xref: /openbmc/linux/include/asm-generic/hyperv-tlfs.h (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 /*
4  * This file contains definitions from Hyper-V Hypervisor Top-Level Functional
5  * Specification (TLFS):
6  * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
7  */
8 
9 #ifndef _ASM_GENERIC_HYPERV_TLFS_H
10 #define _ASM_GENERIC_HYPERV_TLFS_H
11 
12 #include <linux/types.h>
13 #include <linux/bits.h>
14 #include <linux/time64.h>
15 
16 /*
17  * While not explicitly listed in the TLFS, Hyper-V always runs with a page size
18  * of 4096. These definitions are used when communicating with Hyper-V using
19  * guest physical pages and guest physical page addresses, since the guest page
20  * size may not be 4096 on all architectures.
21  */
22 #define HV_HYP_PAGE_SHIFT      12
23 #define HV_HYP_PAGE_SIZE       BIT(HV_HYP_PAGE_SHIFT)
24 #define HV_HYP_PAGE_MASK       (~(HV_HYP_PAGE_SIZE - 1))
25 
26 /*
27  * Hyper-V provides two categories of flags relevant to guest VMs.  The
28  * "Features" category indicates specific functionality that is available
29  * to guests on this particular instance of Hyper-V. The "Features"
30  * are presented in four groups, each of which is 32 bits. The group A
31  * and B definitions are common across architectures and are listed here.
32  * However, not all flags are relevant on all architectures.
33  *
34  * Groups C and D vary across architectures and are listed in the
35  * architecture specific portion of hyperv-tlfs.h. Some of these flags exist
36  * on multiple architectures, but the bit positions are different so they
37  * cannot appear in the generic portion of hyperv-tlfs.h.
38  *
39  * The "Enlightenments" category provides recommendations on whether to use
40  * specific enlightenments that are available. The Enlighenments are a single
41  * group of 32 bits, but they vary across architectures and are listed in
42  * the architecture specific portion of hyperv-tlfs.h.
43  */
44 
45 /*
46  * Group A Features.
47  */
48 
49 /* VP Runtime register available */
50 #define HV_MSR_VP_RUNTIME_AVAILABLE		BIT(0)
51 /* Partition Reference Counter available*/
52 #define HV_MSR_TIME_REF_COUNT_AVAILABLE		BIT(1)
53 /* Basic SynIC register available */
54 #define HV_MSR_SYNIC_AVAILABLE			BIT(2)
55 /* Synthetic Timer registers available */
56 #define HV_MSR_SYNTIMER_AVAILABLE		BIT(3)
57 /* Virtual APIC assist and VP assist page registers available */
58 #define HV_MSR_APIC_ACCESS_AVAILABLE		BIT(4)
59 /* Hypercall and Guest OS ID registers available*/
60 #define HV_MSR_HYPERCALL_AVAILABLE		BIT(5)
61 /* Access virtual processor index register available*/
62 #define HV_MSR_VP_INDEX_AVAILABLE		BIT(6)
63 /* Virtual system reset register available*/
64 #define HV_MSR_RESET_AVAILABLE			BIT(7)
65 /* Access statistics page registers available */
66 #define HV_MSR_STAT_PAGES_AVAILABLE		BIT(8)
67 /* Partition reference TSC register is available */
68 #define HV_MSR_REFERENCE_TSC_AVAILABLE		BIT(9)
69 /* Partition Guest IDLE register is available */
70 #define HV_MSR_GUEST_IDLE_AVAILABLE		BIT(10)
71 /* Partition local APIC and TSC frequency registers available */
72 #define HV_ACCESS_FREQUENCY_MSRS		BIT(11)
73 /* AccessReenlightenmentControls privilege */
74 #define HV_ACCESS_REENLIGHTENMENT		BIT(13)
75 /* AccessTscInvariantControls privilege */
76 #define HV_ACCESS_TSC_INVARIANT			BIT(15)
77 
78 /*
79  * Group B features.
