1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* include/asm-generic/tlb.h 3 * 4 * Generic TLB shootdown code 5 * 6 * Copyright 2001 Red Hat, Inc. 7 * Based on code from mm/memory.c Copyright Linus Torvalds and others. 8 * 9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra 10 */ 11 #ifndef _ASM_GENERIC__TLB_H 12 #define _ASM_GENERIC__TLB_H 13 14 #include <linux/mmu_notifier.h> 15 #include <linux/swap.h> 16 #include <asm/pgalloc.h> 17 #include <asm/tlbflush.h> 18 #include <asm/cacheflush.h> 19 20 /* 21 * Blindly accessing user memory from NMI context can be dangerous 22 * if we're in the middle of switching the current user task or switching 23 * the loaded mm. 24 */ 25 #ifndef nmi_uaccess_okay 26 # define nmi_uaccess_okay() true 27 #endif 28 29 #ifdef CONFIG_MMU 30 31 /* 32 * Generic MMU-gather implementation. 33 * 34 * The mmu_gather data structure is used by the mm code to implement the 35 * correct and efficient ordering of freeing pages and TLB invalidations. 36 * 37 * This correct ordering is: 38 * 39 * 1) unhook page 40 * 2) TLB invalidate page 41 * 3) free page 42 * 43 * That is, we must never free a page before we have ensured there are no live 44 * translations left to it. Otherwise it might be possible to observe (or 45 * worse, change) the page content after it has been reused. 46 * 47 * The mmu_gather API consists of: 48 * 49 * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather 50 * 51 * Finish in particular will issue a (final) TLB invalidate and free 52 * all (remaining) queued pages. 53 * 54 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA 55 * 56 * Defaults to flushing at tlb_end_vma() to reset the range; helps when 57 * there's large holes between the VMAs. 58 * 59 * - tlb_remove_page() / __tlb_remove_page() 60 * - tlb_remove_page_size() / __tlb_remove_page_size() 61 * 62 * __tlb_remove_page_size() is the basic primitive that queues a page for 63 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a 64 * boolean indicating if the queue is (now) full and a call to 65 * tlb_flush_mmu() is required. 66 * 67 * tlb_remove_page() and tlb_remove_page_size() imply the call to 68 * tlb_flush_mmu() when required and has no return value. 69 * 70 * - tlb_change_page_size() 71 * 72 * call before __tlb_remove_page*() to set the current page-size; implies a 73 * possible tlb_flush_mmu() call. 74 * 75 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() 76 * 77 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets 78 * related state, like the range) 79 * 80 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees 81 * whatever pages are still batched. 82 * 83 * - mmu_gather::fullmm 84 * 85 * A flag set by tlb_gather_mmu() to indicate we're going to free 86 * the entire mm; this allows a number of optimizations. 87 * 88 * - We can ignore tlb_{start,end}_vma(); because we don't 89 * care about ranges. Everything will be shot down. 90 * 91 * - (RISC) architectures that use ASIDs can cycle to a new ASID 92 * and delay the invalidation until ASID space runs out. 93 * 94 * - mmu_gather::need_flush_all 95 * 96 * A flag that can be set by the arch code if it wants to force 97 * flush the entire TLB irrespective of the range. For instance 98 * x86-PAE needs this when changing top-level entries. 99 * 100 * And allows the architecture to provide and implement tlb_flush(): 101 * 102 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make 103 * use of: 104 * 105 * - mmu_gather::start / mmu_gather::end 106 * 107 * which provides the range that needs to be flushed to cover the pages to 108 * be freed. 109 * 110 * - mmu_gather::freed_tables 111 * 112 * set when we freed page table pages 113 * 114 * - tlb_get_unmap_shift() / tlb_get_unmap_size() 115 * 116 * returns the smallest TLB entry size unmapped in this range. 117 * 118 * If an architecture does not provide tlb_flush() a default implementation 119 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is 120 * specified, in which case we'll default to flush_tlb_mm(). 121 * 122 * Additionally there are a few opt-in features: 123 * 124 * HAVE_MMU_GATHER_PAGE_SIZE 125 * 126 * This ensures we call tlb_flush() every time tlb_change_page_size() actually 127 * changes the size and provides mmu_gather::page_size to tlb_flush(). 128 * 129 * HAVE_RCU_TABLE_FREE 130 * 131 * This provides tlb_remove_table(), to be used instead of tlb_remove_page() 132 * for page directores (__p*_free_tlb()). This provides separate freeing of 133 * the page-table pages themselves in a semi-RCU fashion (see comment below). 134 * Useful if your architecture doesn't use IPIs for remote TLB invalidates 135 * and therefore doesn't naturally serialize with software page-table walkers. 