xref: /openbmc/linux/include/asm-generic/tlb.h (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3  *
4  *	Generic TLB shootdown code
5  *
6  * Copyright 2001 Red Hat, Inc.
7  * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8  *
9  * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10  */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13 
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19 
20 /*
21  * Blindly accessing user memory from NMI context can be dangerous
22  * if we're in the middle of switching the current user task or switching
23  * the loaded mm.
24  */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28 
29 #ifdef CONFIG_MMU
30 
31 /*
32  * Generic MMU-gather implementation.
33  *
34  * The mmu_gather data structure is used by the mm code to implement the
35  * correct and efficient ordering of freeing pages and TLB invalidations.
36  *
37  * This correct ordering is:
38  *
39  *  1) unhook page
40  *  2) TLB invalidate page
41  *  3) free page
42  *
43  * That is, we must never free a page before we have ensured there are no live
44  * translations left to it. Otherwise it might be possible to observe (or
45  * worse, change) the page content after it has been reused.
46  *
47  * The mmu_gather API consists of:
48  *
49  *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
50  *
51  *    Finish in particular will issue a (final) TLB invalidate and free
52  *    all (remaining) queued pages.
53  *
54  *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
55  *
56  *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
57  *    there's large holes between the VMAs.
58  *
59  *  - tlb_remove_table()
60  *
61  *    tlb_remove_table() is the basic primitive to free page-table directories
62  *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
63  *    tlb_remove_page() below, for when page directories are pages and have no
64  *    additional constraints.
65  *
66  *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
67  *
68  *  - tlb_remove_page() / __tlb_remove_page()
69  *  - tlb_remove_page_size() / __tlb_remove_page_size()
70  *
71  *    __tlb_remove_page_size() is the basic primitive that queues a page for
72  *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
73  *    boolean indicating if the queue is (now) full and a call to
74  *    tlb_flush_mmu() is required.
75  *
76  *    tlb_remove_page() and tlb_remove_page_size() imply the call to
77  *    tlb_flush_mmu() when required and has no return value.
78  *
79  *  - tlb_change_page_size()
80  *
81  *    call before __tlb_remove_page*() to set the current page-size; implies a
82  *    possible tlb_flush_mmu() call.
83  *
84  *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
85  *
86  *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
87  *                              related state, like the range)
88  *
89  *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
90  *			whatever pages are still batched.
91  *
92  *  - mmu_gather::fullmm
93  *
94  *    A flag set by tlb_gather_mmu() to indicate we're going to free
95  *    the entire mm; this allows a number of optimizations.
96  *
97  *    - We can ignore tlb_{start,end}_vma(); because we don't
98  *      care about ranges. Everything will be shot down.
99  *
100  *    - (RISC) architectures that use ASIDs can cycle to a new ASID
101  *      and delay the invalidation until ASID space runs out.
102  *
103  *  - mmu_gather::need_flush_all
104  *
105  *    A flag that can be set by the arch code if it wants to force
106  *    flush the entire TLB irrespective of the range. For instance
107  *    x86-PAE needs this when changing top-level entries.
108  *
109  * And allows the architecture to provide and implement tlb_flush():
110  *
111  * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
112  * use of:
113  *
114  *  - mmu_gather::start / mmu_gather::end
115  *
116  *    which provides the range that needs to be flushed to cover the pages to
117  *    be freed.
118  *
119  *  - mmu_gather::freed_tables
120  *
121  *    set when we freed page table pages
122  *
123  *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
124  *
125  *    returns the smallest TLB entry size unmapped in this range.
126  *
127  * If an architecture does not provide tlb_flush() a default implementation
128  * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
129  * specified, in which case we'll default to flush_tlb_mm().
130  *
131  * Additionally there are a few opt-in features:
132  *
133  *  MMU_GATHER_PAGE_SIZE
134  *
135  *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
136  *  changes the size and provides mmu_gather::page_size to tlb_flush().
137  *
138  *  This might be useful if your architecture has size specific TLB
139  *  invalidation instructions.
140  *
141  *  MMU_GATHER_TABLE_FREE
142  *
143  *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
144  *  for page directores (__p*_free_tlb()).
145  *
146  *  Useful if your architecture has non-page page directories.
147  *
148  *  When used, an architecture is expected to provide __tlb_remove_table()
149  *  which does the actual freeing of these pages.
150  *
151  *  MMU_GATHER_RCU_TABLE_FREE
152  *
153  *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
154  *  comment below).
155  *
156  *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
157  *  and therefore doesn't naturally serialize with software page-table walkers.