80  */
81 #define HV_CREATE_PARTITIONS			BIT(0)
82 #define HV_ACCESS_PARTITION_ID			BIT(1)
83 #define HV_ACCESS_MEMORY_POOL			BIT(2)
84 #define HV_ADJUST_MESSAGE_BUFFERS		BIT(3)
85 #define HV_POST_MESSAGES			BIT(4)
86 #define HV_SIGNAL_EVENTS			BIT(5)
87 #define HV_CREATE_PORT				BIT(6)
88 #define HV_CONNECT_PORT				BIT(7)
89 #define HV_ACCESS_STATS				BIT(8)
90 #define HV_DEBUGGING				BIT(11)
91 #define HV_CPU_MANAGEMENT			BIT(12)
92 #define HV_ENABLE_EXTENDED_HYPERCALLS		BIT(20)
93 #define HV_ISOLATION				BIT(22)
94 
95 /*
96  * TSC page layout.
97  */
98 struct ms_hyperv_tsc_page {
99 	volatile u32 tsc_sequence;
100 	u32 reserved1;
101 	volatile u64 tsc_scale;
102 	volatile s64 tsc_offset;
103 } __packed;
104 
105 union hv_reference_tsc_msr {
106 	u64 as_uint64;
107 	struct {
108 		u64 enable:1;
109 		u64 reserved:11;
110 		u64 pfn:52;
111 	} __packed;
112 };
113 
114 /*
115  * The guest OS needs to register the guest ID with the hypervisor.
116  * The guest ID is a 64 bit entity and the structure of this ID is
117  * specified in the Hyper-V specification:
118  *
119  * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
120  *
121  * While the current guideline does not specify how Linux guest ID(s)
122  * need to be generated, our plan is to publish the guidelines for
123  * Linux and other guest operating systems that currently are hosted
124  * on Hyper-V. The implementation here conforms to this yet
125  * unpublished guidelines.
126  *
127  *
128  * Bit(s)
129  * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
130  * 62:56 - Os Type; Linux is 0x100
131  * 55:48 - Distro specific identification
132  * 47:16 - Linux kernel version number
133  * 15:0  - Distro specific identification
134  *
135  *
136  */
137 
138 #define HV_LINUX_VENDOR_ID              0x8100
139 
140 /*
141  * Crash notification flags.
142  */
143 #define HV_CRASH_CTL_CRASH_NOTIFY_MSG		BIT_ULL(62)
144 #define HV_CRASH_CTL_CRASH_NOTIFY		BIT_ULL(63)
145 
146 /* Declare the various hypercall operations. */
147 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE	0x0002
148 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST	0x0003
149 #define HVCALL_ENABLE_VP_VTL			0x000f
150 #define HVCALL_NOTIFY_LONG_SPIN_WAIT		0x0008
151 #define HVCALL_SEND_IPI				0x000b
152 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX	0x0013
153 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX	0x0014
154 #define HVCALL_SEND_IPI_EX			0x0015
155 #define HVCALL_GET_PARTITION_ID			0x0046
156 #define HVCALL_DEPOSIT_MEMORY			0x0048
157 #define HVCALL_CREATE_VP			0x004e
158 #define HVCALL_GET_VP_REGISTERS			0x0050
159 #define HVCALL_SET_VP_REGISTERS			0x0051
160 #define HVCALL_POST_MESSAGE			0x005c
161 #define HVCALL_SIGNAL_EVENT			0x005d
162 #define HVCALL_POST_DEBUG_DATA			0x0069
163 #define HVCALL_RETRIEVE_DEBUG_DATA		0x006a
164 #define HVCALL_RESET_DEBUG_SESSION		0x006b
165 #define HVCALL_ADD_LOGICAL_PROCESSOR		0x0076
166 #define HVCALL_MAP_DEVICE_INTERRUPT		0x007c
167 #define HVCALL_UNMAP_DEVICE_INTERRUPT		0x007d
168 #define HVCALL_RETARGET_INTERRUPT		0x007e
169 #define HVCALL_START_VP				0x0099
170 #define HVCALL_GET_VP_ID_FROM_APIC_ID		0x009a
171 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af
172 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0
173 #define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db
