xref: /openbmc/linux/include/crypto/aead.h (revision f9834f18)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * AEAD: Authenticated Encryption with Associated Data
4  *
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10 
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 
15 /**
16  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
17  *
18  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
19  * (listed as type "aead" in /proc/crypto)
20  *
21  * The most prominent examples for this type of encryption is GCM and CCM.
22  * However, the kernel supports other types of AEAD ciphers which are defined
23  * with the following cipher string:
24  *
25  *	authenc(keyed message digest, block cipher)
26  *
27  * For example: authenc(hmac(sha256), cbc(aes))
28  *
29  * The example code provided for the symmetric key cipher operation
30  * applies here as well. Naturally all *skcipher* symbols must be exchanged
31  * the *aead* pendants discussed in the following. In addition, for the AEAD
32  * operation, the aead_request_set_ad function must be used to set the
33  * pointer to the associated data memory location before performing the
34  * encryption or decryption operation. In case of an encryption, the associated
35  * data memory is filled during the encryption operation. For decryption, the
36  * associated data memory must contain data that is used to verify the integrity
37  * of the decrypted data. Another deviation from the asynchronous block cipher
38  * operation is that the caller should explicitly check for -EBADMSG of the
39  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
40  * a breach in the integrity of the message. In essence, that -EBADMSG error
41  * code is the key bonus an AEAD cipher has over "standard" block chaining
42  * modes.
43  *
44  * Memory Structure:
45  *
46  * To support the needs of the most prominent user of AEAD ciphers, namely
47  * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
48  * to.
49  *
50  * The scatter list pointing to the input data must contain:
51  *
52  * * for RFC4106 ciphers, the concatenation of
53  *   associated authentication data || IV || plaintext or ciphertext. Note, the
54  *   same IV (buffer) is also set with the aead_request_set_crypt call. Note,
55  *   the API call of aead_request_set_ad must provide the length of the AAD and
56  *   the IV. The API call of aead_request_set_crypt only points to the size of
57  *   the input plaintext or ciphertext.
58  *
59  * * for "normal" AEAD ciphers, the concatenation of
60  *   associated authentication data || plaintext or ciphertext.
61  *
62  * It is important to note that if multiple scatter gather list entries form
63  * the input data mentioned above, the first entry must not point to a NULL
64  * buffer. If there is any potential where the AAD buffer can be NULL, the
65  * calling code must contain a precaution to ensure that this does not result
66  * in the first scatter gather list entry pointing to a NULL buffer.
67  */
68 
69 struct crypto_aead;
70 
71 /**
72  *	struct aead_request - AEAD request
73  *	@base: Common attributes for async crypto requests
74  *	@assoclen: Length in bytes of associated data for authentication
75  *	@cryptlen: Length of data to be encrypted or decrypted
76  *	@iv: Initialisation vector
77  *	@src: Source data
78  *	@dst: Destination data
79  *	@__ctx: Start of private context data
80  */
81 struct aead_request {
82 	struct crypto_async_request base;
83 
84 	unsigned int assoclen;
85 	unsigned int cryptlen;
86 
87 	u8 *iv;
88 
89 	struct scatterlist *src;
90 	struct scatterlist *dst;
91 
92 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
93 };
94 
95 /**
96  * struct aead_alg - AEAD cipher definition
97  * @maxauthsize: Set the maximum authentication tag size supported by the
98  *		 transformation. A transformation may support smaller tag sizes.
99  *		 As the authentication tag is a message digest to ensure the
100  *		 integrity of the encrypted data, a consumer typically wants the
101  *		 largest authentication tag possible as defined by this
102  *		 variable.
103  * @setauthsize: Set authentication size for the AEAD transformation. This
104  *		 function is used to specify the consumer requested size of the
105  * 		 authentication tag to be either generated by the transformation
106  *		 during encryption or the size of the authentication tag to be
107  *		 supplied during the decryption operation. This function is also
108  *		 responsible for checking the authentication tag size for
109  *		 validity.
