1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * This file contains definitions from Hyper-V Hypervisor Top-Level Functional 5 * Specification (TLFS): 6 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs 7 */ 8 9 #ifndef _ASM_GENERIC_HYPERV_TLFS_H 10 #define _ASM_GENERIC_HYPERV_TLFS_H 11 12 #include <linux/types.h> 13 #include <linux/bits.h> 14 #include <linux/time64.h> 15 16 /* 17 * While not explicitly listed in the TLFS, Hyper-V always runs with a page size 18 * of 4096. These definitions are used when communicating with Hyper-V using 19 * guest physical pages and guest physical page addresses, since the guest page 20 * size may not be 4096 on all architectures. 21 */ 22 #define HV_HYP_PAGE_SHIFT 12 23 #define HV_HYP_PAGE_SIZE BIT(HV_HYP_PAGE_SHIFT) 24 #define HV_HYP_PAGE_MASK (~(HV_HYP_PAGE_SIZE - 1)) 25 26 /* 27 * Hyper-V provides two categories of flags relevant to guest VMs. The 28 * "Features" category indicates specific functionality that is available 29 * to guests on this particular instance of Hyper-V. The "Features" 30 * are presented in four groups, each of which is 32 bits. The group A 31 * and B definitions are common across architectures and are listed here. 32 * However, not all flags are relevant on all architectures. 33 * 34 * Groups C and D vary across architectures and are listed in the 35 * architecture specific portion of hyperv-tlfs.h. Some of these flags exist 36 * on multiple architectures, but the bit positions are different so they 37 * cannot appear in the generic portion of hyperv-tlfs.h. 38 * 39 * The "Enlightenments" category provides recommendations on whether to use 40 * specific enlightenments that are available. The Enlighenments are a single 41 * group of 32 bits, but they vary across architectures and are listed in 42 * the architecture specific portion of hyperv-tlfs.h. 43 */ 44 45 /* 46 * Group A Features. 47 */ 48 49 /* VP Runtime register available */ 50 #define HV_MSR_VP_RUNTIME_AVAILABLE BIT(0) 51 /* Partition Reference Counter available*/ 52 #define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) 53 /* Basic SynIC register available */ 54 #define HV_MSR_SYNIC_AVAILABLE BIT(2) 55 /* Synthetic Timer registers available */ 56 #define HV_MSR_SYNTIMER_AVAILABLE BIT(3) 57 /* Virtual APIC assist and VP assist page registers available */ 58 #define HV_MSR_APIC_ACCESS_AVAILABLE BIT(4) 59 /* Hypercall and Guest OS ID registers available*/ 60 #define HV_MSR_HYPERCALL_AVAILABLE BIT(5) 61 /* Access virtual processor index register available*/ 62 #define HV_MSR_VP_INDEX_AVAILABLE BIT(6) 63 /* Virtual system reset register available*/ 64 #define HV_MSR_RESET_AVAILABLE BIT(7) 65 /* Access statistics page registers available */ 66 #define HV_MSR_STAT_PAGES_AVAILABLE BIT(8) 67 /* Partition reference TSC register is available */ 68 #define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) 69 /* Partition Guest IDLE register is available */ 70 #define HV_MSR_GUEST_IDLE_AVAILABLE BIT(10) 71 /* Partition local APIC and TSC frequency registers available */ 72 #define HV_ACCESS_FREQUENCY_MSRS BIT(11) 73 /* AccessReenlightenmentControls privilege */ 74 #define HV_ACCESS_REENLIGHTENMENT BIT(13) 75 /* AccessTscInvariantControls privilege */ 76 #define HV_ACCESS_TSC_INVARIANT BIT(15) 77 78 /* 79 * Group B features. 