1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are specified in the Hyper-V Top Level Functional
10  * Spec (TLFS) should not go in this file, but should instead go in
11  * hyperv-tlfs.h.
12  *
13  * Copyright (C) 2019, Microsoft, Inc.
14  *
15  * Author : Michael Kelley <mikelley@microsoft.com>
16  */
17 
18 #ifndef _ASM_GENERIC_MSHYPERV_H
19 #define _ASM_GENERIC_MSHYPERV_H
20 
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/bitops.h>
24 #include <linux/cpumask.h>
25 #include <asm/ptrace.h>
26 #include <asm/hyperv-tlfs.h>
27 
28 struct ms_hyperv_info {
29 	u32 features;
30 	u32 priv_high;
31 	u32 misc_features;
32 	u32 hints;
33 	u32 nested_features;
34 	u32 max_vp_index;
35 	u32 max_lp_index;
36 	u32 isolation_config_a;
37 	u32 isolation_config_b;
38 };
39 extern struct ms_hyperv_info ms_hyperv;
40 
41 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
42 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
43 
44 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
45 static inline int hv_result(u64 status)
46 {
47 	return status & HV_HYPERCALL_RESULT_MASK;
48 }
49 
50 static inline bool hv_result_success(u64 status)
51 {
52 	return hv_result(status) == HV_STATUS_SUCCESS;
53 }
54 
55 static inline unsigned int hv_repcomp(u64 status)
56 {
57 	/* Bits [43:32] of status have 'Reps completed' data. */
58 	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
59 			 HV_HYPERCALL_REP_COMP_OFFSET;
60 }
61 
62 /*
63  * Rep hypercalls. Callers of this functions are supposed to ensure that
64  * rep_count and varhead_size comply with Hyper-V hypercall definition.
65  */
66 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
67 				      void *input, void *output)
68 {
69 	u64 control = code;
70 	u64 status;
71 	u16 rep_comp;
72 
73 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
74 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
75 
76 	do {
77 		status = hv_do_hypercall(control, input, output);
78 		if (!hv_result_success(status))
79 			return status;
80 
81 		rep_comp = hv_repcomp(status);
82 
83 		control &= ~HV_HYPERCALL_REP_START_MASK;
84 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
85 
86 		touch_nmi_watchdog();
87 	} while (rep_comp < rep_count);
88 
89 	return status;
90 }
91 
92 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
93 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
94 				       __u64 d_info2)
95 {
96 	__u64 guest_id = 0;
97 
98 	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
99 	guest_id |= (d_info1 << 48);
100 	guest_id |= (kernel_version << 16);
101 	guest_id |= d_info2;
102 
103 	return guest_id;
104 }
105 
106 /* Free the message slot and signal end-of-message if required */
107 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
108 {
109 	/*
110 	 * On crash we're reading some other CPU's message page and we need
111 	 * to be careful: this other CPU may already had cleared the header
112 	 * and the host may already had delivered some other message there.
113 	 * In case we blindly write msg->header.message_type we're going
114 	 * to lose it. We can still lose a message of the same type but
115 	 * we count on the fact that there can only be one
116 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
117 	 * on crash.
118 	 */
119 	if (cmpxchg(&msg->header.message_type, old_msg_type,
120 		    HVMSG_NONE) != old_msg_type)
121 		return;
122 
123 	/*
124 	 * The cmxchg() above does an implicit memory barrier to
125 	 * ensure the write to MessageType (ie set to
126 	 * HVMSG_NONE) happens before we read the
127 	 * MessagePending and EOMing. Otherwise, the EOMing
128 	 * will not deliver any more messages since there is
129 	 * no empty slot
130 	 */
131 	if (msg->header.message_flags.msg_pending) {
132 		/*
133 		 * This will cause message queue rescan to
134 		 * possibly deliver another msg from the
135 		 * hypervisor
136 		 */
137 		hv_set_register(HV_REGISTER_EOM, 0);
138 	}
139 }
140 
141 void hv_setup_vmbus_handler(void (*handler)(void));
142 void hv_remove_vmbus_handler(void);
143 void hv_setup_stimer0_handler(void (*handler)(void));
144 void hv_remove_stimer0_handler(void);
145 
146 void hv_setup_kexec_handler(void (*handler)(void));
147 void hv_remove_kexec_handler(void);
148 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
149 void hv_remove_crash_handler(void);
150 
151 extern int vmbus_interrupt;
152 extern int vmbus_irq;
153 
154 #if IS_ENABLED(CONFIG_HYPERV)
155 /*
156  * Hypervisor's notion of virtual processor ID is different from
157  * Linux' notion of CPU ID. This information can only be retrieved
158  * in the context of the calling CPU. Setup a map for easy access
159  * to this information.
160  */
161 extern u32 *hv_vp_index;
162 extern u32 hv_max_vp_index;
163 
164 /* Sentinel value for an uninitialized entry in hv_vp_index array */
165 #define VP_INVAL	U32_MAX
166 
167 void *hv_alloc_hyperv_page(void);
168 void *hv_alloc_hyperv_zeroed_page(void);
169 void hv_free_hyperv_page(unsigned long addr);
170 
171 /**
172  * hv_cpu_number_to_vp_number() - Map CPU to VP.
173  * @cpu_number: CPU number in Linux terms
174  *
175  * This function returns the mapping between the Linux processor
176  * number and the hypervisor's virtual processor number, useful
177  * in making hypercalls and such that talk about specific
178  * processors.
179  *
180  * Return: Virtual processor number in Hyper-V terms
181  */
182 static inline int hv_cpu_number_to_vp_number(int cpu_number)
183 {
184 	return hv_vp_index[cpu_number];
185 }
186 
187 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
188 				    const struct cpumask *cpus)
189 {
190 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
191 
192 	/* valid_bank_mask can represent up to 64 banks */
193 	if (hv_max_vp_index / 64 >= 64)
194 		return 0;
195 
196 	/*
197 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
198 	 * structs are not cleared between calls, we risk flushing unneeded
199 	 * vCPUs otherwise.
200 	 */
201 	for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
202 		vpset->bank_contents[vcpu_bank] = 0;
203 
204 	/*
205 	 * Some banks may end up being empty but this is acceptable.
206 	 */
207 	for_each_cpu(cpu, cpus) {
208 		vcpu = hv_cpu_number_to_vp_number(cpu);
209 		if (vcpu == VP_INVAL)
210 			return -1;
211 		vcpu_bank = vcpu / 64;
212 		vcpu_offset = vcpu % 64;
213 		__set_bit(vcpu_offset, (unsigned long *)
214 			  &vpset->bank_contents[vcpu_bank]);
215 		if (vcpu_bank >= nr_bank)
216 			nr_bank = vcpu_bank + 1;
217 	}
218 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
219 	return nr_bank;
220 }
221 
222 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
223 bool hv_is_hyperv_initialized(void);
224 bool hv_is_hibernation_supported(void);
225 enum hv_isolation_type hv_get_isolation_type(void);
226 bool hv_is_isolation_supported(void);
227 void hyperv_cleanup(void);
228 bool hv_query_ext_cap(u64 cap_query);
229 #else /* CONFIG_HYPERV */
230 static inline bool hv_is_hyperv_initialized(void) { return false; }
231 static inline bool hv_is_hibernation_supported(void) { return false; }
232 static inline void hyperv_cleanup(void) {}
233 #endif /* CONFIG_HYPERV */
234 
235 #endif
236