174 #define HVCALL_MMIO_READ			0x0106
175 #define HVCALL_MMIO_WRITE			0x0107
176 
177 /* Extended hypercalls */
178 #define HV_EXT_CALL_QUERY_CAPABILITIES		0x8001
179 #define HV_EXT_CALL_MEMORY_HEAT_HINT		0x8003
180 
181 #define HV_FLUSH_ALL_PROCESSORS			BIT(0)
182 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES	BIT(1)
183 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY	BIT(2)
184 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT	BIT(3)
185 
186 /* Extended capability bits */
187 #define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8)
188 
189 enum HV_GENERIC_SET_FORMAT {
190 	HV_GENERIC_SET_SPARSE_4K,
191 	HV_GENERIC_SET_ALL,
192 };
193 
194 #define HV_PARTITION_ID_SELF		((u64)-1)
195 #define HV_VP_INDEX_SELF		((u32)-2)
196 
197 #define HV_HYPERCALL_RESULT_MASK	GENMASK_ULL(15, 0)
198 #define HV_HYPERCALL_FAST_BIT		BIT(16)
199 #define HV_HYPERCALL_VARHEAD_OFFSET	17
200 #define HV_HYPERCALL_VARHEAD_MASK	GENMASK_ULL(26, 17)
201 #define HV_HYPERCALL_RSVD0_MASK		GENMASK_ULL(31, 27)
202 #define HV_HYPERCALL_NESTED		BIT_ULL(31)
203 #define HV_HYPERCALL_REP_COMP_OFFSET	32
204 #define HV_HYPERCALL_REP_COMP_1		BIT_ULL(32)
205 #define HV_HYPERCALL_REP_COMP_MASK	GENMASK_ULL(43, 32)
206 #define HV_HYPERCALL_RSVD1_MASK		GENMASK_ULL(47, 44)
207 #define HV_HYPERCALL_REP_START_OFFSET	48
208 #define HV_HYPERCALL_REP_START_MASK	GENMASK_ULL(59, 48)
209 #define HV_HYPERCALL_RSVD2_MASK		GENMASK_ULL(63, 60)
210 #define HV_HYPERCALL_RSVD_MASK		(HV_HYPERCALL_RSVD0_MASK | \
211 					 HV_HYPERCALL_RSVD1_MASK | \
212 					 HV_HYPERCALL_RSVD2_MASK)
213 
214 /* hypercall status code */
215 #define HV_STATUS_SUCCESS			0
216 #define HV_STATUS_INVALID_HYPERCALL_CODE	2
217 #define HV_STATUS_INVALID_HYPERCALL_INPUT	3
218 #define HV_STATUS_INVALID_ALIGNMENT		4
219 #define HV_STATUS_INVALID_PARAMETER		5
220 #define HV_STATUS_ACCESS_DENIED			6
221 #define HV_STATUS_OPERATION_DENIED		8
222 #define HV_STATUS_INSUFFICIENT_MEMORY		11
223 #define HV_STATUS_INVALID_PORT_ID		17
224 #define HV_STATUS_INVALID_CONNECTION_ID		18
225 #define HV_STATUS_INSUFFICIENT_BUFFERS		19
226 #define HV_STATUS_VTL_ALREADY_ENABLED		134
227 
228 /*
229  * The Hyper-V TimeRefCount register and the TSC
230  * page provide a guest VM clock with 100ns tick rate
231  */
232 #define HV_CLOCK_HZ (NSEC_PER_SEC/100)
233 
234 /* Define the number of synthetic interrupt sources. */
235 #define HV_SYNIC_SINT_COUNT		(16)
236 /* Define the expected SynIC version. */
237 #define HV_SYNIC_VERSION_1		(0x1)
238 /* Valid SynIC vectors are 16-255. */
239 #define HV_SYNIC_FIRST_VALID_VECTOR	(16)
240 
241 #define HV_SYNIC_CONTROL_ENABLE		(1ULL << 0)
242 #define HV_SYNIC_SIMP_ENABLE		(1ULL << 0)
243 #define HV_SYNIC_SIEFP_ENABLE		(1ULL << 0)
244 #define HV_SYNIC_SINT_MASKED		(1ULL << 16)
245 #define HV_SYNIC_SINT_AUTO_EOI		(1ULL << 17)
246 #define HV_SYNIC_SINT_VECTOR_MASK	(0xFF)
247 
248 #define HV_SYNIC_STIMER_COUNT		(4)
249 
250 /* Define synthetic interrupt controller message constants. */
251 #define HV_MESSAGE_SIZE			(256)
252 #define HV_MESSAGE_PAYLOAD_BYTE_COUNT	(240)
253 #define HV_MESSAGE_PAYLOAD_QWORD_COUNT	(30)
254 
255 /*
256  * Define hypervisor message types. Some of the message types
257  * are x86/x64 specific, but there's no good way to separate
258  * them out into the arch-specific version of hyperv-tlfs.h
259  * because C doesn't provide a way to extend enum types.