80 */ 81 #define HV_CREATE_PARTITIONS BIT(0) 82 #define HV_ACCESS_PARTITION_ID BIT(1) 83 #define HV_ACCESS_MEMORY_POOL BIT(2) 84 #define HV_ADJUST_MESSAGE_BUFFERS BIT(3) 85 #define HV_POST_MESSAGES BIT(4) 86 #define HV_SIGNAL_EVENTS BIT(5) 87 #define HV_CREATE_PORT BIT(6) 88 #define HV_CONNECT_PORT BIT(7) 89 #define HV_ACCESS_STATS BIT(8) 90 #define HV_DEBUGGING BIT(11) 91 #define HV_CPU_MANAGEMENT BIT(12) 92 #define HV_ENABLE_EXTENDED_HYPERCALLS BIT(20) 93 #define HV_ISOLATION BIT(22) 94 95 /* 96 * TSC page layout. 97 */ 98 struct ms_hyperv_tsc_page { 99 volatile u32 tsc_sequence; 100 u32 reserved1; 101 volatile u64 tsc_scale; 102 volatile s64 tsc_offset; 103 } __packed; 104 105 /* 106 * The guest OS needs to register the guest ID with the hypervisor. 107 * The guest ID is a 64 bit entity and the structure of this ID is 108 * specified in the Hyper-V specification: 109 * 110 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx 111 * 112 * While the current guideline does not specify how Linux guest ID(s) 113 * need to be generated, our plan is to publish the guidelines for 114 * Linux and other guest operating systems that currently are hosted 115 * on Hyper-V. The implementation here conforms to this yet 116 * unpublished guidelines. 117 * 118 * 119 * Bit(s) 120 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source 121 * 62:56 - Os Type; Linux is 0x100 122 * 55:48 - Distro specific identification 123 * 47:16 - Linux kernel version number 124 * 15:0 - Distro specific identification 125 * 126 * 127 */ 128 129 #define HV_LINUX_VENDOR_ID 0x8100 130 131 /* 132 * Crash notification flags. 133 */ 134 #define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) 135 #define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) 136 137 /* Declare the various hypercall operations. */ 138 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE 0x0002 139 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST 0x0003 140 #define HVCALL_NOTIFY_LONG_SPIN_WAIT 0x0008 141 #define HVCALL_SEND_IPI 0x000b 142 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX 0x0013 143 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX 0x0014 144 #define HVCALL_SEND_IPI_EX 0x0015 145 #define HVCALL_GET_PARTITION_ID 0x0046 146 #define HVCALL_DEPOSIT_MEMORY 0x0048 147 #define HVCALL_CREATE_VP 0x004e 148 #define HVCALL_GET_VP_REGISTERS 0x0050 149 #define HVCALL_SET_VP_REGISTERS 0x0051 150 #define HVCALL_POST_MESSAGE 0x005c 151 #define HVCALL_SIGNAL_EVENT 0x005d 152 #define HVCALL_POST_DEBUG_DATA 0x0069 153 #define HVCALL_RETRIEVE_DEBUG_DATA 0x006a 154 #define HVCALL_RESET_DEBUG_SESSION 0x006b 155 #define HVCALL_ADD_LOGICAL_PROCESSOR 0x0076 156 #define HVCALL_MAP_DEVICE_INTERRUPT 0x007c 157 #define HVCALL_UNMAP_DEVICE_INTERRUPT 0x007d 158 #define HVCALL_RETARGET_INTERRUPT 0x007e 159 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af 160 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 161 162 /* Extended hypercalls */ 163 #define HV_EXT_CALL_QUERY_CAPABILITIES 0x8001 164 #define HV_EXT_CALL_MEMORY_HEAT_HINT 