xref: /openbmc/linux/include/crypto/aead.h (revision f3a8b664)
1 /*
2  * AEAD: Authenticated Encryption with Associated Data
3  *
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_AEAD_H
14 #define _CRYPTO_AEAD_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22  *
23  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24  * (listed as type "aead" in /proc/crypto)
25  *
26  * The most prominent examples for this type of encryption is GCM and CCM.
27  * However, the kernel supports other types of AEAD ciphers which are defined
28  * with the following cipher string:
29  *
30  *	authenc(keyed message digest, block cipher)
31  *
32  * For example: authenc(hmac(sha256), cbc(aes))
33  *
34  * The example code provided for the symmetric key cipher operation
35  * applies here as well. Naturally all *skcipher* symbols must be exchanged
36  * the *aead* pendants discussed in the following. In addition, for the AEAD
37  * operation, the aead_request_set_ad function must be used to set the
38  * pointer to the associated data memory location before performing the
39  * encryption or decryption operation. In case of an encryption, the associated
40  * data memory is filled during the encryption operation. For decryption, the
41  * associated data memory must contain data that is used to verify the integrity
42  * of the decrypted data. Another deviation from the asynchronous block cipher
43  * operation is that the caller should explicitly check for -EBADMSG of the
44  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45  * a breach in the integrity of the message. In essence, that -EBADMSG error
46  * code is the key bonus an AEAD cipher has over "standard" block chaining
47  * modes.
48  *
49  * Memory Structure:
50  *
51  * To support the needs of the most prominent user of AEAD ciphers, namely
52  * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
53  * to.
54  *
55  * The scatter list pointing to the input data must contain:
56  *
57  * * for RFC4106 ciphers, the concatenation of
58  * associated authentication data || IV || plaintext or ciphertext. Note, the
59  * same IV (buffer) is also set with the aead_request_set_crypt call. Note,
60  * the API call of aead_request_set_ad must provide the length of the AAD and
61  * the IV. The API call of aead_request_set_crypt only points to the size of
62  * the input plaintext or ciphertext.
63  *
64  * * for "normal" AEAD ciphers, the concatenation of
65  * associated authentication data || plaintext or ciphertext.
66  *
67  * It is important to note that if multiple scatter gather list entries form
68  * the input data mentioned above, the first entry must not point to a NULL
69  * buffer. If there is any potential where the AAD buffer can be NULL, the
70  * calling code must contain a precaution to ensure that this does not result
71  * in the first scatter gather list entry pointing to a NULL buffer.
72  */
73 
74 struct crypto_aead;
75 
76 /**
77  *	struct aead_request - AEAD request
78  *	@base: Common attributes for async crypto requests
79  *	@assoclen: Length in bytes of associated data for authentication
80  *	@cryptlen: Length of data to be encrypted or decrypted
81  *	@iv: Initialisation vector
82  *	@src: Source data
83  *	@dst: Destination data
84  *	@__ctx: Start of private context data
85  */
86 struct aead_request {
87 	struct crypto_async_request base;
88 
89 	unsigned int assoclen;
90 	unsigned int cryptlen;
91 
92 	u8 *iv;
93 
94 	struct scatterlist *src;
95 	struct scatterlist *dst;
96 
97 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
98 };
99 
100 /**
101  * struct aead_alg - AEAD cipher definition
102  * @maxauthsize: Set the maximum authentication tag size supported by the
103  *		 transformation. A transformation may support smaller tag sizes.
104  *		 As the authentication tag is a message digest to ensure the
105  *		 integrity of the encrypted data, a consumer typically wants the
106  *		 largest authentication tag possible as defined by this
107  *		 variable.
108  * @setauthsize: Set authentication size for the AEAD transformation. This
109  *		 function is used to specify the consumer requested size of the
110  * 		 authentication tag to be either generated by the transformation
111  *		 during encryption or the size of the authentication tag to be
112  *		 supplied during the decryption operation. This function is also
113  *		 responsible for checking the authentication tag size for
114  *		 validity.
115  * @setkey: see struct skcipher_alg
116  * @encrypt: see struct skcipher_alg
117  * @decrypt: see struct skcipher_alg
118  * @geniv: see struct skcipher_alg
119  * @ivsize: see struct skcipher_alg
120  * @chunksize: see struct skcipher_alg
121  * @init: Initialize the cryptographic transformation object. This function
122  *	  is used to initialize the cryptographic transformation object.
