xref: /openbmc/linux/include/asm-generic/tlb.h (revision 4a075bd4)
1 /* include/asm-generic/tlb.h
2  *
3  *	Generic TLB shootdown code
4  *
5  * Copyright 2001 Red Hat, Inc.
6  * Based on code from mm/memory.c Copyright Linus Torvalds and others.
7  *
8  * Copyright 2011 Red Hat, Inc., Peter Zijlstra
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  */
15 #ifndef _ASM_GENERIC__TLB_H
16 #define _ASM_GENERIC__TLB_H
17 
18 #include <linux/mmu_notifier.h>
19 #include <linux/swap.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/cacheflush.h>
23 
24 /*
25  * Blindly accessing user memory from NMI context can be dangerous
26  * if we're in the middle of switching the current user task or switching
27  * the loaded mm.
28  */
29 #ifndef nmi_uaccess_okay
30 # define nmi_uaccess_okay() true
31 #endif
32 
33 #ifdef CONFIG_MMU
34 
35 /*
36  * Generic MMU-gather implementation.
37  *
38  * The mmu_gather data structure is used by the mm code to implement the
39  * correct and efficient ordering of freeing pages and TLB invalidations.
40  *
41  * This correct ordering is:
42  *
43  *  1) unhook page
44  *  2) TLB invalidate page
45  *  3) free page
46  *
47  * That is, we must never free a page before we have ensured there are no live
48  * translations left to it. Otherwise it might be possible to observe (or
49  * worse, change) the page content after it has been reused.
50  *
51  * The mmu_gather API consists of:
52  *
53  *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
54  *
55  *    Finish in particular will issue a (final) TLB invalidate and free
56  *    all (remaining) queued pages.
57  *
58  *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
59  *
60  *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
61  *    there's large holes between the VMAs.
62  *
63  *  - tlb_remove_page() / __tlb_remove_page()
64  *  - tlb_remove_page_size() / __tlb_remove_page_size()
65  *
66  *    __tlb_remove_page_size() is the basic primitive that queues a page for
67  *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
68  *    boolean indicating if the queue is (now) full and a call to
69  *    tlb_flush_mmu() is required.
70  *
71  *    tlb_remove_page() and tlb_remove_page_size() imply the call to
72  *    tlb_flush_mmu() when required and has no return value.
73  *
74  *  - tlb_change_page_size()
75  *
76  *    call before __tlb_remove_page*() to set the current page-size; implies a
77  *    possible tlb_flush_mmu() call.
78  *
79  *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
80  *
81  *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
82  *                              related state, like the range)
83  *
84  *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
85  *			whatever pages are still batched.
86  *
87  *  - mmu_gather::fullmm
88  *
89  *    A flag set by tlb_gather_mmu() to indicate we're going to free
90  *    the entire mm; this allows a number of optimizations.
91  *
92  *    - We can ignore tlb_{start,end}_vma(); because we don't
93  *      care about ranges. Everything will be shot down.
94  *
95  *    - (RISC) architectures that use ASIDs can cycle to a new ASID
96  *      and delay the invalidation until ASID space runs out.
97  *
98  *  - mmu_gather::need_flush_all
99  *
100  *    A flag that can be set by the arch code if it wants to force
101  *    flush the entire TLB irrespective of the range. For instance
102  *    x86-PAE needs this when changing top-level entries.
103  *
104  * And allows the architecture to provide and implement tlb_flush():
105  *
106  * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
107  * use of:
108  *
109  *  - mmu_gather::start / mmu_gather::end
110  *
111  *    which provides the range that needs to be flushed to cover the pages to
112  *    be freed.
113  *
114  *  - mmu_gather::freed_tables
115  *
116  *    set when we freed page table pages
117  *
118  *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
119  *
120  *    returns the smallest TLB entry size unmapped in this range.
121  *
122  * If an architecture does not provide tlb_flush() a default implementation
123  * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
124  * specified, in which case we'll default to flush_tlb_mm().
125  *
126  * Additionally there are a few opt-in features:
127  *
128  *  HAVE_MMU_GATHER_PAGE_SIZE
129  *
130  *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
131  *  changes the size and provides mmu_gather::page_size to tlb_flush().
132  *
133  *  HAVE_RCU_TABLE_FREE
134  *
135  *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
136  *  for page directores (__p*_free_tlb()). This provides separate freeing of
137  *  the page-table pages themselves in a semi-RCU fashion (see comment below).
138  *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
139  *  and therefore doesn't naturally serialize with software page-table walkers.
140  *
141  *  When used, an architecture is expected to provide __tlb_remove_table()
142  *  which does the actual freeing of these pages.