136 * 137 * When used, an architecture is expected to provide __tlb_remove_table() 138 * which does the actual freeing of these pages. 139 * 140 * HAVE_RCU_TABLE_NO_INVALIDATE 141 * 142 * This makes HAVE_RCU_TABLE_FREE avoid calling tlb_flush_mmu_tlbonly() before 143 * freeing the page-table pages. This can be avoided if you use 144 * HAVE_RCU_TABLE_FREE and your architecture does _NOT_ use the Linux 145 * page-tables natively. 146 * 147 * MMU_GATHER_NO_RANGE 148 * 149 * Use this if your architecture lacks an efficient flush_tlb_range(). 150 */ 151 152 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 153 /* 154 * Semi RCU freeing of the page directories. 155 * 156 * This is needed by some architectures to implement software pagetable walkers. 157 * 158 * gup_fast() and other software pagetable walkers do a lockless page-table 159 * walk and therefore needs some synchronization with the freeing of the page 160 * directories. The chosen means to accomplish that is by disabling IRQs over 161 * the walk. 162 * 163 * Architectures that use IPIs to flush TLBs will then automagically DTRT, 164 * since we unlink the page, flush TLBs, free the page. Since the disabling of 165 * IRQs delays the completion of the TLB flush we can never observe an already 166 * freed page. 167 * 168 * Architectures that do not have this (PPC) need to delay the freeing by some 169 * other means, this is that means. 170 * 171 * What we do is batch the freed directory pages (tables) and RCU free them. 172 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling 173 * holds off grace periods. 174 * 175 * However, in order to batch these pages we need to allocate storage, this 176 * allocation is deep inside the MM code and can thus easily fail on memory 177 * pressure. To guarantee progress we fall back to single table freeing, see 178 * the implementation of tlb_remove_table_one(). 179 * 180 */ 181 struct mmu_table_batch { 182 struct rcu_head rcu; 183 unsigned int nr; 184 void *tables[0]; 185 }; 186 187 #define MAX_TABLE_BATCH \ 188 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) 189 190 extern void tlb_remove_table(struct mmu_gather *tlb, void *table); 191 192 #endif 193 194 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER 195 /* 196 * If we can't allocate a page to make a big batch of page pointers 197 * to work on, then just handle a few from the on-stack structure. 198 */ 199 #define MMU_GATHER_BUNDLE 8 200 201 struct mmu_gather_batch { 202 struct mmu_gather_batch *next; 203 unsigned int nr; 204 unsigned int max; 205 struct page *pages[0]; 206 }; 207 208 #define MAX_GATHER_BATCH \ 209 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) 210 211 /* 212 * Limit the maximum number of mmu_gather batches to reduce a risk of soft 213 * lockups for non-preemptible kernels on huge machines when a lot of memory 214 * is zapped during unmapping. 215 * 10K pages freed at once should be safe even without a preemption point. 216 */ 217 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) 218 219 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, 220 int page_size); 221 #endif 222 223 /* 224 * struct mmu_gather is an opaque type used by the mm code for passing around 225 * any data needed by arch specific code for tlb_remove_page. 226 */ 227 struct mmu_gather { 228 struct mm_struct *mm; 229 230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 struct mmu_table_batch *batch; 232 #endif 233 234 unsigned long start; 235 unsigned long end; 236 /* 237 * we are in the middle of an operation to clear 238 * a full mm and can make some optimizations 239 */ 240 unsigned int fullmm : 1; 241 242 /* 243 * we have performed an operation which 244 * requires a complete flush of the tlb 245 */ 246 unsigned int need_flush_all : 1; 247 248 /* 249 * we have removed page directories 250 */ 251 unsigned int freed_tables : 1; 252 253 /* 254 * at which levels have we cleared entries? 255 */ 256 unsigned int cleared_ptes : 1; 257 unsigned int cleared_pmds : 1; 258 unsigned int cleared_puds : 1; 259 unsigned int cleared_p4ds : 1; 260 261 /* 262 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma 263 */ 264 unsigned int vma_exec : 1; 265 unsigned int vma_huge : 1; 266 267 unsigned int batch_count; 268 269 #ifndef CONFIG_HAVE_MMU_GATHER_NO_GATHER 270 struct mmu_gather_batch *active; 271 struct mmu_gather_batch local; 272 struct page *__pages[MMU_GATHER_BUNDLE]; 273 274 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE 275 unsigned int page_size; 276 #endif 277 #endif 278 }; 279 280 void arch_tlb_gather_mmu(struct mmu_gather *tlb, 281 struct mm_struct *mm, unsigned long start, unsigned long end); 282 void tlb_flush_mmu(struct mmu_gather *tlb); 283 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 284 unsigned long start, unsigned long end, bool force); 285 286 static inline void __tlb_adjust_range(struct mmu_gather *tlb, 287 unsigned long address, 288 unsigned int range_size) 289 { 290 tlb->start = min(tlb->start, address); 291 tlb->end = max(tlb->end, address + range_size); 292 } 293 294 static inline void __tlb_reset_range(struct mmu_gather *tlb) 295 { 296 if (tlb->fullmm) { 297 tlb->start = tlb->end = ~0; 298 } else { 299 tlb->start = TASK_SIZE; 300 tlb->end = 0; 301 } 302 tlb->freed_tables = 0; 303 tlb->cleared_ptes = 0; 304 tlb->cleared_pmds = 0; 305 tlb->cleared_puds = 0; 306 tlb->cleared_p4ds = 0; 307 /* 308 * Do not reset mmu_gather::vma_* fields here, we do not 309 * call into tlb_start_vma() again to set them if there is an 310 * intermediate flush. 