260  * Keeping them all in the arch neutral hyperv-tlfs.h seems
261  * the least messy compromise.
262  */
263 enum hv_message_type {
264 	HVMSG_NONE			= 0x00000000,
265 
266 	/* Memory access messages. */
267 	HVMSG_UNMAPPED_GPA		= 0x80000000,
268 	HVMSG_GPA_INTERCEPT		= 0x80000001,
269 
270 	/* Timer notification messages. */
271 	HVMSG_TIMER_EXPIRED		= 0x80000010,
272 
273 	/* Error messages. */
274 	HVMSG_INVALID_VP_REGISTER_VALUE	= 0x80000020,
275 	HVMSG_UNRECOVERABLE_EXCEPTION	= 0x80000021,
276 	HVMSG_UNSUPPORTED_FEATURE	= 0x80000022,
277 
278 	/* Trace buffer complete messages. */
279 	HVMSG_EVENTLOG_BUFFERCOMPLETE	= 0x80000040,
280 
281 	/* Platform-specific processor intercept messages. */
282 	HVMSG_X64_IOPORT_INTERCEPT	= 0x80010000,
283 	HVMSG_X64_MSR_INTERCEPT		= 0x80010001,
284 	HVMSG_X64_CPUID_INTERCEPT	= 0x80010002,
285 	HVMSG_X64_EXCEPTION_INTERCEPT	= 0x80010003,
286 	HVMSG_X64_APIC_EOI		= 0x80010004,
287 	HVMSG_X64_LEGACY_FP_ERROR	= 0x80010005
288 };
289 
290 /* Define synthetic interrupt controller message flags. */
291 union hv_message_flags {
292 	__u8 asu8;
293 	struct {
294 		__u8 msg_pending:1;
295 		__u8 reserved:7;
296 	} __packed;
297 };
298 
299 /* Define port identifier type. */
300 union hv_port_id {
301 	__u32 asu32;
302 	struct {
303 		__u32 id:24;
304 		__u32 reserved:8;
305 	} __packed u;
306 };
307 
308 /* Define synthetic interrupt controller message header. */
309 struct hv_message_header {
310 	__u32 message_type;
311 	__u8 payload_size;
312 	union hv_message_flags message_flags;
313 	__u8 reserved[2];
314 	union {
315 		__u64 sender;
316 		union hv_port_id port;
317 	};
318 } __packed;
319 
320 /* Define synthetic interrupt controller message format. */
321 struct hv_message {
322 	struct hv_message_header header;
323 	union {
324 		__u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT];
325 	} u;
326 } __packed;
327 
328 /* Define the synthetic interrupt message page layout. */
329 struct hv_message_page {
330 	struct hv_message sint_message[HV_SYNIC_SINT_COUNT];
331 } __packed;
332 
333 /* Define timer message payload structure. */
334 struct hv_timer_message_payload {
335 	__u32 timer_index;
336 	__u32 reserved;
337 	__u64 expiration_time;	/* When the timer expired */
338 	__u64 delivery_time;	/* When the message was delivered */
339 } __packed;
340 
341 
342 /* Define synthetic interrupt controller flag constants. */
343 #define HV_EVENT_FLAGS_COUNT		(256 * 8)
344 #define HV_EVENT_FLAGS_LONG_COUNT	(256 / sizeof(unsigned long))
345 
346 /*
347  * Synthetic timer configuration.