143  *
144  *  HAVE_RCU_TABLE_NO_INVALIDATE
145  *
146  *  This makes HAVE_RCU_TABLE_FREE avoid calling tlb_flush_mmu_tlbonly() before
147  *  freeing the page-table pages. This can be avoided if you use
148  *  HAVE_RCU_TABLE_FREE and your architecture does _NOT_ use the Linux
149  *  page-tables natively.
150  *
151  *  MMU_GATHER_NO_RANGE
152  *
153  *  Use this if your architecture lacks an efficient flush_tlb_range().
154  */
155 
156 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
157 /*
158  * Semi RCU freeing of the page directories.
159  *
160  * This is needed by some architectures to implement software pagetable walkers.
161  *
162  * gup_fast() and other software pagetable walkers do a lockless page-table
163  * walk and therefore needs some synchronization with the freeing of the page
164  * directories. The chosen means to accomplish that is by disabling IRQs over
165  * the walk.
166  *
167  * Architectures that use IPIs to flush TLBs will then automagically DTRT,
168  * since we unlink the page, flush TLBs, free the page. Since the disabling of
169  * IRQs delays the completion of the TLB flush we can never observe an already
170  * freed page.
171  *
172  * Architectures that do not have this (PPC) need to delay the freeing by some
173  * other means, this is that means.
174  *
175  * What we do is batch the freed directory pages (tables) and RCU free them.
176  * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
177  * holds off grace periods.
178  *
179  * However, in order to batch these pages we need to allocate storage, this
180  * allocation is deep inside the MM code and can thus easily fail on memory
181  * pressure. To guarantee progress we fall back to single table freeing, see
182  * the implementation of tlb_remove_table_one().
183  *
184  */
185 struct mmu_table_batch {
186 	struct rcu_head		rcu;
187 	unsigned int		nr;
188 	void			*tables[0];
189 };
190 
191 #define MAX_TABLE_BATCH		\
192 	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
193 
194 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
195 
196 #endif
197 
198 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
199 /*
200  * If we can't allocate a page to make a big batch of page pointers
201  * to work on, then just handle a few from the on-stack structure.
202  */
203 #define MMU_GATHER_BUNDLE	8
204 
205 struct mmu_gather_batch {
206 	struct mmu_gather_batch	*next;
207 	unsigned int		nr;
208 	unsigned int		max;
209 	struct page		*pages[0];
210 };
211 
212 #define MAX_GATHER_BATCH	\
213 	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
214 
215 /*
216  * Limit the maximum number of mmu_gather batches to reduce a risk of soft
217  * lockups for non-preemptible kernels on huge machines when a lot of memory
218  * is zapped during unmapping.
219  * 10K pages freed at once should be safe even without a preemption point.
220  */
221 #define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
222 
223 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
224 				   int page_size);
225 #endif
226 
227 /*
228  * struct mmu_gather is an opaque type used by the mm code for passing around
229  * any data needed by arch specific code for tlb_remove_page.
230  */
231 struct mmu_gather {
232 	struct mm_struct	*mm;
233 
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	struct mmu_table_batch	*batch;
236 #endif
237 
238 	unsigned long		start;
239 	unsigned long		end;
240 	/*
241 	 * we are in the middle of an operation to clear
242 	 * a full mm and can make some optimizations
243 	 */
244 	unsigned int		fullmm : 1;
245 
246 	/*
247 	 * we have performed an operation which
248 	 * requires a complete flush of the tlb
249 	 */
250 	unsigned int		need_flush_all : 1;
251 
252 	/*
253 	 * we have removed page directories
254 	 */
255 	unsigned int		freed_tables : 1;
256 
257 	/*
258 	 * at which levels have we cleared entries?
259 	 */
260 	unsigned int		cleared_ptes : 1;
261 	unsigned int		cleared_pmds : 1;
262 	unsigned int		cleared_puds : 1;
263 	unsigned int		cleared_p4ds : 1;
264 
265 	/*
266 	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
267 	 */
268 	unsigned int		vma_exec : 1;
269 	unsigned int		vma_huge : 1;
270 
271 	unsigned int		batch_count;
272 
273 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER
274 	struct mmu_gather_batch *active;
275 	struct mmu_gather_batch	local;
276 	struct page		*__pages[MMU_GATHER_BUNDLE];
277 
278 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
279 	unsigned int page_size;
280 #endif
281 #endif
282 };
283 
284 void arch_tlb_gather_mmu(struct mmu_gather *tlb,
285 	struct mm_struct *mm, unsigned long start, unsigned long end);
286 void tlb_flush_mmu(struct mmu_gather *tlb);
287 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
288 			 unsigned long start, unsigned long end, bool force);
289 
290 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
291 				      unsigned long address,
292 				      unsigned int range_size)
293 {
294 	tlb->start = min(tlb->start, address);
295 	tlb->end = max(tlb->end, address + range_size);
296 }
297 
298 static inline void __tlb_reset_range(struct mmu_gather *tlb)
299 {
300 	if (tlb->fullmm) {
301 		tlb->start = tlb->end = ~0;
302 	} else {
303 		tlb->start = TASK_SIZE;
304 		tlb->end = 0;
305 	}
306 	tlb->freed_tables = 0;
307 	tlb->cleared_ptes = 0;
308 	tlb->cleared_pmds = 0;
309 	tlb->cleared_puds = 0;
310 	tlb->cleared_p4ds = 0;
311 	/*
312 	 * Do not reset mmu_gather::vma_* fields here, we do not
313 	 * call into tlb_start_vma() again to set them if there is an
314 	 * intermediate flush.