123  *	  This function is called only once at the instantiation time, right
124  *	  after the transformation context was allocated. In case the
125  *	  cryptographic hardware has some special requirements which need to
126  *	  be handled by software, this function shall check for the precise
127  *	  requirement of the transformation and put any software fallbacks
128  *	  in place.
129  * @exit: Deinitialize the cryptographic transformation object. This is a
130  *	  counterpart to @init, used to remove various changes set in
131  *	  @init.
132  * @base: Definition of a generic crypto cipher algorithm.
133  *
134  * All fields except @ivsize is mandatory and must be filled.
135  */
136 struct aead_alg {
137 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
138 	              unsigned int keylen);
139 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
140 	int (*encrypt)(struct aead_request *req);
141 	int (*decrypt)(struct aead_request *req);
142 	int (*init)(struct crypto_aead *tfm);
143 	void (*exit)(struct crypto_aead *tfm);
144 
145 	const char *geniv;
146 
147 	unsigned int ivsize;
148 	unsigned int maxauthsize;
149 	unsigned int chunksize;
150 
151 	struct crypto_alg base;
152 };
153 
154 struct crypto_aead {
155 	unsigned int authsize;
156 	unsigned int reqsize;
157 
158 	struct crypto_tfm base;
159 };
160 
161 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
162 {
163 	return container_of(tfm, struct crypto_aead, base);
164 }
165 
166 /**
167  * crypto_alloc_aead() - allocate AEAD cipher handle
168  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
169  *	     AEAD cipher
170  * @type: specifies the type of the cipher
171  * @mask: specifies the mask for the cipher
172  *
173  * Allocate a cipher handle for an AEAD. The returned struct
174  * crypto_aead is the cipher handle that is required for any subsequent
175  * API invocation for that AEAD.
176  *
177  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
178  *	   of an error, PTR_ERR() returns the error code.
179  */
180 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
181 
182 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
183 {
184 	return &tfm->base;
185 }
186 
187 /**
188  * crypto_free_aead() - zeroize and free aead handle
189  * @tfm: cipher handle to be freed
190  */
191 static inline void crypto_free_aead(struct crypto_aead *tfm)
192 {
193 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
194 }
195 
196 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
197 {
198 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
199 			    struct aead_alg, base);
200 }
201 
202 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
203 {
204 	return alg->ivsize;
205 }
206 
207 /**
208  * crypto_aead_ivsize() - obtain IV size
209  * @tfm: cipher handle
210  *
211  * The size of the IV for the aead referenced by the cipher handle is
212  * returned. This IV size may be zero if the cipher does not need an IV.
213  *
214  * Return: IV size in bytes
215  */
216 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
217 {
218 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
219 }
220 
221 /**
222  * crypto_aead_authsize() - obtain maximum authentication data size
223  * @tfm: cipher handle
224  *
225  * The maximum size of the authentication data for the AEAD cipher referenced
226  * by the AEAD cipher handle is returned. The authentication data size may be
227  * zero if the cipher implements a hard-coded maximum.
228  *
229  * The authentication data may also be known as "tag value".
230  *
231  * Return: authentication data size / tag size in bytes
232  */
233 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
234 {
235 	return tfm->authsize;
236 }
237 
238 /**
239  * crypto_aead_blocksize() - obtain block size of cipher
240  * @tfm: cipher handle
241  *
242  * The block size for the AEAD referenced with the cipher handle is returned.
243  * The caller may use that information to allocate appropriate memory for the
244  * data returned by the encryption or decryption operation
245  *
246  * Return: block size of cipher
247  */
248 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
249 {
250 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
251 }
252 
253 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
254 {
255 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
256 }
257 
258 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
259 {
260 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
261 }
262 
263 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
264 {
265 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
266 }
267 
268 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
269 {
270 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
271 }
272 
273 /**
274  * crypto_aead_setkey() - set key for cipher
275  * @tfm: cipher handle
276  * @key: buffer holding the key
277  * @keylen: length of the key in bytes
278  *
279  * The caller provided key is set for the AEAD referenced by the cipher
280  * handle.
281  *
282  * Note, the key length determines the cipher type. Many block ciphers implement
283  * different cipher modes depending on the key size, such as AES-128 vs AES-192
284  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
285  * is performed.