0x8003 165 166 #define HV_FLUSH_ALL_PROCESSORS BIT(0) 167 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) 168 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) 169 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) 170 171 /* Extended capability bits */ 172 #define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8) 173 174 enum HV_GENERIC_SET_FORMAT { 175 HV_GENERIC_SET_SPARSE_4K, 176 HV_GENERIC_SET_ALL, 177 }; 178 179 #define HV_PARTITION_ID_SELF ((u64)-1) 180 #define HV_VP_INDEX_SELF ((u32)-2) 181 182 #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0) 183 #define HV_HYPERCALL_FAST_BIT BIT(16) 184 #define HV_HYPERCALL_VARHEAD_OFFSET 17 185 #define HV_HYPERCALL_REP_COMP_OFFSET 32 186 #define HV_HYPERCALL_REP_COMP_1 BIT_ULL(32) 187 #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32) 188 #define HV_HYPERCALL_REP_START_OFFSET 48 189 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48) 190 191 /* hypercall status code */ 192 #define HV_STATUS_SUCCESS 0 193 #define HV_STATUS_INVALID_HYPERCALL_CODE 2 194 #define HV_STATUS_INVALID_HYPERCALL_INPUT 3 195 #define HV_STATUS_INVALID_ALIGNMENT 4 196 #define HV_STATUS_INVALID_PARAMETER 5 197 #define HV_STATUS_OPERATION_DENIED 8 198 #define HV_STATUS_INSUFFICIENT_MEMORY 11 199 #define HV_STATUS_INVALID_PORT_ID 17 200 #define HV_STATUS_INVALID_CONNECTION_ID 18 201 #define HV_STATUS_INSUFFICIENT_BUFFERS 19 202 203 /* 204 * The Hyper-V TimeRefCount register and the TSC 205 * page provide a guest VM clock with 100ns tick rate 206 */ 207 #define HV_CLOCK_HZ (NSEC_PER_SEC/100) 208 209 /* Define the number of synthetic interrupt sources. */ 210 #define HV_SYNIC_SINT_COUNT (16) 211 /* Define the expected SynIC version. */ 212 #define HV_SYNIC_VERSION_1 (0x1) 213 /* Valid SynIC vectors are 16-255. */ 214 #define HV_SYNIC_FIRST_VALID_VECTOR (16) 215 216 #define HV_SYNIC_CONTROL_ENABLE (1ULL << 0) 217 #define HV_SYNIC_SIMP_ENABLE (1ULL << 0) 218 #define HV_SYNIC_SIEFP_ENABLE (1ULL << 0) 219 #define HV_SYNIC_SINT_MASKED (1ULL << 16) 220 #define HV_SYNIC_SINT_AUTO_EOI (1ULL << 17) 221 #define HV_SYNIC_SINT_VECTOR_MASK (0xFF) 222 223 #define HV_SYNIC_STIMER_COUNT (4) 224 225 /* Define synthetic interrupt controller message constants. */ 226 #define HV_MESSAGE_SIZE (256) 227 #define HV_MESSAGE_PAYLOAD_BYTE_COUNT (240) 228 #define HV_MESSAGE_PAYLOAD_QWORD_COUNT (30) 229 230 /* 231 * Define hypervisor message types. Some of the message types 232 * are x86/x64 specific, but there's no good way to separate 233 * them out into the arch-specific version of hyperv-tlfs.h 234 * because C doesn't provide a way to extend enum types. 235 * Keeping them all in the arch neutral hyperv-tlfs.h seems 236 * the least messy compromise. 