158  *
159  *  MMU_GATHER_NO_RANGE
160  *
161  *  Use this if your architecture lacks an efficient flush_tlb_range().
162  *
163  *  MMU_GATHER_NO_GATHER
164  *
165  *  If the option is set the mmu_gather will not track individual pages for
166  *  delayed page free anymore. A platform that enables the option needs to
167  *  provide its own implementation of the __tlb_remove_page_size() function to
168  *  free pages.
169  *
170  *  This is useful if your architecture already flushes TLB entries in the
171  *  various ptep_get_and_clear() functions.
172  */
173 
174 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
175 
176 struct mmu_table_batch {
177 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
178 	struct rcu_head		rcu;
179 #endif
180 	unsigned int		nr;
181 	void			*tables[0];
182 };
183 
184 #define MAX_TABLE_BATCH		\
185 	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
186 
187 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
188 
189 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
190 
191 /*
192  * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
193  * page directories and we can use the normal page batching to free them.
194  */
195 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
196 
197 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
198 
199 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
200 /*
201  * This allows an architecture that does not use the linux page-tables for
202  * hardware to skip the TLBI when freeing page tables.
203  */
204 #ifndef tlb_needs_table_invalidate
205 #define tlb_needs_table_invalidate() (true)
206 #endif
207 
208 #else
209 
210 #ifdef tlb_needs_table_invalidate
211 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
212 #endif
213 
214 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
215 
216 
217 #ifndef CONFIG_MMU_GATHER_NO_GATHER
218 /*
219  * If we can't allocate a page to make a big batch of page pointers
220  * to work on, then just handle a few from the on-stack structure.
221  */
222 #define MMU_GATHER_BUNDLE	8
223 
224 struct mmu_gather_batch {
225 	struct mmu_gather_batch	*next;
226 	unsigned int		nr;
227 	unsigned int		max;
228 	struct page		*pages[0];
229 };
230 
231 #define MAX_GATHER_BATCH	\
232 	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
233 
234 /*
235  * Limit the maximum number of mmu_gather batches to reduce a risk of soft
236  * lockups for non-preemptible kernels on huge machines when a lot of memory
237  * is zapped during unmapping.
238  * 10K pages freed at once should be safe even without a preemption point.
239  */
240 #define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
241 
242 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
243 				   int page_size);
244 #endif
245 
246 /*
247  * struct mmu_gather is an opaque type used by the mm code for passing around
248  * any data needed by arch specific code for tlb_remove_page.
249  */
250 struct mmu_gather {
251 	struct mm_struct	*mm;
252 
253 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
254 	struct mmu_table_batch	*batch;
255 #endif
256 
257 	unsigned long		start;
258 	unsigned long		end;
259 	/*
260 	 * we are in the middle of an operation to clear
261 	 * a full mm and can make some optimizations
262 	 */
263 	unsigned int		fullmm : 1;
264 
265 	/*
266 	 * we have performed an operation which
267 	 * requires a complete flush of the tlb
268 	 */
269 	unsigned int		need_flush_all : 1;
270 
271 	/*
272 	 * we have removed page directories
273 	 */
274 	unsigned int		freed_tables : 1;
275 
276 	/*
277 	 * at which levels have we cleared entries?
278 	 */
279 	unsigned int		cleared_ptes : 1;
280 	unsigned int		cleared_pmds : 1;
281 	unsigned int		cleared_puds : 1;
282 	unsigned int		cleared_p4ds : 1;
283 
284 	/*
285 	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
286 	 */
287 	unsigned int		vma_exec : 1;
288 	unsigned int		vma_huge : 1;
289 
290 	unsigned int		batch_count;
291 
292 #ifndef CONFIG_MMU_GATHER_NO_GATHER
293 	struct mmu_gather_batch *active;
294 	struct mmu_gather_batch	local;
295 	struct page		*__pages[MMU_GATHER_BUNDLE];
296 
297 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
298 	unsigned int page_size;
299 #endif
300 #endif
301 };
302 
303 void tlb_flush_mmu(struct mmu_gather *tlb);
304 
305 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
306 				      unsigned long address,
307 				      unsigned int range_size)
308 {
309 	tlb->start = min(tlb->start, address);
310 	tlb->end = max(tlb->end, address + range_size);
311 }
312 
313 static inline void __tlb_reset_range(struct mmu_gather *tlb)
314 {
315 	if (tlb->fullmm) {
316 		tlb->start = tlb->end = ~0;
317 	} else {
318 		tlb->start = TASK_SIZE;
319 		tlb->end = 0;
320 	}
321 	tlb->freed_tables = 0;
322 	tlb->cleared_ptes = 0;
323 	tlb->cleared_pmds = 0;
324 	tlb->cleared_puds = 0;
325 	tlb->cleared_p4ds = 0;
326 	/*
327 	 * Do not reset mmu_gather::vma_* fields here, we do not
328 	 * call into tlb_start_vma() again to set them if there is an
329 	 * intermediate flush.
