xref: /openbmc/linux/include/crypto/algapi.h (revision 23c2b932)
1 /*
2  * Cryptographic API for algorithms (i.e., low-level API).
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 #ifndef _CRYPTO_ALGAPI_H
13 #define _CRYPTO_ALGAPI_H
14 
15 #include <linux/crypto.h>
16 #include <linux/list.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/skbuff.h>
20 
21 struct crypto_aead;
22 struct crypto_instance;
23 struct module;
24 struct rtattr;
25 struct seq_file;
26 
27 struct crypto_type {
28 	unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
29 	unsigned int (*extsize)(struct crypto_alg *alg);
30 	int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
31 	int (*init_tfm)(struct crypto_tfm *tfm);
32 	void (*show)(struct seq_file *m, struct crypto_alg *alg);
33 	int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
34 	struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
35 	void (*free)(struct crypto_instance *inst);
36 
37 	unsigned int type;
38 	unsigned int maskclear;
39 	unsigned int maskset;
40 	unsigned int tfmsize;
41 };
42 
43 struct crypto_instance {
44 	struct crypto_alg alg;
45 
46 	struct crypto_template *tmpl;
47 	struct hlist_node list;
48 
49 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
50 };
51 
52 struct crypto_template {
53 	struct list_head list;
54 	struct hlist_head instances;
55 	struct module *module;
56 
57 	struct crypto_instance *(*alloc)(struct rtattr **tb);
58 	void (*free)(struct crypto_instance *inst);
59 	int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
60 
61 	char name[CRYPTO_MAX_ALG_NAME];
62 };
63 
64 struct crypto_spawn {
65 	struct list_head list;
66 	struct crypto_alg *alg;
67 	struct crypto_instance *inst;
68 	const struct crypto_type *frontend;
69 	u32 mask;
70 };
71 
72 struct crypto_queue {
73 	struct list_head list;
74 	struct list_head *backlog;
75 
76 	unsigned int qlen;
77 	unsigned int max_qlen;
78 };
79 
80 struct scatter_walk {
81 	struct scatterlist *sg;
82 	unsigned int offset;
83 };
84 
85 struct blkcipher_walk {
86 	union {
87 		struct {
88 			struct page *page;
89 			unsigned long offset;
90 		} phys;
91 
92 		struct {
93 			u8 *page;
94 			u8 *addr;
95 		} virt;
96 	} src, dst;
97 
98 	struct scatter_walk in;
99 	unsigned int nbytes;
100 
101 	struct scatter_walk out;
102 	unsigned int total;
103 
104 	void *page;
105 	u8 *buffer;
106 	u8 *iv;
107 	unsigned int ivsize;
108 
109 	int flags;
110 	unsigned int walk_blocksize;
111 	unsigned int cipher_blocksize;
112 	unsigned int alignmask;
113 };
114 
115 struct ablkcipher_walk {
116 	struct {
117 		struct page *page;
118 		unsigned int offset;
119 	} src, dst;
120 
121 	struct scatter_walk	in;
122 	unsigned int		nbytes;
123 	struct scatter_walk	out;
124 	unsigned int		total;
125 	struct list_head	buffers;
126 	u8			*iv_buffer;
127 	u8			*iv;
128 	int			flags;
129 	unsigned int		blocksize;
130 };
131 
132 #define ENGINE_NAME_LEN	30
133 /*
134  * struct crypto_engine - crypto hardware engine
135  * @name: the engine name
136  * @idling: the engine is entering idle state
137  * @busy: request pump is busy
138  * @running: the engine is on working
139  * @cur_req_prepared: current request is prepared
140  * @list: link with the global crypto engine list
141  * @queue_lock: spinlock to syncronise access to request queue
142  * @queue: the crypto queue of the engine
143  * @rt: whether this queue is set to run as a realtime task
144  * @prepare_crypt_hardware: a request will soon arrive from the queue
145  * so the subsystem requests the driver to prepare the hardware
146  * by issuing this call
147  * @unprepare_crypt_hardware: there are currently no more requests on the
148  * queue so the subsystem notifies the driver that it may relax the
149  * hardware by issuing this call
150  * @prepare_request: do some prepare if need before handle the current request
151  * @unprepare_request: undo any work done by prepare_message()
152  * @crypt_one_request: do encryption for current request
153  * @kworker: thread struct for request pump
154  * @kworker_task: pointer to task for request pump kworker thread
155  * @pump_requests: work struct for scheduling work to the request pump
156  * @priv_data: the engine private data
157  * @cur_req: the current request which is on processing
158  */
159 struct crypto_engine {
160 	char			name[ENGINE_NAME_LEN];
161 	bool			idling;
162 	bool			busy;
163 	bool			running;
164 	bool			cur_req_prepared;
165 
166 	struct list_head	list;
167 	spinlock_t		queue_lock;
168 	struct crypto_queue	queue;
169 
170 	bool			rt;
171 
172 	int (*prepare_crypt_hardware)(struct crypto_engine *engine);