315 	 */
316 }
317 
318 #ifdef CONFIG_MMU_GATHER_NO_RANGE
319 
320 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
321 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
322 #endif
323 
324 /*
325  * When an architecture does not have efficient means of range flushing TLBs
326  * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
327  * range small. We equally don't have to worry about page granularity or other
328  * things.
329  *
330  * All we need to do is issue a full flush for any !0 range.
331  */
332 static inline void tlb_flush(struct mmu_gather *tlb)
333 {
334 	if (tlb->end)
335 		flush_tlb_mm(tlb->mm);
336 }
337 
338 static inline void
339 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
340 
341 #define tlb_end_vma tlb_end_vma
342 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
343 
344 #else /* CONFIG_MMU_GATHER_NO_RANGE */
345 
346 #ifndef tlb_flush
347 
348 #if defined(tlb_start_vma) || defined(tlb_end_vma)
349 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
350 #endif
351 
352 /*
353  * When an architecture does not provide its own tlb_flush() implementation
354  * but does have a reasonably efficient flush_vma_range() implementation
355  * use that.
356  */
357 static inline void tlb_flush(struct mmu_gather *tlb)
358 {
359 	if (tlb->fullmm || tlb->need_flush_all) {
360 		flush_tlb_mm(tlb->mm);
361 	} else if (tlb->end) {
362 		struct vm_area_struct vma = {
363 			.vm_mm = tlb->mm,
364 			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
365 				    (tlb->vma_huge ? VM_HUGETLB : 0),
366 		};
367 
368 		flush_tlb_range(&vma, tlb->start, tlb->end);
369 	}
370 }
371 
372 static inline void
373 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
374 {
375 	/*
376 	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
377 	 * mips-4k) flush only large pages.
378 	 *
379 	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
380 	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
381 	 * range.
382 	 *
383 	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
384 	 * these values the batch is empty.
385 	 */
386 	tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB);
387 	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
388 }
389 
390 #else
391 
392 static inline void
393 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
394 
395 #endif
396 
397 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
398 
399 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
400 {
401 	if (!tlb->end)
402 		return;
403 
404 	tlb_flush(tlb);
405 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
406 	__tlb_reset_range(tlb);
407 }
408 
409 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
410 					struct page *page, int page_size)
411 {
412 	if (__tlb_remove_page_size(tlb, page, page_size))
413 		tlb_flush_mmu(tlb);
414 }
415 
416 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
417 {
418 	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
419 }
420 
421 /* tlb_remove_page
422  *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
423  *	required.
424  */
425 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
426 {
427 	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
428 }
429 
430 static inline void tlb_change_page_size(struct mmu_gather *tlb,
431 						     unsigned int page_size)
432 {
433 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE
434 	if (tlb->page_size && tlb->page_size != page_size) {
435 		if (!tlb->fullmm)
436 			tlb_flush_mmu(tlb);
437 	}
438 
439 	tlb->page_size = page_size;
440 #endif
441 }
442 
443 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
444 {
445 	if (tlb->cleared_ptes)
446 		return PAGE_SHIFT;
447 	if (tlb->cleared_pmds)
448 		return PMD_SHIFT;
449 	if (tlb->cleared_puds)
450 		return PUD_SHIFT;
451 	if (tlb->cleared_p4ds)
452 		return P4D_SHIFT;
453 
454 	return PAGE_SHIFT;
455 }
456 
457 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
458 {
459 	return 1UL << tlb_get_unmap_shift(tlb);
460 }
461 
462 /*
463  * In the case of tlb vma handling, we can optimise these away in the
464  * case where we're doing a full MM flush.  When we're doing a munmap,
465  * the vmas are adjusted to only cover the region to be torn down.