330 	 */
331 }
332 
333 #ifdef CONFIG_MMU_GATHER_NO_RANGE
334 
335 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
336 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
337 #endif
338 
339 /*
340  * When an architecture does not have efficient means of range flushing TLBs
341  * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
342  * range small. We equally don't have to worry about page granularity or other
343  * things.
344  *
345  * All we need to do is issue a full flush for any !0 range.
346  */
347 static inline void tlb_flush(struct mmu_gather *tlb)
348 {
349 	if (tlb->end)
350 		flush_tlb_mm(tlb->mm);
351 }
352 
353 static inline void
354 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
355 
356 #define tlb_end_vma tlb_end_vma
357 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
358 
359 #else /* CONFIG_MMU_GATHER_NO_RANGE */
360 
361 #ifndef tlb_flush
362 
363 #if defined(tlb_start_vma) || defined(tlb_end_vma)
364 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
365 #endif
366 
367 /*
368  * When an architecture does not provide its own tlb_flush() implementation
369  * but does have a reasonably efficient flush_vma_range() implementation
370  * use that.
371  */
372 static inline void tlb_flush(struct mmu_gather *tlb)
373 {
374 	if (tlb->fullmm || tlb->need_flush_all) {
375 		flush_tlb_mm(tlb->mm);
376 	} else if (tlb->end) {
377 		struct vm_area_struct vma = {
378 			.vm_mm = tlb->mm,
379 			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
380 				    (tlb->vma_huge ? VM_HUGETLB : 0),
381 		};
382 
383 		flush_tlb_range(&vma, tlb->start, tlb->end);
384 	}
385 }
386 
387 static inline void
388 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
389 {
390 	/*
391 	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
392 	 * mips-4k) flush only large pages.
393 	 *
394 	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
395 	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
396 	 * range.
397 	 *
398 	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
399 	 * these values the batch is empty.
400 	 */
401 	tlb->vma_huge = is_vm_hugetlb_page(vma);
402 	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
403 }
404 
405 #else
406 
407 static inline void
408 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
409 
410 #endif
411 
412 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
413 
414 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
415 {
416 	/*
417 	 * Anything calling __tlb_adjust_range() also sets at least one of
418 	 * these bits.
419 	 */
420 	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
421 	      tlb->cleared_puds || tlb->cleared_p4ds))
422 		return;
423 
424 	tlb_flush(tlb);
425 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
426 	__tlb_reset_range(tlb);
427 }
428 
429 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
430 					struct page *page, int page_size)
431 {
432 	if (__tlb_remove_page_size(tlb, page, page_size))
433 		tlb_flush_mmu(tlb);
434 }
435 
436 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
437 {
438 	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
439 }
440 
441 /* tlb_remove_page
442  *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
443  *	required.
444  */
445 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
446 {
447 	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
448 }
449 
450 static inline void tlb_change_page_size(struct mmu_gather *tlb,
451 						     unsigned int page_size)
452 {
453 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
454 	if (tlb->page_size && tlb->page_size != page_size) {
455 		if (!tlb->fullmm && !tlb->need_flush_all)
456 			tlb_flush_mmu(tlb);
457 	}
458 
459 	tlb->page_size = page_size;
460 #endif
461 }
462 
463 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
464 {
465 	if (tlb->cleared_ptes)
466 		return PAGE_SHIFT;
467 	if (tlb->cleared_pmds)
468 		return PMD_SHIFT;
469 	if (tlb->cleared_puds)
470 		return PUD_SHIFT;
471 	if (tlb->cleared_p4ds)
472 		return P4D_SHIFT;
473 
474 	return PAGE_SHIFT;
475 }
476 
477 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
478 {
479 	return 1UL << tlb_get_unmap_shift(tlb);
480 }
481 
482 /*
483  * In the case of tlb vma handling, we can optimise these away in the
484  * case where we're doing a full MM flush.  When we're doing a munmap,
485  * the vmas are adjusted to only cover the region to be torn down.
486  */
487 #ifndef tlb_start_vma
488 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
489 {
490 	if (tlb->fullmm)
491 		return;
492 
493 	tlb_update_vma_flags(tlb, vma);
494 	flush_cache_range(vma, vma->vm_start, vma->vm_end);
495 }
496 #endif
497 
498 #ifndef tlb_end_vma
499 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
500 {
501 	if (tlb->fullmm)
502 		return;
503 
504 	/*
505 	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
506 	 * the ranges growing with the unused space between consecutive VMAs,
507 	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
508 	 * this.