286  *
287  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
288  */
289 int crypto_aead_setkey(struct crypto_aead *tfm,
290 		       const u8 *key, unsigned int keylen);
291 
292 /**
293  * crypto_aead_setauthsize() - set authentication data size
294  * @tfm: cipher handle
295  * @authsize: size of the authentication data / tag in bytes
296  *
297  * Set the authentication data size / tag size. AEAD requires an authentication
298  * tag (or MAC) in addition to the associated data.
299  *
300  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
301  */
302 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
303 
304 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
305 {
306 	return __crypto_aead_cast(req->base.tfm);
307 }
308 
309 /**
310  * crypto_aead_encrypt() - encrypt plaintext
311  * @req: reference to the aead_request handle that holds all information
312  *	 needed to perform the cipher operation
313  *
314  * Encrypt plaintext data using the aead_request handle. That data structure
315  * and how it is filled with data is discussed with the aead_request_*
316  * functions.
317  *
318  * IMPORTANT NOTE The encryption operation creates the authentication data /
319  *		  tag. That data is concatenated with the created ciphertext.
320  *		  The ciphertext memory size is therefore the given number of
321  *		  block cipher blocks + the size defined by the
322  *		  crypto_aead_setauthsize invocation. The caller must ensure
323  *		  that sufficient memory is available for the ciphertext and
324  *		  the authentication tag.
325  *
326  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
327  */
328 static inline int crypto_aead_encrypt(struct aead_request *req)
329 {
330 	return crypto_aead_alg(crypto_aead_reqtfm(req))->encrypt(req);
331 }
332 
333 /**
334  * crypto_aead_decrypt() - decrypt ciphertext
335  * @req: reference to the ablkcipher_request handle that holds all information
336  *	 needed to perform the cipher operation
337  *
338  * Decrypt ciphertext data using the aead_request handle. That data structure
339  * and how it is filled with data is discussed with the aead_request_*
340  * functions.
341  *
342  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
343  *		  authentication data / tag. That authentication data / tag
344  *		  must have the size defined by the crypto_aead_setauthsize
345  *		  invocation.
346  *
347  *
348  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
349  *	   cipher operation performs the authentication of the data during the
350  *	   decryption operation. Therefore, the function returns this error if
351  *	   the authentication of the ciphertext was unsuccessful (i.e. the
352  *	   integrity of the ciphertext or the associated data was violated);
353  *	   < 0 if an error occurred.
354  */
355 static inline int crypto_aead_decrypt(struct aead_request *req)
356 {
357 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
358 
359 	if (req->cryptlen < crypto_aead_authsize(aead))
360 		return -EINVAL;
361 
362 	return crypto_aead_alg(aead)->decrypt(req);
363 }
364 
365 /**
366  * DOC: Asynchronous AEAD Request Handle
367  *
368  * The aead_request data structure contains all pointers to data required for
369  * the AEAD cipher operation. This includes the cipher handle (which can be
370  * used by multiple aead_request instances), pointer to plaintext and
371  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
372  * aead_request_* API calls in a similar way as AEAD handle to the
373  * crypto_aead_* API calls.
374  */
375 
376 /**
377  * crypto_aead_reqsize() - obtain size of the request data structure
378  * @tfm: cipher handle
379  *
380  * Return: number of bytes
381  */
382 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
383 {
384 	return tfm->reqsize;
385 }
386 
387 /**
388  * aead_request_set_tfm() - update cipher handle reference in request
389  * @req: request handle to be modified
390  * @tfm: cipher handle that shall be added to the request handle
391  *
392  * Allow the caller to replace the existing aead handle in the request
393  * data structure with a different one.
394  */
395 static inline void aead_request_set_tfm(struct aead_request *req,
396 					struct crypto_aead *tfm)
397 {
398 	req->base.tfm = crypto_aead_tfm(tfm);
399 }
400 
401 /**
402  * aead_request_alloc() - allocate request data structure
403  * @tfm: cipher handle to be registered with the request
404  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
405  *
406  * Allocate the request data structure that must be used with the AEAD
407  * encrypt and decrypt API calls. During the allocation, the provided aead
408  * handle is registered in the request data structure.