466  */
467 #ifndef tlb_start_vma
468 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
469 {
470 	if (tlb->fullmm)
471 		return;
472 
473 	tlb_update_vma_flags(tlb, vma);
474 	flush_cache_range(vma, vma->vm_start, vma->vm_end);
475 }
476 #endif
477 
478 #ifndef tlb_end_vma
479 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
480 {
481 	if (tlb->fullmm)
482 		return;
483 
484 	/*
485 	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
486 	 * the ranges growing with the unused space between consecutive VMAs,
487 	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
488 	 * this.
489 	 */
490 	tlb_flush_mmu_tlbonly(tlb);
491 }
492 #endif
493 
494 #ifndef __tlb_remove_tlb_entry
495 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
496 #endif
497 
498 /**
499  * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
500  *
501  * Record the fact that pte's were really unmapped by updating the range,
502  * so we can later optimise away the tlb invalidate.   This helps when
503  * userspace is unmapping already-unmapped pages, which happens quite a lot.
504  */
505 #define tlb_remove_tlb_entry(tlb, ptep, address)		\
506 	do {							\
507 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
508 		tlb->cleared_ptes = 1;				\
509 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
510 	} while (0)
511 
512 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
513 	do {							\
514 		unsigned long _sz = huge_page_size(h);		\
515 		__tlb_adjust_range(tlb, address, _sz);		\
516 		if (_sz == PMD_SIZE)				\
517 			tlb->cleared_pmds = 1;			\
518 		else if (_sz == PUD_SIZE)			\
519 			tlb->cleared_puds = 1;			\
520 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
521 	} while (0)
522 
523 /**
524  * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
525  * This is a nop so far, because only x86 needs it.
526  */
527 #ifndef __tlb_remove_pmd_tlb_entry
528 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
529 #endif
530 
531 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
532 	do {								\
533 		__tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE);	\
534 		tlb->cleared_pmds = 1;					\
535 		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
536 	} while (0)
537 
538 /**
539  * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
540  * invalidation. This is a nop so far, because only x86 needs it.
541  */
542 #ifndef __tlb_remove_pud_tlb_entry
543 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
544 #endif
545 
546 #define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
547 	do {								\
548 		__tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE);	\
549 		tlb->cleared_puds = 1;					\
550 		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
551 	} while (0)
552 
553 /*
554  * For things like page tables caches (ie caching addresses "inside" the
555  * page tables, like x86 does), for legacy reasons, flushing an
556  * individual page had better flush the page table caches behind it. This
557  * is definitely how x86 works, for example. And if you have an
558  * architected non-legacy page table cache (which I'm not aware of
559  * anybody actually doing), you're going to have some architecturally
560  * explicit flushing for that, likely *separate* from a regular TLB entry
561  * flush, and thus you'd need more than just some range expansion..
562  *
563  * So if we ever find an architecture
564  * that would want something that odd, I think it is up to that
565  * architecture to do its own odd thing, not cause pain for others
566  * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
567  *
568  * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
569  */
570 
571 #ifndef pte_free_tlb
572 #define pte_free_tlb(tlb, ptep, address)			\
573 	do {							\
574 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
575 		tlb->freed_tables = 1;				\
576 		tlb->cleared_pmds = 1;				\
577 		__pte_free_tlb(tlb, ptep, address);		\
578 	} while (0)
579 #endif
580 
581 #ifndef pmd_free_tlb
582 #define pmd_free_tlb(tlb, pmdp, address)			\
583 	do {							\
584 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
585 		tlb->freed_tables = 1;				\
586 		tlb->cleared_puds = 1;				\
587 		__pmd_free_tlb(tlb, pmdp, address);		\
588 	} while (0)
589 #endif
590 
591 #ifndef __ARCH_HAS_4LEVEL_HACK
592 #ifndef pud_free_tlb
593 #define pud_free_tlb(tlb, pudp, address)			\
594 	do {							\
595 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
596 		tlb->freed_tables = 1;				\
597 		tlb->cleared_p4ds = 1;				\
598 		__pud_free_tlb(tlb, pudp, address);		\
599 	} while (0)
600 #endif
601 #endif
602 
603 #ifndef __ARCH_HAS_5LEVEL_HACK
604 #ifndef p4d_free_tlb
605 #define p4d_free_tlb(tlb, pudp, address)			\
606 	do {							\
607 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
608 		tlb->freed_tables = 1;				\
609 		__p4d_free_tlb(tlb, pudp, address);		\
610 	} while (0)
611 #endif
612 #endif
613 
614 #endif /* CONFIG_MMU */
615 
616 #endif /* _ASM_GENERIC__TLB_H */
617