348  */
349 union hv_stimer_config {
350 	u64 as_uint64;
351 	struct {
352 		u64 enable:1;
353 		u64 periodic:1;
354 		u64 lazy:1;
355 		u64 auto_enable:1;
356 		u64 apic_vector:8;
357 		u64 direct_mode:1;
358 		u64 reserved_z0:3;
359 		u64 sintx:4;
360 		u64 reserved_z1:44;
361 	} __packed;
362 };
363 
364 
365 /* Define the synthetic interrupt controller event flags format. */
366 union hv_synic_event_flags {
367 	unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT];
368 };
369 
370 /* Define SynIC control register. */
371 union hv_synic_scontrol {
372 	u64 as_uint64;
373 	struct {
374 		u64 enable:1;
375 		u64 reserved:63;
376 	} __packed;
377 };
378 
379 /* Define synthetic interrupt source. */
380 union hv_synic_sint {
381 	u64 as_uint64;
382 	struct {
383 		u64 vector:8;
384 		u64 reserved1:8;
385 		u64 masked:1;
386 		u64 auto_eoi:1;
387 		u64 polling:1;
388 		u64 reserved2:45;
389 	} __packed;
390 };
391 
392 /* Define the format of the SIMP register */
393 union hv_synic_simp {
394 	u64 as_uint64;
395 	struct {
396 		u64 simp_enabled:1;
397 		u64 preserved:11;
398 		u64 base_simp_gpa:52;
399 	} __packed;
400 };
401 
402 /* Define the format of the SIEFP register */
403 union hv_synic_siefp {
404 	u64 as_uint64;
405 	struct {
406 		u64 siefp_enabled:1;
407 		u64 preserved:11;
408 		u64 base_siefp_gpa:52;
409 	} __packed;
410 };
411 
412 struct hv_vpset {
413 	u64 format;
414 	u64 valid_bank_mask;
415 	u64 bank_contents[];
416 } __packed;
417 
418 /* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */
419 #define HV_MAX_SPARSE_VCPU_BANKS (64)
420 /* The number of vCPUs in one sparse bank */
421 #define HV_VCPUS_PER_SPARSE_BANK (64)
422 
423 /* HvCallSendSyntheticClusterIpi hypercall */
424 struct hv_send_ipi {
425 	u32 vector;
426 	u32 reserved;
427 	u64 cpu_mask;
428 } __packed;
429 
430 /* HvCallSendSyntheticClusterIpiEx hypercall */
431 struct hv_send_ipi_ex {
432 	u32 vector;
433 	u32 reserved;
434 	struct hv_vpset vp_set;
435 } __packed;
436 
437 /* HvFlushGuestPhysicalAddressSpace hypercalls */
438 struct hv_guest_mapping_flush {
439 	u64 address_space;
440 	u64 flags;
441 } __packed;
442 
443 /*
444  *  HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited
445  *  by the bitwidth of "additional_pages" in union hv_gpa_page_range.
446  */
447 #define HV_MAX_FLUSH_PAGES (2048)
448 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB		0
449 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB		1
450 
451 /* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */
452 union hv_gpa_page_range {
453 	u64 address_space;
454 	struct {
455 		u64 additional_pages:11;
456 		u64 largepage:1;
457 		u64 basepfn:52;
458 	} page;
459 	struct {
460 		u64 reserved:12;
461 		u64 page_size:1;
462 		u64 reserved1:8;
463 		u64 base_large_pfn:43;
464 	};
465 };
466 
467 /*
468  * All input flush parameters should be in single page. The max flush
469  * count is equal with how many entries of union hv_gpa_page_range can
470  * be populated into the input parameter page.
471  */
472 #define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) /	\
473 				sizeof(union hv_gpa_page_range))
474 
475 struct hv_guest_mapping_flush_list {
476 	u64 address_space;
477 	u64 flags;
478 	union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT];
479 };
480 
481 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
482 struct hv_tlb_flush {
483 	u64 address_space;
484 	u64 flags;
485 	u64 processor_mask;
486 	u64 gva_list[];
487 } __packed;
488 
489 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
490 struct hv_tlb_flush_ex {
491 	u64 address_space;
492 	u64 flags;
493 	struct hv_vpset hv_vp_set;
494 	u64 gva_list[];
495 } __packed;
496 
497 /* HvGetPartitionId hypercall (output only) */