237 */ 238 enum hv_message_type { 239 HVMSG_NONE = 0x00000000, 240 241 /* Memory access messages. */ 242 HVMSG_UNMAPPED_GPA = 0x80000000, 243 HVMSG_GPA_INTERCEPT = 0x80000001, 244 245 /* Timer notification messages. */ 246 HVMSG_TIMER_EXPIRED = 0x80000010, 247 248 /* Error messages. */ 249 HVMSG_INVALID_VP_REGISTER_VALUE = 0x80000020, 250 HVMSG_UNRECOVERABLE_EXCEPTION = 0x80000021, 251 HVMSG_UNSUPPORTED_FEATURE = 0x80000022, 252 253 /* Trace buffer complete messages. */ 254 HVMSG_EVENTLOG_BUFFERCOMPLETE = 0x80000040, 255 256 /* Platform-specific processor intercept messages. */ 257 HVMSG_X64_IOPORT_INTERCEPT = 0x80010000, 258 HVMSG_X64_MSR_INTERCEPT = 0x80010001, 259 HVMSG_X64_CPUID_INTERCEPT = 0x80010002, 260 HVMSG_X64_EXCEPTION_INTERCEPT = 0x80010003, 261 HVMSG_X64_APIC_EOI = 0x80010004, 262 HVMSG_X64_LEGACY_FP_ERROR = 0x80010005 263 }; 264 265 /* Define synthetic interrupt controller message flags. */ 266 union hv_message_flags { 267 __u8 asu8; 268 struct { 269 __u8 msg_pending:1; 270 __u8 reserved:7; 271 } __packed; 272 }; 273 274 /* Define port identifier type. */ 275 union hv_port_id { 276 __u32 asu32; 277 struct { 278 __u32 id:24; 279 __u32 reserved:8; 280 } __packed u; 281 }; 282 283 /* Define synthetic interrupt controller message header. */ 284 struct hv_message_header { 285 __u32 message_type; 286 __u8 payload_size; 287 union hv_message_flags message_flags; 288 __u8 reserved[2]; 289 union { 290 __u64 sender; 291 union hv_port_id port; 292 }; 293 } __packed; 294 295 /* Define synthetic interrupt controller message format. */ 296 struct hv_message { 297 struct hv_message_header header; 298 union { 299 __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; 300 } u; 301 } __packed; 302 303 /* Define the synthetic interrupt message page layout. */ 304 struct hv_message_page { 305 struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; 306 } __packed; 307 308 /* Define timer message payload structure. */ 309 struct hv_timer_message_payload { 310 __u32 timer_index; 311 __u32 reserved; 312 __u64 expiration_time; /* When the timer expired */ 313 __u64 delivery_time; /* When the message was delivered */ 314 } __packed; 315 316 317 /* Define synthetic interrupt controller flag constants. */ 318 #define HV_EVENT_FLAGS_COUNT (256 * 8) 319 #define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) 320 321 /* 322 * Synthetic timer configuration. 323 */ 324 union hv_stimer_config { 325 u64 as_uint64; 326 struct { 327 u64 enable:1; 328 u64 periodic:1; 329 u64 lazy:1; 330 u64 auto_enable:1; 331 u64 apic_vector:8; 332 u64 direct_mode:1; 333 u64 reserved_z0:3; 334 u64 sintx:4; 335 u64 reserved_z1:44; 336 } __packed; 337 }; 338 339 340 /* Define the synthetic interrupt controller event flags format. */ 341 union hv_synic_event_flags { 342 unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; 343 }; 344 345 /* Define SynIC control register. */ 346 union hv_synic_scontrol { 347 u64 as_uint64; 348 struct { 349 u64 enable:1; 350 u64 reserved:63; 351 } __packed; 352 }; 353 354 /* Define synthetic interrupt source. */ 355 union hv_synic_sint { 356 u64 as_uint64; 357 struct { 358 u64 vector:8; 359 u64 reserved1:8; 360 u64 masked:1; 361 u64 auto_eoi:1; 362 u64 polling:1; 363 u64 reserved2:45; 364 } __packed; 365 }; 366 367 /* Define the format of the SIMP register */ 368 union hv_synic_simp { 369 u64 as_uint64; 370 struct { 371 u64 simp_enabled:1; 372 u64 preserved:11; 373 u64 base_simp_gpa:52; 374 } __packed; 375 }; 376 377 /* Define the format of the SIEFP register */ 378 union hv_synic_siefp { 379 u64 as_uint64; 380 struct { 381 u64 siefp_enabled:1; 382 u64 