110  * @setkey: see struct skcipher_alg
111  * @encrypt: see struct skcipher_alg
112  * @decrypt: see struct skcipher_alg
113  * @ivsize: see struct skcipher_alg
114  * @chunksize: see struct skcipher_alg
115  * @init: Initialize the cryptographic transformation object. This function
116  *	  is used to initialize the cryptographic transformation object.
117  *	  This function is called only once at the instantiation time, right
118  *	  after the transformation context was allocated. In case the
119  *	  cryptographic hardware has some special requirements which need to
120  *	  be handled by software, this function shall check for the precise
121  *	  requirement of the transformation and put any software fallbacks
122  *	  in place.
123  * @exit: Deinitialize the cryptographic transformation object. This is a
124  *	  counterpart to @init, used to remove various changes set in
125  *	  @init.
126  * @base: Definition of a generic crypto cipher algorithm.
127  *
128  * All fields except @ivsize is mandatory and must be filled.
129  */
130 struct aead_alg {
131 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
132 	              unsigned int keylen);
133 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
134 	int (*encrypt)(struct aead_request *req);
135 	int (*decrypt)(struct aead_request *req);
136 	int (*init)(struct crypto_aead *tfm);
137 	void (*exit)(struct crypto_aead *tfm);
138 
139 	unsigned int ivsize;
140 	unsigned int maxauthsize;
141 	unsigned int chunksize;
142 
143 	struct crypto_alg base;
144 };
145 
146 struct crypto_aead {
147 	unsigned int authsize;
148 	unsigned int reqsize;
149 
150 	struct crypto_tfm base;
151 };
152 
153 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
154 {
155 	return container_of(tfm, struct crypto_aead, base);
156 }
157 
158 /**
159  * crypto_alloc_aead() - allocate AEAD cipher handle
160  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
161  *	     AEAD cipher
162  * @type: specifies the type of the cipher
163  * @mask: specifies the mask for the cipher
164  *
165  * Allocate a cipher handle for an AEAD. The returned struct
166  * crypto_aead is the cipher handle that is required for any subsequent
167  * API invocation for that AEAD.
168  *
169  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
170  *	   of an error, PTR_ERR() returns the error code.
171  */
172 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
173 
174 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
175 {
176 	return &tfm->base;
177 }
178 
179 /**
180  * crypto_free_aead() - zeroize and free aead handle
181  * @tfm: cipher handle to be freed
182  */
183 static inline void crypto_free_aead(struct crypto_aead *tfm)
184 {
185 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
186 }
187 
188 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
189 {
190 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
191 			    struct aead_alg, base);
192 }
193 
194 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
195 {
196 	return alg->ivsize;
197 }
198 
199 /**
200  * crypto_aead_ivsize() - obtain IV size
201  * @tfm: cipher handle
202  *
203  * The size of the IV for the aead referenced by the cipher handle is
204  * returned. This IV size may be zero if the cipher does not need an IV.
205  *
206  * Return: IV size in bytes
207  */
208 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
209 {
210 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
211 }
212 
213 /**
214  * crypto_aead_authsize() - obtain maximum authentication data size
215  * @tfm: cipher handle
216  *
217  * The maximum size of the authentication data for the AEAD cipher referenced
218  * by the AEAD cipher handle is returned. The authentication data size may be
219  * zero if the cipher implements a hard-coded maximum.
220  *
221  * The authentication data may also be known as "tag value".
222  *
223  * Return: authentication data size / tag size in bytes
224  */
225 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
226 {
227 	return tfm->authsize;
228 }
229 
230 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
231 {
232 	return alg->maxauthsize;
233 }
234 
235 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
236 {
237 	return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
238 }
239 
240 /**
241  * crypto_aead_blocksize() - obtain block size of cipher
242  * @tfm: cipher handle
243  *
244  * The block size for the AEAD referenced with the cipher handle is returned.
245  * The caller may use that information to allocate appropriate memory for the
246  * data returned by the encryption or decryption operation
247  *
248  * Return: block size of cipher
249  */
250 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
251 {
252 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
253 }
254 
255 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
256 {
257 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
258 }
259 
260 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
261 {
262 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
263 }
264 
265 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
266 {
267 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
268 }
269 
270 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
271 {
272 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
273 }
274 
275 /**
276  * crypto_aead_setkey() - set key for cipher
277  * @tfm: cipher handle
278  * @key: buffer holding the key
279  * @keylen: length of the key in bytes
280  *
281  * The caller provided key is set for the AEAD referenced by the cipher
282  * handle.