509 	 */
510 	tlb_flush_mmu_tlbonly(tlb);
511 }
512 #endif
513 
514 /*
515  * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
516  * and set corresponding cleared_*.
517  */
518 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
519 				     unsigned long address, unsigned long size)
520 {
521 	__tlb_adjust_range(tlb, address, size);
522 	tlb->cleared_ptes = 1;
523 }
524 
525 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
526 				     unsigned long address, unsigned long size)
527 {
528 	__tlb_adjust_range(tlb, address, size);
529 	tlb->cleared_pmds = 1;
530 }
531 
532 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
533 				     unsigned long address, unsigned long size)
534 {
535 	__tlb_adjust_range(tlb, address, size);
536 	tlb->cleared_puds = 1;
537 }
538 
539 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
540 				     unsigned long address, unsigned long size)
541 {
542 	__tlb_adjust_range(tlb, address, size);
543 	tlb->cleared_p4ds = 1;
544 }
545 
546 #ifndef __tlb_remove_tlb_entry
547 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
548 #endif
549 
550 /**
551  * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
552  *
553  * Record the fact that pte's were really unmapped by updating the range,
554  * so we can later optimise away the tlb invalidate.   This helps when
555  * userspace is unmapping already-unmapped pages, which happens quite a lot.
556  */
557 #define tlb_remove_tlb_entry(tlb, ptep, address)		\
558 	do {							\
559 		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
560 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
561 	} while (0)
562 
563 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
564 	do {							\
565 		unsigned long _sz = huge_page_size(h);		\
566 		if (_sz == PMD_SIZE)				\
567 			tlb_flush_pmd_range(tlb, address, _sz);	\
568 		else if (_sz == PUD_SIZE)			\
569 			tlb_flush_pud_range(tlb, address, _sz);	\
570 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
571 	} while (0)
572 
573 /**
574  * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
575  * This is a nop so far, because only x86 needs it.
576  */
577 #ifndef __tlb_remove_pmd_tlb_entry
578 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
579 #endif
580 
581 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
582 	do {								\
583 		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
584 		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
585 	} while (0)
586 
587 /**
588  * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
589  * invalidation. This is a nop so far, because only x86 needs it.
590  */
591 #ifndef __tlb_remove_pud_tlb_entry
592 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
593 #endif
594 
595 #define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
596 	do {								\
597 		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
598 		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
599 	} while (0)
600 
601 /*
602  * For things like page tables caches (ie caching addresses "inside" the
603  * page tables, like x86 does), for legacy reasons, flushing an
604  * individual page had better flush the page table caches behind it. This
605  * is definitely how x86 works, for example. And if you have an
606  * architected non-legacy page table cache (which I'm not aware of
607  * anybody actually doing), you're going to have some architecturally
608  * explicit flushing for that, likely *separate* from a regular TLB entry
609  * flush, and thus you'd need more than just some range expansion..
610  *
611  * So if we ever find an architecture
612  * that would want something that odd, I think it is up to that
613  * architecture to do its own odd thing, not cause pain for others
614  * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
615  *
616  * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
617  */
618 
619 #ifndef pte_free_tlb
620 #define pte_free_tlb(tlb, ptep, address)			\
621 	do {							\
622 		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
623 		tlb->freed_tables = 1;				\
624 		__pte_free_tlb(tlb, ptep, address);		\
625 	} while (0)
626 #endif
627 
628 #ifndef pmd_free_tlb
629 #define pmd_free_tlb(tlb, pmdp, address)			\
630 	do {							\
631 		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
632 		tlb->freed_tables = 1;				\
633 		__pmd_free_tlb(tlb, pmdp, address);		\
634 	} while (0)
635 #endif
636 
637 #ifndef pud_free_tlb
638 #define pud_free_tlb(tlb, pudp, address)			\
639 	do {							\
640 		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
641 		tlb->freed_tables = 1;				\
642 		__pud_free_tlb(tlb, pudp, address);		\
643 	} while (0)
644 #endif
645 
646 #ifndef p4d_free_tlb
647 #define p4d_free_tlb(tlb, pudp, address)			\
648 	do {							\
649 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
650 		tlb->freed_tables = 1;				\
651 		__p4d_free_tlb(tlb, pudp, address);		\
652 	} while (0)
653 #endif
654 
655 #endif /* CONFIG_MMU */
656 
657 #endif /* _ASM_GENERIC__TLB_H */
658