173 	int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
174 
175 	int (*prepare_request)(struct crypto_engine *engine,
176 			       struct ablkcipher_request *req);
177 	int (*unprepare_request)(struct crypto_engine *engine,
178 				 struct ablkcipher_request *req);
179 	int (*crypt_one_request)(struct crypto_engine *engine,
180 				 struct ablkcipher_request *req);
181 
182 	struct kthread_worker           kworker;
183 	struct task_struct              *kworker_task;
184 	struct kthread_work             pump_requests;
185 
186 	void				*priv_data;
187 	struct ablkcipher_request	*cur_req;
188 };
189 
190 int crypto_transfer_request(struct crypto_engine *engine,
191 			    struct ablkcipher_request *req, bool need_pump);
192 int crypto_transfer_request_to_engine(struct crypto_engine *engine,
193 				      struct ablkcipher_request *req);
194 void crypto_finalize_request(struct crypto_engine *engine,
195 			     struct ablkcipher_request *req, int err);
196 int crypto_engine_start(struct crypto_engine *engine);
197 int crypto_engine_stop(struct crypto_engine *engine);
198 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
199 int crypto_engine_exit(struct crypto_engine *engine);
200 
201 extern const struct crypto_type crypto_ablkcipher_type;
202 extern const struct crypto_type crypto_blkcipher_type;
203 
204 void crypto_mod_put(struct crypto_alg *alg);
205 
206 int crypto_register_template(struct crypto_template *tmpl);
207 void crypto_unregister_template(struct crypto_template *tmpl);
208 struct crypto_template *crypto_lookup_template(const char *name);
209 
210 int crypto_register_instance(struct crypto_template *tmpl,
211 			     struct crypto_instance *inst);
212 int crypto_unregister_instance(struct crypto_instance *inst);
213 
214 int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
215 		      struct crypto_instance *inst, u32 mask);
216 int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
217 		       struct crypto_instance *inst,
218 		       const struct crypto_type *frontend);
219 int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
220 		      u32 type, u32 mask);
221 
222 void crypto_drop_spawn(struct crypto_spawn *spawn);
223 struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
224 				    u32 mask);
225 void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
226 
227 static inline void crypto_set_spawn(struct crypto_spawn *spawn,
228 				    struct crypto_instance *inst)
229 {
230 	spawn->inst = inst;
231 }
232 
233 struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
234 int crypto_check_attr_type(struct rtattr **tb, u32 type);
235 const char *crypto_attr_alg_name(struct rtattr *rta);
236 struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
237 				    const struct crypto_type *frontend,
238 				    u32 type, u32 mask);
239 
240 static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
241 						 u32 type, u32 mask)
242 {
243 	return crypto_attr_alg2(rta, NULL, type, mask);
244 }
245 
246 int crypto_attr_u32(struct rtattr *rta, u32 *num);
247 void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
248 			     unsigned int head);
249 struct crypto_instance *crypto_alloc_instance(const char *name,
250 					      struct crypto_alg *alg);
251 
252 void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
253 int crypto_enqueue_request(struct crypto_queue *queue,
254 			   struct crypto_async_request *request);
255 struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
256 int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
257 static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
258 {
259 	return queue->qlen;
260 }
261 
262 /* These functions require the input/output to be aligned as u32. */
263 void crypto_inc(u8 *a, unsigned int size);
264 void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
265 
266 int blkcipher_walk_done(struct blkcipher_desc *desc,
267 			struct blkcipher_walk *walk, int err);
268 int blkcipher_walk_virt(struct blkcipher_desc *desc,
269 			struct blkcipher_walk *walk);
270 int blkcipher_walk_phys(struct blkcipher_desc *desc,
271 			struct blkcipher_walk *walk);
272 int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
273 			      struct blkcipher_walk *walk,
274 			      unsigned int blocksize);
275 int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
276 				   struct blkcipher_walk *walk,
277 				   struct crypto_aead *tfm,
278 				   unsigned int blocksize);
279 
280 int ablkcipher_walk_done(struct ablkcipher_request *req,
281 			 struct ablkcipher_walk *walk, int err);
282 int ablkcipher_walk_phys(struct ablkcipher_request *req,
283 			 struct ablkcipher_walk *walk);