preserved:11; 383 u64 base_siefp_gpa:52; 384 } __packed; 385 }; 386 387 struct hv_vpset { 388 u64 format; 389 u64 valid_bank_mask; 390 u64 bank_contents[]; 391 } __packed; 392 393 /* HvCallSendSyntheticClusterIpi hypercall */ 394 struct hv_send_ipi { 395 u32 vector; 396 u32 reserved; 397 u64 cpu_mask; 398 } __packed; 399 400 /* HvCallSendSyntheticClusterIpiEx hypercall */ 401 struct hv_send_ipi_ex { 402 u32 vector; 403 u32 reserved; 404 struct hv_vpset vp_set; 405 } __packed; 406 407 /* HvFlushGuestPhysicalAddressSpace hypercalls */ 408 struct hv_guest_mapping_flush { 409 u64 address_space; 410 u64 flags; 411 } __packed; 412 413 /* 414 * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited 415 * by the bitwidth of "additional_pages" in union hv_gpa_page_range. 416 */ 417 #define HV_MAX_FLUSH_PAGES (2048) 418 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB 0 419 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB 1 420 421 /* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */ 422 union hv_gpa_page_range { 423 u64 address_space; 424 struct { 425 u64 additional_pages:11; 426 u64 largepage:1; 427 u64 basepfn:52; 428 } page; 429 struct { 430 u64 reserved:12; 431 u64 page_size:1; 432 u64 reserved1:8; 433 u64 base_large_pfn:43; 434 }; 435 }; 436 437 /* 438 * All input flush parameters should be in single page. The max flush 439 * count is equal with how many entries of union hv_gpa_page_range can 440 * be populated into the input parameter page. 441 */ 442 #define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) / \ 443 sizeof(union hv_gpa_page_range)) 444 445 struct hv_guest_mapping_flush_list { 446 u64 address_space; 447 u64 flags; 448 union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; 449 }; 450 451 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ 452 struct hv_tlb_flush { 453 u64 address_space; 454 u64 flags; 455 u64 processor_mask; 456 u64 gva_list[]; 457 } __packed; 458 459 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ 460 struct hv_tlb_flush_ex { 461 u64 address_space; 462 u64 flags; 463 struct hv_vpset hv_vp_set; 464 u64 gva_list[]; 465 } __packed; 466 467 /* HvGetPartitionId hypercall (output only) */ 468 struct hv_get_partition_id { 469 u64 partition_id; 470 } __packed; 471 472 /* HvDepositMemory hypercall */ 473 struct hv_deposit_memory { 474 u64 partition_id; 475 u64 gpa_page_list[]; 476 } __packed; 477 478 struct hv_proximity_domain_flags { 479 u32 proximity_preferred : 1; 480 u32 reserved : 30; 481 u32 proximity_info_valid : 1; 482 } __packed; 483 484 /* Not a union in windows but useful for zeroing */ 485 union hv_proximity_domain_info { 486 struct { 487 u32 domain_id; 488 struct hv_proximity_domain_flags flags; 489 }; 490 u64 as_uint64; 491 } __packed; 492 493 struct hv_lp_startup_status { 494 u64 hv_status; 495 u64 substatus1; 496 u64 substatus2; 497 u64 substatus3; 498 u64 substatus4; 499 u64 substatus5; 500 u64 substatus6; 501 } __packed; 502 503 /* HvAddLogicalProcessor hypercall */ 504 struct hv_add_logical_processor_in { 505 u32 lp_index; 506 u32 apic_id; 507 union hv_proximity_domain_info proximity_domain_info; 508 u64 flags; 509 } __packed; 510 511 struct