385 * @size: The size of the area. 386 * 387 * Returns 0 when data is equal, 1 otherwise. 388 */ 389 static inline int crypto_memneq(const void *a, const void *b, size_t size) 390 { 391 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; 392 } 393 394 static inline void crypto_yield(u32 flags) 395 { 396 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY) 397 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) 398 cond_resched(); 399 #endif 400 } 401 402 #endif /* _CRYPTO_ALGAPI_H */ 403