498 struct hv_get_partition_id {
499 	u64 partition_id;
500 } __packed;
501 
502 /* HvDepositMemory hypercall */
503 struct hv_deposit_memory {
504 	u64 partition_id;
505 	u64 gpa_page_list[];
506 } __packed;
507 
508 struct hv_proximity_domain_flags {
509 	u32 proximity_preferred : 1;
510 	u32 reserved : 30;
511 	u32 proximity_info_valid : 1;
512 } __packed;
513 
514 /* Not a union in windows but useful for zeroing */
515 union hv_proximity_domain_info {
516 	struct {
517 		u32 domain_id;
518 		struct hv_proximity_domain_flags flags;
519 	};
520 	u64 as_uint64;
521 } __packed;
522 
523 struct hv_lp_startup_status {
524 	u64 hv_status;
525 	u64 substatus1;
526 	u64 substatus2;
527 	u64 substatus3;
528 	u64 substatus4;
529 	u64 substatus5;
530 	u64 substatus6;
531 } __packed;
532 
533 /* HvAddLogicalProcessor hypercall */
534 struct hv_add_logical_processor_in {
535 	u32 lp_index;
536 	u32 apic_id;
537 	union hv_proximity_domain_info proximity_domain_info;
538 	u64 flags;
539 } __packed;
540 
541 struct hv_add_logical_processor_out {
542 	struct hv_lp_startup_status startup_status;
543 } __packed;
544 
545 enum HV_SUBNODE_TYPE
546 {
547     HvSubnodeAny = 0,
548     HvSubnodeSocket = 1,
549     HvSubnodeAmdNode = 2,
550     HvSubnodeL3 = 3,
551     HvSubnodeCount = 4,
552     HvSubnodeInvalid = -1
553 };
554 
555 /* HvCreateVp hypercall */
556 struct hv_create_vp {
557 	u64 partition_id;
558 	u32 vp_index;
559 	u8 padding[3];
560 	u8 subnode_type;
561 	u64 subnode_id;
562 	union hv_proximity_domain_info proximity_domain_info;
563 	u64 flags;
564 } __packed;
565 
566 enum hv_interrupt_source {
567 	HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */
568 	HV_INTERRUPT_SOURCE_IOAPIC,
569 };
570 
571 union hv_ioapic_rte {
572 	u64 as_uint64;
573 
574 	struct {
575 		u32 vector:8;
576 		u32 delivery_mode:3;
577 		u32 destination_mode:1;
578 		u32 delivery_status:1;
579 		u32 interrupt_polarity:1;
580 		u32 remote_irr:1;
581 		u32 trigger_mode:1;
582 		u32 interrupt_mask:1;
583 		u32 reserved1:15;
584 
585 		u32 reserved2:24;
586 		u32 destination_id:8;
587 	};
588 
589 	struct {
590 		u32 low_uint32;
591 		u32 high_uint32;
592 	};
593 } __packed;
594 
595 struct hv_interrupt_entry {
596 	u32 source;
597 	u32 reserved1;
598 	union {
599 		union hv_msi_entry msi_entry;
600 		union hv_ioapic_rte ioapic_rte;
601 	};
602 } __packed;
603 
604 /*
605  * flags for hv_device_interrupt_target.flags
606  */
607 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
608 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
609 
610 struct hv_device_interrupt_target {
611 	u32 vector;
612 	u32 flags;
613 	union {
614 		u64 vp_mask;
615 		struct hv_vpset vp_set;
616 	};
617 } __packed;
618 
619 struct hv_retarget_device_interrupt {
620 	u64 partition_id;		/* use "self" */
621 	u64 device_id;
622 	struct hv_interrupt_entry int_entry;
623 	u64 reserved2;
624 	struct hv_device_interrupt_target int_target;
625 } __packed __aligned(8);
626 
627 
628 /* HvGetVpRegisters hypercall input with variable size reg name list*/
629 struct hv_get_vp_registers_input {
630 	struct {
631 		u64 partitionid;
632 		u32 vpindex;
633 		u8  inputvtl;
634 		u8  padding[3];
635 	} header;
636 	struct input {
637 		u32 name0;
638 		u32 name1;
639 	} element[];
640 } __packed;
641 
642 
643 /* HvGetVpRegisters returns an array of these output elements */
644 struct hv_get_vp_registers_output {
645 	union {
646 		struct {
647 			u32 a;
648 			u32 b;
649 			u32 c;
650 			u32 d;
651 		} as32 __packed;
652 		struct {
653 			u64 low;
654 			u64 high;
655 		} as64 __packed;
656 	};
657 };
658 
659 /* HvSetVpRegisters hypercall with variable size reg name/value list*/
660 struct hv_set_vp_registers_input {
661 	struct {
662 		u64 partitionid;