284 void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
285 
286 static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
287 {
288 	return PTR_ALIGN(crypto_tfm_ctx(tfm),
289 			 crypto_tfm_alg_alignmask(tfm) + 1);
290 }
291 
292 static inline struct crypto_instance *crypto_tfm_alg_instance(
293 	struct crypto_tfm *tfm)
294 {
295 	return container_of(tfm->__crt_alg, struct crypto_instance, alg);
296 }
297 
298 static inline void *crypto_instance_ctx(struct crypto_instance *inst)
299 {
300 	return inst->__ctx;
301 }
302 
303 static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
304 	struct crypto_ablkcipher *tfm)
305 {
306 	return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
307 }
308 
309 static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
310 {
311 	return crypto_tfm_ctx(&tfm->base);
312 }
313 
314 static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
315 {
316 	return crypto_tfm_ctx_aligned(&tfm->base);
317 }
318 
319 static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
320 	struct crypto_spawn *spawn)
321 {
322 	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
323 	u32 mask = CRYPTO_ALG_TYPE_MASK;
324 
325 	return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
326 }
327 
328 static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
329 {
330 	return crypto_tfm_ctx(&tfm->base);
331 }
332 
333 static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
334 {
335 	return crypto_tfm_ctx_aligned(&tfm->base);
336 }
337 
338 static inline struct crypto_cipher *crypto_spawn_cipher(
339 	struct crypto_spawn *spawn)
340 {
341 	u32 type = CRYPTO_ALG_TYPE_CIPHER;
342 	u32 mask = CRYPTO_ALG_TYPE_MASK;
343 
344 	return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
345 }
346 
347 static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
348 {
349 	return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
350 }
351 
352 static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
353 				       struct scatterlist *dst,
354 				       struct scatterlist *src,
355 				       unsigned int nbytes)
356 {
357 	walk->in.sg = src;
358 	walk->out.sg = dst;
359 	walk->total = nbytes;
360 }
361 
362 static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
363 					struct scatterlist *dst,
364 					struct scatterlist *src,
365 					unsigned int nbytes)
366 {
367 	walk->in.sg = src;
368 	walk->out.sg = dst;
369 	walk->total = nbytes;
370 	INIT_LIST_HEAD(&walk->buffers);
371 }
372 
373 static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
374 {
375 	if (unlikely(!list_empty(&walk->buffers)))
376 		__ablkcipher_walk_complete(walk);
377 }
378 
379 static inline struct crypto_async_request *crypto_get_backlog(
380 	struct crypto_queue *queue)
381 {
382 	return queue->backlog == &queue->list ? NULL :
383 	       container_of(queue->backlog, struct crypto_async_request, list);
384 }
385 
386 static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
387 					     struct ablkcipher_request *request)
388 {
389 	return crypto_enqueue_request(queue, &request->base);
390 }
391 
392 static inline struct ablkcipher_request *ablkcipher_dequeue_request(
393 	struct crypto_queue *queue)
394 {
395 	return ablkcipher_request_cast(crypto_dequeue_request(queue));
396 }
397 
398 static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
399 {
400 	return req->__ctx;
401 }
402 
403 static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
404 					  struct crypto_ablkcipher *tfm)
405 {
406 	return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
407 }
408 
409 static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
410 						     u32 type, u32 mask)
411 {
412 	return crypto_attr_alg(tb[1], type, mask);
413 }
414 
415 /*
416  * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
417  * Otherwise returns zero.
418  */
419 static inline int crypto_requires_sync(u32 type, u32 mask)
420 {
421 	return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
422 }
423 
424 noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
425 
426 /**
427  * crypto_memneq - Compare two areas of memory without leaking
428  *		   timing information.
429  *
430  * @a: One area of memory
431  * @b: Another area of memory
432  * @size: The size of the area.
433  *
434  * Returns 0 when data is equal, 1 otherwise.
435  */
436 static inline int crypto_memneq(const void *a, const void *b, size_t size)
437 {
438 	return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
439 }
440 
441 static inline void crypto_yield(u32 flags)
442 {
443 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
444 		cond_resched();
445 }
446 
447 #endif	/* _CRYPTO_ALGAPI_H */
448