hv_add_logical_processor_out { 512 struct hv_lp_startup_status startup_status; 513 } __packed; 514 515 enum HV_SUBNODE_TYPE 516 { 517 HvSubnodeAny = 0, 518 HvSubnodeSocket = 1, 519 HvSubnodeAmdNode = 2, 520 HvSubnodeL3 = 3, 521 HvSubnodeCount = 4, 522 HvSubnodeInvalid = -1 523 }; 524 525 /* HvCreateVp hypercall */ 526 struct hv_create_vp { 527 u64 partition_id; 528 u32 vp_index; 529 u8 padding[3]; 530 u8 subnode_type; 531 u64 subnode_id; 532 union hv_proximity_domain_info proximity_domain_info; 533 u64 flags; 534 } __packed; 535 536 enum hv_interrupt_source { 537 HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */ 538 HV_INTERRUPT_SOURCE_IOAPIC, 539 }; 540 541 union hv_msi_address_register { 542 u32 as_uint32; 543 struct { 544 u32 reserved1:2; 545 u32 destination_mode:1; 546 u32 redirection_hint:1; 547 u32 reserved2:8; 548 u32 destination_id:8; 549 u32 msi_base:12; 550 }; 551 } __packed; 552 553 union hv_msi_data_register { 554 u32 as_uint32; 555 struct { 556 u32 vector:8; 557 u32 delivery_mode:3; 558 u32 reserved1:3; 559 u32 level_assert:1; 560 u32 trigger_mode:1; 561 u32 reserved2:16; 562 }; 563 } __packed; 564 565 /* HvRetargetDeviceInterrupt hypercall */ 566 union hv_msi_entry { 567 u64 as_uint64; 568 struct { 569 union hv_msi_address_register address; 570 union hv_msi_data_register data; 571 } __packed; 572 }; 573 574 union hv_ioapic_rte { 575 u64 as_uint64; 576 577 struct { 578 u32 vector:8; 579 u32 delivery_mode:3; 580 u32 destination_mode:1; 581 u32 delivery_status:1; 582 u32 interrupt_polarity:1; 583 u32 remote_irr:1; 584 u32 trigger_mode:1; 585 u32 interrupt_mask:1; 586 u32 reserved1:15; 587 588 u32 reserved2:24; 589 u32 destination_id:8; 590 }; 591 592 struct { 593 u32 low_uint32; 594 u32 high_uint32; 595 }; 596 } __packed; 597 598 struct hv_interrupt_entry { 599 u32 source; 600 u32 reserved1; 601 union { 602 union hv_msi_entry msi_entry; 603 union hv_ioapic_rte ioapic_rte; 604 }; 605 } __packed; 606 607 /* 608 * flags for hv_device_interrupt_target.flags 609 */ 610 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 611 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 612 613 struct hv_device_interrupt_target { 614 u32 vector; 615 u32 flags; 616 union { 617 u64 vp_mask; 618 struct hv_vpset vp_set; 619 }; 620 } __packed; 621 622 struct hv_retarget_device_interrupt { 623 u64 partition_id; /* use "self" */ 624 u64 device_id; 625 struct hv_interrupt_entry int_entry; 626 u64 reserved2; 627 struct hv_device_interrupt_target int_target; 628 } __packed __aligned(8); 629 630 631 /* HvGetVpRegisters hypercall input with variable size reg name list*/ 632 struct hv_get_vp_registers_input { 633 struct { 634 u64 partitionid; 635 u32 vpindex; 636 u8 inputvtl; 637 u8 padding[3]; 638 } header; 639 struct input { 640 u32 name0; 641 u32 name1; 642 } element[]; 643 } __packed; 644 645 646 /* HvGetVpRegisters returns an array of these output elements */ 647 struct hv_get_vp_registers_output { 648 union { 649 struct { 650 u32 a; 651 u32 b; 652 u32 c; 653 u32 d; 654 } as32 __packed; 655 struct { 656 u64 low; 657 u64 high; 658 } as64 __packed; 659 }; 660 }; 661 662 /* HvSetVpRegisters hypercall with variable size reg