311 */ 312 } 313 314 #ifdef CONFIG_MMU_GATHER_NO_RANGE 315 316 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) 317 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() 318 #endif 319 320 /* 321 * When an architecture does not have efficient means of range flushing TLBs 322 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the 323 * range small. We equally don't have to worry about page granularity or other 324 * things. 325 * 326 * All we need to do is issue a full flush for any !0 range. 327 */ 328 static inline void tlb_flush(struct mmu_gather *tlb) 329 { 330 if (tlb->end) 331 flush_tlb_mm(tlb->mm); 332 } 333 334 static inline void 335 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 336 337 #define tlb_end_vma tlb_end_vma 338 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 339 340 #else /* CONFIG_MMU_GATHER_NO_RANGE */ 341 342 #ifndef tlb_flush 343 344 #if defined(tlb_start_vma) || defined(tlb_end_vma) 345 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() 346 #endif 347 348 /* 349 * When an architecture does not provide its own tlb_flush() implementation 350 * but does have a reasonably efficient flush_vma_range() implementation 351 * use that. 352 */ 353 static inline void tlb_flush(struct mmu_gather *tlb) 354 { 355 if (tlb->fullmm || tlb->need_flush_all) { 356 flush_tlb_mm(tlb->mm); 357 } else if (tlb->end) { 358 struct vm_area_struct vma = { 359 .vm_mm = tlb->mm, 360 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | 361 (tlb->vma_huge ? VM_HUGETLB : 0), 362 }; 363 364 flush_tlb_range(&vma, tlb->start, tlb->end); 365 } 366 } 367 368 static inline void 369 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) 370 { 371 /* 372 * flush_tlb_range() implementations that look at VM_HUGETLB (tile, 373 * mips-4k) flush only large pages. 374 * 375 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB 376 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing 377 * range. 378 * 379 * We rely on tlb_end_vma() to issue a flush, such that when we reset 380 * these values the batch is empty. 381 */ 382 tlb->vma_huge = !!(vma->vm_flags & VM_HUGETLB); 383 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); 384 } 385 386 #else 387 388 static inline void 389 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } 390 391 #endif 392 393 #endif /* CONFIG_MMU_GATHER_NO_RANGE */ 394 395 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 396 { 397 if (!tlb->end) 398 return; 399 400 tlb_flush(tlb); 401 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 402 __tlb_reset_range(tlb); 403 } 404 405 static inline void tlb_remove_page_size(struct mmu_gather *tlb, 406 struct page *page, int page_size) 407 { 408 if (__tlb_remove_page_size(tlb, page, page_size)) 409 tlb_flush_mmu(tlb); 410 } 411 412 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 413 { 414 return __tlb_remove_page_size(tlb, page, PAGE_SIZE); 415 } 416 417 /* tlb_remove_page 418 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when 419 * required. 420 */ 421 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) 422 { 423 return tlb_remove_page_size(tlb, page, PAGE_SIZE); 424 } 425 426 static inline void tlb_change_page_size(struct mmu_gather *tlb, 427 unsigned int page_size) 428 { 429 #ifdef CONFIG_HAVE_MMU_GATHER_PAGE_SIZE 430 if (tlb->page_size && tlb->page_size != page_size) { 431 if (!tlb->fullmm) 432 tlb_flush_mmu(tlb); 433 } 434 435 tlb->page_size = page_size; 436 #endif 437 } 438 439 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) 440 { 441 if (tlb->cleared_ptes) 442 return PAGE_SHIFT; 443 if (tlb->cleared_pmds) 444 return PMD_SHIFT; 445 if (tlb->cleared_puds) 446 return PUD_SHIFT; 447 if (tlb->cleared_p4ds) 448 return P4D_SHIFT; 449 450 return PAGE_SHIFT; 451 } 452 453 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) 454 { 455 return 1UL << tlb_get_unmap_shift(tlb); 456 } 457 458 /* 459 * In the case of tlb vma handling, we can optimise these away in the 460 * case where we're doing a full MM flush. When we're doing a munmap, 461 * the vmas are adjusted to only cover the