409  *
410  * Return: allocated request handle in case of success, or NULL if out of memory
411  */
412 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
413 						      gfp_t gfp)
414 {
415 	struct aead_request *req;
416 
417 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
418 
419 	if (likely(req))
420 		aead_request_set_tfm(req, tfm);
421 
422 	return req;
423 }
424 
425 /**
426  * aead_request_free() - zeroize and free request data structure
427  * @req: request data structure cipher handle to be freed
428  */
429 static inline void aead_request_free(struct aead_request *req)
430 {
431 	kzfree(req);
432 }
433 
434 /**
435  * aead_request_set_callback() - set asynchronous callback function
436  * @req: request handle
437  * @flags: specify zero or an ORing of the flags
438  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
439  *	   increase the wait queue beyond the initial maximum size;
440  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
441  * @compl: callback function pointer to be registered with the request handle
442  * @data: The data pointer refers to memory that is not used by the kernel
443  *	  crypto API, but provided to the callback function for it to use. Here,
444  *	  the caller can provide a reference to memory the callback function can
445  *	  operate on. As the callback function is invoked asynchronously to the
446  *	  related functionality, it may need to access data structures of the
447  *	  related functionality which can be referenced using this pointer. The
448  *	  callback function can access the memory via the "data" field in the
449  *	  crypto_async_request data structure provided to the callback function.
450  *
451  * Setting the callback function that is triggered once the cipher operation
452  * completes
453  *
454  * The callback function is registered with the aead_request handle and
455  * must comply with the following template
456  *
457  *	void callback_function(struct crypto_async_request *req, int error)
458  */
459 static inline void aead_request_set_callback(struct aead_request *req,
460 					     u32 flags,
461 					     crypto_completion_t compl,
462 					     void *data)
463 {
464 	req->base.complete = compl;
465 	req->base.data = data;
466 	req->base.flags = flags;
467 }
468 
469 /**
470  * aead_request_set_crypt - set data buffers
471  * @req: request handle
472  * @src: source scatter / gather list
473  * @dst: destination scatter / gather list
474  * @cryptlen: number of bytes to process from @src
475  * @iv: IV for the cipher operation which must comply with the IV size defined
476  *      by crypto_aead_ivsize()
477  *
478  * Setting the source data and destination data scatter / gather lists which
479  * hold the associated data concatenated with the plaintext or ciphertext. See
480  * below for the authentication tag.
481  *
482  * For encryption, the source is treated as the plaintext and the
483  * destination is the ciphertext. For a decryption operation, the use is
484  * reversed - the source is the ciphertext and the destination is the plaintext.
485  *
486  * For both src/dst the layout is associated data, plain/cipher text,
487  * authentication tag.
488  *
489  * The content of the AD in the destination buffer after processing
490  * will either be untouched, or it will contain a copy of the AD
491  * from the source buffer.  In order to ensure that it always has
492  * a copy of the AD, the user must copy the AD over either before
493  * or after processing.  Of course this is not relevant if the user
494  * is doing in-place processing where src == dst.
495  *
496  * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
497  *		  the caller must concatenate the ciphertext followed by the
498  *		  authentication tag and provide the entire data stream to the
499  *		  decryption operation (i.e. the data length used for the
500  *		  initialization of the scatterlist and the data length for the
501  *		  decryption operation is identical). For encryption, however,
502  *		  the authentication tag is created while encrypting the data.
503  *		  The destination buffer must hold sufficient space for the
504  *		  ciphertext and the authentication tag while the encryption
505  *		  invocation must only point to the plaintext data size. The
506  *		  following code snippet illustrates the memory usage
507  *		  buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
508  *		  sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
509  *		  aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
510  */
511 static inline void aead_request_set_crypt(struct aead_request *req,
512 					  struct scatterlist *src,
513 					  struct scatterlist *dst,
514 					  unsigned int cryptlen, u8 *iv)
515 {
516 	req->src = src;
517 	req->dst = dst;
518 	req->cryptlen = cryptlen;
519 	req->iv = iv;
520 }
521 
522 /**
523  * aead_request_set_ad - set associated data information
524  * @req: request handle
525  * @assoclen: number of bytes in associated data
526  *
527  * Setting the AD information.  This function sets the length of
528  * the associated data.
529  */
530 static inline void aead_request_set_ad(struct aead_request *req,
531 				       unsigned int assoclen)
532 {
533 	req->assoclen = assoclen;
534 }
535 
536 #endif	/* _CRYPTO_AEAD_H */
537