name/value list*/ 663 struct hv_set_vp_registers_input { 664 struct { 665 u64 partitionid; 666 u32 vpindex; 667 u8 inputvtl; 668 u8 padding[3]; 669 } header; 670 struct { 671 u32 name; 672 u32 padding1; 673 u64 padding2; 674 u64 valuelow; 675 u64 valuehigh; 676 } element[]; 677 } __packed; 678 679 enum hv_device_type { 680 HV_DEVICE_TYPE_LOGICAL = 0, 681 HV_DEVICE_TYPE_PCI = 1, 682 HV_DEVICE_TYPE_IOAPIC = 2, 683 HV_DEVICE_TYPE_ACPI = 3, 684 }; 685 686 typedef u16 hv_pci_rid; 687 typedef u16 hv_pci_segment; 688 typedef u64 hv_logical_device_id; 689 union hv_pci_bdf { 690 u16 as_uint16; 691 692 struct { 693 u8 function:3; 694 u8 device:5; 695 u8 bus; 696 }; 697 } __packed; 698 699 union hv_pci_bus_range { 700 u16 as_uint16; 701 702 struct { 703 u8 subordinate_bus; 704 u8 secondary_bus; 705 }; 706 } __packed; 707 708 union hv_device_id { 709 u64 as_uint64; 710 711 struct { 712 u64 reserved0:62; 713 u64 device_type:2; 714 }; 715 716 /* HV_DEVICE_TYPE_LOGICAL */ 717 struct { 718 u64 id:62; 719 u64 device_type:2; 720 } logical; 721 722 /* HV_DEVICE_TYPE_PCI */ 723 struct { 724 union { 725 hv_pci_rid rid; 726 union hv_pci_bdf bdf; 727 }; 728 729 hv_pci_segment segment; 730 union hv_pci_bus_range shadow_bus_range; 731 732 u16 phantom_function_bits:2; 733 u16 source_shadow:1; 734 735 u16 rsvdz0:11; 736 u16 device_type:2; 737 } pci; 738 739 /* HV_DEVICE_TYPE_IOAPIC */ 740 struct { 741 u8 ioapic_id; 742 u8 rsvdz0; 743 u16 rsvdz1; 744 u16 rsvdz2; 745 746 u16 rsvdz3:14; 747 u16 device_type:2; 748 } ioapic; 749 750 /* HV_DEVICE_TYPE_ACPI */ 751 struct { 752 u32 input_mapping_base; 753 u32 input_mapping_count:30; 754 u32 device_type:2; 755 } acpi; 756 } __packed; 757 758 enum hv_interrupt_trigger_mode { 759 HV_INTERRUPT_TRIGGER_MODE_EDGE = 0, 760 HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1, 761 }; 762 763 struct hv_device_interrupt_descriptor { 764 u32 interrupt_type; 765 u32 trigger_mode; 766 u32 vector_count; 767 u32 reserved; 768 struct hv_device_interrupt_target target; 769 } __packed; 770 771 struct hv_input_map_device_interrupt { 772 u64 partition_id; 773 u64 device_id; 774 u64 flags; 775 struct hv_interrupt_entry logical_interrupt_entry; 776 struct hv_device_interrupt_descriptor interrupt_descriptor; 777 } __packed; 778 779 struct hv_output_map_device_interrupt { 780 struct hv_interrupt_entry interrupt_entry; 781 } __packed; 782 783 struct hv_input_unmap_device_interrupt { 784 u64 partition_id; 785 u64 device_id; 786 struct hv_interrupt_entry interrupt_entry; 787 } __packed; 788 789 #define HV_SOURCE_SHADOW_NONE 0x0 790 #define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE 0x1 791 792 /* 793 * The whole argument should fit in a page to be able to pass to the hypervisor 794 * in one hypercall. 795 */ 796 #define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES \ 797 ((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \ 798 sizeof(union hv_gpa_page_range)) 799 800 /* HvExtCallMemoryHeatHint hypercall */ 801 #define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD 2 802 struct hv_memory_hint { 803 u64 type:2; 804 u64 reserved:62; 805 union hv_gpa_page_range ranges[]; 806 } __packed; 807 808 #endif 809