1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * Cryptographic API for algorithms (i.e., low-level API). 4 * 5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 6 */ 7 #ifndef _CRYPTO_ALGAPI_H 8 #define _CRYPTO_ALGAPI_H 9 10 #include <linux/crypto.h> 11 #include <linux/list.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 15 /* 16 * Maximum values for blocksize and alignmask, used to allocate 17 * static buffers that are big enough for any combination of 18 * algs and architectures. Ciphers have a lower maximum size. 19 */ 20 #define MAX_ALGAPI_BLOCKSIZE 160 21 #define MAX_ALGAPI_ALIGNMASK 63 22 #define MAX_CIPHER_BLOCKSIZE 16 23 #define MAX_CIPHER_ALIGNMASK 15 24 25 struct crypto_aead; 26 struct crypto_instance; 27 struct module; 28 struct rtattr; 29 struct seq_file; 30 31 struct crypto_type { 32 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); 33 unsigned int (*extsize)(struct crypto_alg *alg); 34 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); 35 int (*init_tfm)(struct crypto_tfm *tfm); 36 void (*show)(struct seq_file *m, struct crypto_alg *alg); 37 int (*report)(struct sk_buff *skb, struct crypto_alg *alg); 38 void (*free)(struct crypto_instance *inst); 39 40 unsigned int type; 41 unsigned int maskclear; 42 unsigned int maskset; 43 unsigned int tfmsize; 44 }; 45 46 struct crypto_instance { 47 struct crypto_alg alg; 48 49 struct crypto_template *tmpl; 50 51 union { 52 /* Node in list of instances after registration. */ 53 struct hlist_node list; 54 /* List of attached spawns before registration. */ 55 struct crypto_spawn *spawns; 56 }; 57 58 void *__ctx[] CRYPTO_MINALIGN_ATTR; 59 }; 60 61 struct crypto_template { 62 struct list_head list; 63 struct hlist_head instances; 64 struct module *module; 65 66 int (*create)(struct crypto_template *tmpl, struct rtattr **tb); 67 68 char name[CRYPTO_MAX_ALG_NAME]; 69 }; 70 71 struct crypto_spawn { 72 struct list_head list; 73 struct crypto_alg *alg; 74 union { 75 /* Back pointer to instance after registration.*/ 76 struct crypto_instance *inst; 77 /* Spawn list pointer prior to registration. */ 78 struct crypto_spawn *next; 79 }; 80 const struct crypto_type *frontend; 81 u32 mask; 82 bool dead; 83 bool registered; 84 }; 85 86 struct crypto_queue { 87 struct list_head list; 88 struct list_head *backlog; 89 90 unsigned int qlen; 91 unsigned int max_qlen; 92 }; 93 94 struct scatter_walk { 95 struct scatterlist *sg; 96 unsigned int offset; 97 }; 98 99 void crypto_mod_put(struct crypto_alg *alg); 100 101 int crypto_register_template(struct crypto_template *tmpl); 102 int crypto_register_templates(struct crypto_template *tmpls, int count); 103 void crypto_unregister_template(struct crypto_template *tmpl); 104 void crypto_unregister_templates(struct crypto_template *tmpls, int count); 105 struct crypto_template *crypto_lookup_template(const char *name); 106 107 int crypto_register_instance(struct crypto_template *tmpl, 108 struct crypto_instance *inst); 109 void crypto_unregister_instance(struct crypto_instance *inst); 110 111 int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, 112 const char *name, u32 type, u32 mask); 113 void crypto_drop_spawn(struct crypto_spawn *spawn); 114 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, 115 u32 mask); 116 void *crypto_spawn_tfm2(struct crypto_spawn *spawn); 117 118 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); 119 int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); 120 const char *crypto_attr_alg_name(struct rtattr *rta); 121 int crypto_attr_u32(struct rtattr *rta, u32 *num); 122 int crypto_inst_setname(struct crypto_instance *inst, const char *name, 123 struct crypto_alg *alg); 124 125 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); 126 int crypto_enqueue_request(struct crypto_queue *queue, 127 struct crypto_async_request *request); 128 void crypto_enqueue_request_head(struct crypto_queue *queue, 129 struct crypto_async_request *request); 130 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); 131 static inline unsigned int crypto_queue_len(struct crypto_queue *queue) 132 { 133 return queue->qlen; 134 } 135 136 void crypto_inc(u8 *a, unsigned int size); 137 void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size); 138 139 static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) 140 { 141 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && 142 __builtin_constant_p(size) && 143 (size % sizeof(unsigned long)) == 0) { 144 unsigned long *d = (unsigned long *)dst; 145 unsigned long *s = (unsigned long *)src; 146 147 while (size > 0) { 148 *d++ ^= *s++; 149 size -= sizeof(unsigned long); 150 } 151 } else { 152 __crypto_xor(dst, dst, src, size); 153 } 154 } 155 156 static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2, 157 unsigned int size) 158 { 159 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && 160 __builtin_constant_p(size) && 161 (size % sizeof(unsigned long)) == 0) { 162 unsigned long *d = (unsigned long *)dst; 163 unsigned long *s1 = (unsigned long *)src1; 164 unsigned long *s2 = (unsigned long *)src2; 165 166 while (size > 0) { 167 *d++ = *s1++ ^ *s2++; 168 size -= sizeof(unsigned long); 169 } 170 } else { 171 __crypto_xor(dst, src1, src2, size); 172 } 173 } 174 175 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) 176 { 177 return PTR_ALIGN(crypto_tfm_ctx(tfm), 178 crypto_tfm_alg_alignmask(tfm) + 1); 179 } 180 181 static inline struct crypto_instance *crypto_tfm_alg_instance( 182 struct crypto_tfm *tfm) 183 { 184 return container_of(tfm->__crt_alg, struct crypto_instance, alg); 185 } 186 187 static inline void *crypto_instance_ctx(struct crypto_instance *inst) 188 { 189 return inst->__ctx; 190 } 191 192 struct crypto_cipher_spawn { 193 struct crypto_spawn base; 194 }; 195 196 static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn, 197 struct crypto_instance *inst, 198 const char *name, u32 type, u32 mask) 199 { 200 type &= ~CRYPTO_ALG_TYPE_MASK; 201 type |= CRYPTO_ALG_TYPE_CIPHER; 202 mask |= CRYPTO_ALG_TYPE_MASK; 203 return crypto_grab_spawn(&spawn->base, inst, name, type, mask); 204 } 205 206 static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn) 207 { 208 crypto_drop_spawn(&spawn->base); 209 } 210 211 static inline struct crypto_alg *crypto_spawn_cipher_alg( 212 struct crypto_cipher_spawn *spawn) 213 { 214 return spawn->base.alg; 215 } 216 217 static inline struct crypto_cipher *crypto_spawn_cipher( 218 struct crypto_cipher_spawn *spawn) 219 { 220 u32 type = CRYPTO_ALG_TYPE_CIPHER; 221 u32 mask = CRYPTO_ALG_TYPE_MASK; 222 223 return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask)); 224 } 225 226 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) 227 { 228 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; 229 } 230 231 static inline struct crypto_async_request *crypto_get_backlog( 232 struct crypto_queue *queue) 233 { 234 return queue->backlog == &queue->list ? NULL : 235 container_of(queue->backlog, struct crypto_async_request, list); 236 } 237 238 static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) 239 { 240 return (algt->type ^ off) & algt->mask & off; 241 } 242 243 /* 244 * When an algorithm uses another algorithm (e.g., if it's an instance of a 245 * template), these are the flags that should always be set on the "outer" 246 * algorithm if any "inner" algorithm has them set. 247 */ 248 #define CRYPTO_ALG_INHERITED_FLAGS \ 249 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ 250 CRYPTO_ALG_ALLOCATES_MEMORY) 251 252 /* 253 * Given the type and mask that specify the flags restrictions on a template 254 * instance being created, return the mask that should be passed to 255 * crypto_grab_*() (along with type=0) to honor any request the user made to 256 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. 257 */ 258 static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) 259 { 260 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); 261 } 262 263 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); 264 265 /** 266 * crypto_memneq - Compare two areas of memory without leaking 267 * timing information. 268 * 269 * @a: One area of memory 270 * @b: Another area of memory 271 * @size: The size of the area. 272 * 273 * Returns 0 when data is equal, 1 otherwise. 274 */ 275 static inline int crypto_memneq(const void *a, const void *b, size_t size) 276 { 277 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; 278 } 279 280 static inline void crypto_yield(u32 flags) 281 { 282 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) 283 cond_resched(); 284 } 285 286 int crypto_register_notifier(struct notifier_block *nb); 287 int crypto_unregister_notifier(struct notifier_block *nb); 288 289 /* Crypto notification events. */ 290 enum { 291 CRYPTO_MSG_ALG_REQUEST, 292 CRYPTO_MSG_ALG_REGISTER, 293 CRYPTO_MSG_ALG_LOADED, 294 }; 295 296 #endif /* _CRYPTO_ALGAPI_H */ 297