region to be torn down. 462 */ 463 #ifndef tlb_start_vma 464 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 465 { 466 if (tlb->fullmm) 467 return; 468 469 tlb_update_vma_flags(tlb, vma); 470 flush_cache_range(vma, vma->vm_start, vma->vm_end); 471 } 472 #endif 473 474 #ifndef tlb_end_vma 475 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) 476 { 477 if (tlb->fullmm) 478 return; 479 480 /* 481 * Do a TLB flush and reset the range at VMA boundaries; this avoids 482 * the ranges growing with the unused space between consecutive VMAs, 483 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on 484 * this. 485 */ 486 tlb_flush_mmu_tlbonly(tlb); 487 } 488 #endif 489 490 #ifndef __tlb_remove_tlb_entry 491 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) 492 #endif 493 494 /** 495 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. 496 * 497 * Record the fact that pte's were really unmapped by updating the range, 498 * so we can later optimise away the tlb invalidate. This helps when 499 * userspace is unmapping already-unmapped pages, which happens quite a lot. 500 */ 501 #define tlb_remove_tlb_entry(tlb, ptep, address) \ 502 do { \ 503 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 504 tlb->cleared_ptes = 1; \ 505 __tlb_remove_tlb_entry(tlb, ptep, address); \ 506 } while (0) 507 508 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ 509 do { \ 510 unsigned long _sz = huge_page_size(h); \ 511 __tlb_adjust_range(tlb, address, _sz); \ 512 if (_sz == PMD_SIZE) \ 513 tlb->cleared_pmds = 1; \ 514 else if (_sz == PUD_SIZE) \ 515 tlb->cleared_puds = 1; \ 516 __tlb_remove_tlb_entry(tlb, ptep, address); \ 517 } while (0) 518 519 /** 520 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation 521 * This is a nop so far, because only x86 needs it. 522 */ 523 #ifndef __tlb_remove_pmd_tlb_entry 524 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) 525 #endif 526 527 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ 528 do { \ 529 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \ 530 tlb->cleared_pmds = 1; \ 531 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ 532 } while (0) 533 534 /** 535 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb 536 * invalidation. This is a nop so far, because only x86 needs it. 537 */ 538 #ifndef __tlb_remove_pud_tlb_entry 539 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) 540 #endif 541 542 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ 543 do { \ 544 __tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE); \ 545 tlb->cleared_puds = 1; \ 546 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ 547 } while (0) 548 549 /* 550 * For things like page tables caches (ie caching addresses "inside" the 551 * page tables, like x86 does), for legacy reasons, flushing an 552 * individual page had better flush the page table caches behind it. This 553 * is definitely how x86 works, for example. And if you have an 554 * architected non-legacy page table cache (which I'm not aware of 555 * anybody actually doing), you're going to have some architecturally 556 * explicit flushing for that, likely *separate* from a regular TLB entry 557 * flush, and thus you'd need more than just some range expansion.. 558 * 559 * So if we ever find an architecture 560 * that would want something that odd, I think it is up to that 561 * architecture to do its own odd thing, not cause pain for others 562 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com 563 * 564 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE 565 */ 566 567 #ifndef pte_free_tlb 568 #define pte_free_tlb(tlb, ptep, address) \ 569 do { \ 570 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 571 tlb->freed_tables = 1; \ 572 tlb->cleared_pmds = 1; \ 573 __pte_free_tlb(tlb, ptep, address); \ 574 } while (0) 575 #endif 576 577 #ifndef pmd_free_tlb 578 #define pmd_free_tlb(tlb, pmdp, address) \ 579 do { \ 580 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 581 tlb->freed_tables = 1; \ 582 tlb->cleared_puds = 1; \ 583 __pmd_free_tlb(tlb, pmdp, address); \ 584 } while (0) 585 #endif 586 587 #ifndef __ARCH_HAS_4LEVEL_HACK 588 #ifndef pud_free_tlb 589 #define pud_free_tlb(tlb, pudp, address) \ 590 do { \ 591 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 592 tlb->freed_tables = 1; \ 593 tlb->cleared_p4ds = 1; \ 594 __pud_free_tlb(tlb, pudp, address); \ 595 } while (0) 596 #endif 597 #endif 598 599 #ifndef __ARCH_HAS_5LEVEL_HACK 600 #ifndef p4d_free_tlb 601 #define p4d_free_tlb(tlb, pudp, address) \ 602 do { \ 603 __tlb_adjust_range(tlb, address, PAGE_SIZE); \ 604 tlb->freed_tables = 1; \ 605 __p4d_free_tlb(tlb, pudp, address); \ 606 } while (0) 607 #endif 608 #endif 609 610 #endif /* CONFIG_MMU */ 611 612 #endif /* _ASM_GENERIC__TLB_H */ 613