663 		u32 vpindex;
664 		u8  inputvtl;
665 		u8  padding[3];
666 	} header;
667 	struct {
668 		u32 name;
669 		u32 padding1;
670 		u64 padding2;
671 		u64 valuelow;
672 		u64 valuehigh;
673 	} element[];
674 } __packed;
675 
676 enum hv_device_type {
677 	HV_DEVICE_TYPE_LOGICAL = 0,
678 	HV_DEVICE_TYPE_PCI = 1,
679 	HV_DEVICE_TYPE_IOAPIC = 2,
680 	HV_DEVICE_TYPE_ACPI = 3,
681 };
682 
683 typedef u16 hv_pci_rid;
684 typedef u16 hv_pci_segment;
685 typedef u64 hv_logical_device_id;
686 union hv_pci_bdf {
687 	u16 as_uint16;
688 
689 	struct {
690 		u8 function:3;
691 		u8 device:5;
692 		u8 bus;
693 	};
694 } __packed;
695 
696 union hv_pci_bus_range {
697 	u16 as_uint16;
698 
699 	struct {
700 		u8 subordinate_bus;
701 		u8 secondary_bus;
702 	};
703 } __packed;
704 
705 union hv_device_id {
706 	u64 as_uint64;
707 
708 	struct {
709 		u64 reserved0:62;
710 		u64 device_type:2;
711 	};
712 
713 	/* HV_DEVICE_TYPE_LOGICAL */
714 	struct {
715 		u64 id:62;
716 		u64 device_type:2;
717 	} logical;
718 
719 	/* HV_DEVICE_TYPE_PCI */
720 	struct {
721 		union {
722 			hv_pci_rid rid;
723 			union hv_pci_bdf bdf;
724 		};
725 
726 		hv_pci_segment segment;
727 		union hv_pci_bus_range shadow_bus_range;
728 
729 		u16 phantom_function_bits:2;
730 		u16 source_shadow:1;
731 
732 		u16 rsvdz0:11;
733 		u16 device_type:2;
734 	} pci;
735 
736 	/* HV_DEVICE_TYPE_IOAPIC */
737 	struct {
738 		u8 ioapic_id;
739 		u8 rsvdz0;
740 		u16 rsvdz1;
741 		u16 rsvdz2;
742 
743 		u16 rsvdz3:14;
744 		u16 device_type:2;
745 	} ioapic;
746 
747 	/* HV_DEVICE_TYPE_ACPI */
748 	struct {
749 		u32 input_mapping_base;
750 		u32 input_mapping_count:30;
751 		u32 device_type:2;
752 	} acpi;
753 } __packed;
754 
755 enum hv_interrupt_trigger_mode {
756 	HV_INTERRUPT_TRIGGER_MODE_EDGE = 0,
757 	HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1,
758 };
759 
760 struct hv_device_interrupt_descriptor {
761 	u32 interrupt_type;
762 	u32 trigger_mode;
763 	u32 vector_count;
764 	u32 reserved;
765 	struct hv_device_interrupt_target target;
766 } __packed;
767 
768 struct hv_input_map_device_interrupt {
769 	u64 partition_id;
770 	u64 device_id;
771 	u64 flags;
772 	struct hv_interrupt_entry logical_interrupt_entry;
773 	struct hv_device_interrupt_descriptor interrupt_descriptor;
774 } __packed;
775 
776 struct hv_output_map_device_interrupt {
777 	struct hv_interrupt_entry interrupt_entry;
778 } __packed;
779 
780 struct hv_input_unmap_device_interrupt {
781 	u64 partition_id;
782 	u64 device_id;
783 	struct hv_interrupt_entry interrupt_entry;
784 } __packed;
785 
786 #define HV_SOURCE_SHADOW_NONE               0x0
787 #define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE   0x1
788 
789 /*
790  * The whole argument should fit in a page to be able to pass to the hypervisor
791  * in one hypercall.
792  */
793 #define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES  \
794 	((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \
795 		sizeof(union hv_gpa_page_range))
796 
797 /* HvExtCallMemoryHeatHint hypercall */
798 #define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD	2
799 struct hv_memory_hint {
800 	u64 type:2;
801 	u64 reserved:62;
802 	union hv_gpa_page_range ranges[];
803 } __packed;
804 
805 /* Data structures for HVCALL_MMIO_READ and HVCALL_MMIO_WRITE */
806 #define HV_HYPERCALL_MMIO_MAX_DATA_LENGTH 64
807 
808 struct hv_mmio_read_input {
809 	u64 gpa;
810 	u32 size;
811 	u32 reserved;
812 } __packed;
813 
814 struct hv_mmio_read_output {
815 	u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH];
816 } __packed;
817 
818 struct hv_mmio_write_input {
819 	u64 gpa;
820 	u32 size;
821 	u32 reserved;
822 	u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH];
823 } __packed;
824 
825 #endif
826