283  *
284  * Note, the key length determines the cipher type. Many block ciphers implement
285  * different cipher modes depending on the key size, such as AES-128 vs AES-192
286  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
287  * is performed.
288  *
289  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
290  */
291 int crypto_aead_setkey(struct crypto_aead *tfm,
292 		       const u8 *key, unsigned int keylen);
293 
294 /**
295  * crypto_aead_setauthsize() - set authentication data size
296  * @tfm: cipher handle
297  * @authsize: size of the authentication data / tag in bytes
298  *
299  * Set the authentication data size / tag size. AEAD requires an authentication
300  * tag (or MAC) in addition to the associated data.
301  *
302  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
303  */
304 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
305 
306 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
307 {
308 	return __crypto_aead_cast(req->base.tfm);
309 }
310 
311 /**
312  * crypto_aead_encrypt() - encrypt plaintext
313  * @req: reference to the aead_request handle that holds all information
314  *	 needed to perform the cipher operation
315  *
316  * Encrypt plaintext data using the aead_request handle. That data structure
317  * and how it is filled with data is discussed with the aead_request_*
318  * functions.
319  *
320  * IMPORTANT NOTE The encryption operation creates the authentication data /
321  *		  tag. That data is concatenated with the created ciphertext.
322  *		  The ciphertext memory size is therefore the given number of
323  *		  block cipher blocks + the size defined by the
324  *		  crypto_aead_setauthsize invocation. The caller must ensure
325  *		  that sufficient memory is available for the ciphertext and
326  *		  the authentication tag.
327  *
328  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
329  */
330 int crypto_aead_encrypt(struct aead_request *req);
331 
332 /**
333  * crypto_aead_decrypt() - decrypt ciphertext
334  * @req: reference to the aead_request handle that holds all information
335  *	 needed to perform the cipher operation
336  *
337  * Decrypt ciphertext data using the aead_request handle. That data structure
338  * and how it is filled with data is discussed with the aead_request_*
339  * functions.
340  *
341  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
342  *		  authentication data / tag. That authentication data / tag
343  *		  must have the size defined by the crypto_aead_setauthsize
344  *		  invocation.
345  *
346  *
347  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
348  *	   cipher operation performs the authentication of the data during the
349  *	   decryption operation. Therefore, the function returns this error if
350  *	   the authentication of the ciphertext was unsuccessful (i.e. the
351  *	   integrity of the ciphertext or the associated data was violated);
352  *	   < 0 if an error occurred.
353  */
354 int crypto_aead_decrypt(struct aead_request *req);
355 
356 /**
357  * DOC: Asynchronous AEAD Request Handle
358  *
359  * The aead_request data structure contains all pointers to data required for
360  * the AEAD cipher operation. This includes the cipher handle (which can be
361  * used by multiple aead_request instances), pointer to plaintext and
362  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
363  * aead_request_* API calls in a similar way as AEAD handle to the
364  * crypto_aead_* API calls.
365  */
366 
367 /**
368  * crypto_aead_reqsize() - obtain size of the request data structure
369  * @tfm: cipher handle
370  *
371  * Return: number of bytes
372  */
373 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
374 {
375 	return tfm->reqsize;
376 }
377 
378 /**
379  * aead_request_set_tfm() - update cipher handle reference in request
380  * @req: request handle to be modified
381  * @tfm: cipher handle that shall be added to the request handle
382  *
383  * Allow the caller to replace the existing aead handle in the request
384  * data structure with a different one.
385  */
386 static inline void aead_request_set_tfm(struct aead_request *req,
387 					struct crypto_aead *tfm)
388 {
389 	req->base.tfm = crypto_aead_tfm(tfm);
390 }
391 
392 /**
393  * aead_request_alloc() - allocate request data structure
394  * @tfm: cipher handle to be registered with the request
395  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
396  *
397  * Allocate the request data structure that must be used with the AEAD
398  * encrypt and decrypt API calls. During the allocation, the provided aead
399  * handle is registered in the request data structure.
400  *
401  * Return: allocated request handle in case of success, or NULL if out of memory
402  */
403 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
404 						      gfp_t gfp)
405 {
406 	struct aead_request *req;
407 
408 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
409 
410 	if (likely(req))
411 		aead_request_set_tfm(req, tfm);
412 
413 	return req;
414 }
415 
416 /**
417  * aead_request_free() - zeroize and free request data structure
418  * @req: request data structure cipher handle to be freed
419  */
420 static inline void aead_request_free(struct aead_request *req)
421 {
422 	kzfree(req);
423 }
424 
425 /**
426  * aead_request_set_callback() - set asynchronous callback function
427  * @req: request handle
428  * @flags: specify zero or an ORing of the flags
429  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
430  *	   increase the wait queue beyond the initial maximum size;
431  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
432  * @compl: callback function pointer to be registered with the request handle
433  * @data: The data pointer refers to memory that is not used by the kernel
434  *	  crypto API, but provided to the callback function for it to use. Here,
435  *	  the caller can provide a reference to memory the callback function can
436  *	  operate on. As the callback function is invoked asynchronously to the
437  *	  related functionality, it may need to access data structures of the
438  *	  related functionality which can be referenced using this pointer. The
439  *	  callback function can access the memory via the "data" field in the
440  *	  crypto_async_request data structure provided to the callback function.
441  *
442  * Setting the callback function that is triggered once the cipher operation
443  * completes
444  *
445  * The callback function is registered with the aead_request handle and
446  * must comply with the following template::
447  *
448  *	void callback_function(struct crypto_async_request *req, int error)
449  */
450 static inline void aead_request_set_callback(struct aead_request *req,
451 					     u32 flags,
452 					     crypto_completion_t compl,
453 					     void *data)
454 {
455 	req->base.complete = compl;
456 	req->base.data = data;
457 	req->base.flags = flags;
458 }
459 
460 /**
461  * aead_request_set_crypt - set data buffers
462  * @req: request handle
463  * @src: source scatter / gather list
464  * @dst: destination scatter / gather list
465  * @cryptlen: number of bytes to process from @src
466  * @iv: IV for the cipher operation which must comply with the IV size defined
467  *      by crypto_aead_ivsize()
468  *
469  * Setting the source data and destination data scatter / gather lists which
470  * hold the associated data concatenated with the plaintext or ciphertext. See
471  * below for the authentication tag.
472  *
473  * For encryption, the source is treated as the plaintext and the
474  * destination is the ciphertext. For a decryption operation, the use is
475  * reversed - the source is the ciphertext and the destination is the plaintext.
476  *
477  * The memory structure for cipher operation has the following structure:
478  *
479  * - AEAD encryption input:  assoc data || plaintext
480  * - AEAD encryption output: assoc data || cipherntext || auth tag
481  * - AEAD decryption input:  assoc data || ciphertext || auth tag
482  * - AEAD decryption output: assoc data || plaintext
483  *
484  * Albeit the kernel requires the presence of the AAD buffer, however,
485  * the kernel does not fill the AAD buffer in the output case. If the
486  * caller wants to have that data buffer filled, the caller must either
487  * use an in-place cipher operation (i.e. same memory location for
488  * input/output memory location).
489  */
490 static inline void aead_request_set_crypt(struct aead_request *req,
491 					  struct scatterlist *src,
492 					  struct scatterlist *dst,
493 					  unsigned int cryptlen, u8 *iv)
494 {
495 	req->src = src;
496 	req->dst = dst;
497 	req->cryptlen = cryptlen;
498 	req->iv = iv;
499 }
500 
501 /**
502  * aead_request_set_ad - set associated data information
503  * @req: request handle
504  * @assoclen: number of bytes in associated data
505  *
506  * Setting the AD information.  This function sets the length of
507  * the associated data.
508  */
509 static inline void aead_request_set_ad(struct aead_request *req,
510 				       unsigned int assoclen)
511 {
512 	req->assoclen = assoclen;
513 }
514 
515 #endif	/* _CRYPTO_AEAD_H */
516