1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 /* 4 * This file contains definitions from Hyper-V Hypervisor Top-Level Functional 5 * Specification (TLFS): 6 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs 7 */ 8 9 #ifndef _ASM_GENERIC_HYPERV_TLFS_H 10 #define _ASM_GENERIC_HYPERV_TLFS_H 11 12 #include <linux/types.h> 13 #include <linux/bits.h> 14 #include <linux/time64.h> 15 16 /* 17 * While not explicitly listed in the TLFS, Hyper-V always runs with a page size 18 * of 4096. These definitions are used when communicating with Hyper-V using 19 * guest physical pages and guest physical page addresses, since the guest page 20 * size may not be 4096 on all architectures. 21 */ 22 #define HV_HYP_PAGE_SHIFT 12 23 #define HV_HYP_PAGE_SIZE BIT(HV_HYP_PAGE_SHIFT) 24 #define HV_HYP_PAGE_MASK (~(HV_HYP_PAGE_SIZE - 1)) 25 26 /* 27 * Hyper-V provides two categories of flags relevant to guest VMs. The 28 * "Features" category indicates specific functionality that is available 29 * to guests on this particular instance of Hyper-V. The "Features" 30 * are presented in four groups, each of which is 32 bits. The group A 31 * and B definitions are common across architectures and are listed here. 32 * However, not all flags are relevant on all architectures. 33 * 34 * Groups C and D vary across architectures and are listed in the 35 * architecture specific portion of hyperv-tlfs.h. Some of these flags exist 36 * on multiple architectures, but the bit positions are different so they 37 * cannot appear in the generic portion of hyperv-tlfs.h. 38 * 39 * The "Enlightenments" category provides recommendations on whether to use 40 * specific enlightenments that are available. The Enlighenments are a single 41 * group of 32 bits, but they vary across architectures and are listed in 42 * the architecture specific portion of hyperv-tlfs.h. 43 */ 44 45 /* 46 * Group A Features. 47 */ 48 49 /* VP Runtime register available */ 50 #define HV_MSR_VP_RUNTIME_AVAILABLE BIT(0) 51 /* Partition Reference Counter available*/ 52 #define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) 53 /* Basic SynIC register available */ 54 #define HV_MSR_SYNIC_AVAILABLE BIT(2) 55 /* Synthetic Timer registers available */ 56 #define HV_MSR_SYNTIMER_AVAILABLE BIT(3) 57 /* Virtual APIC assist and VP assist page registers available */ 58 #define HV_MSR_APIC_ACCESS_AVAILABLE BIT(4) 59 /* Hypercall and Guest OS ID registers available*/ 60 #define HV_MSR_HYPERCALL_AVAILABLE BIT(5) 61 /* Access virtual processor index register available*/ 62 #define HV_MSR_VP_INDEX_AVAILABLE BIT(6) 63 /* Virtual system reset register available*/ 64 #define HV_MSR_RESET_AVAILABLE BIT(7) 65 /* Access statistics page registers available */ 66 #define HV_MSR_STAT_PAGES_AVAILABLE BIT(8) 67 /* Partition reference TSC register is available */ 68 #define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) 69 /* Partition Guest IDLE register is available */ 70 #define HV_MSR_GUEST_IDLE_AVAILABLE BIT(10) 71 /* Partition local APIC and TSC frequency registers available */ 72 #define HV_ACCESS_FREQUENCY_MSRS BIT(11) 73 /* AccessReenlightenmentControls privilege */ 74 #define HV_ACCESS_REENLIGHTENMENT BIT(13) 75 /* AccessTscInvariantControls privilege */ 76 #define HV_ACCESS_TSC_INVARIANT BIT(15) 77 78 /* 79 * Group B features. 80 */ 81 #define HV_CREATE_PARTITIONS BIT(0) 82 #define HV_ACCESS_PARTITION_ID BIT(1) 83 #define HV_ACCESS_MEMORY_POOL BIT(2) 84 #define HV_ADJUST_MESSAGE_BUFFERS BIT(3) 85 #define HV_POST_MESSAGES BIT(4) 86 #define HV_SIGNAL_EVENTS BIT(5) 87 #define HV_CREATE_PORT BIT(6) 88 #define HV_CONNECT_PORT BIT(7) 89 #define HV_ACCESS_STATS BIT(8) 90 #define HV_DEBUGGING BIT(11) 91 #define HV_CPU_MANAGEMENT BIT(12) 92 #define HV_ENABLE_EXTENDED_HYPERCALLS BIT(20) 93 #define HV_ISOLATION BIT(22) 94 95 /* 96 * TSC page layout. 97 */ 98 struct ms_hyperv_tsc_page { 99 volatile u32 tsc_sequence; 100 u32 reserved1; 101 volatile u64 tsc_scale; 102 volatile s64 tsc_offset; 103 } __packed; 104 105 union hv_reference_tsc_msr { 106 u64 as_uint64; 107 struct { 108 u64 enable:1; 109 u64 reserved:11; 110 u64 pfn:52; 111 } __packed; 112 }; 113 114 /* 115 * The guest OS needs to register the guest ID with the hypervisor. 116 * The guest ID is a 64 bit entity and the structure of this ID is 117 * specified in the Hyper-V specification: 118 * 119 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx 120 * 121 * While the current guideline does not specify how Linux guest ID(s) 122 * need to be generated, our plan is to publish the guidelines for 123 * Linux and other guest operating systems that currently are hosted 124 * on Hyper-V. The implementation here conforms to this yet 125 * unpublished guidelines. 126 * 127 * 128 * Bit(s) 129 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source 130 * 62:56 - Os Type; Linux is 0x100 131 * 55:48 - Distro specific identification 132 * 47:16 - Linux kernel version number 133 * 15:0 - Distro specific identification 134 * 135 * 136 */ 137 138 #define HV_LINUX_VENDOR_ID 0x8100 139 140 /* 141 * Crash notification flags. 142 */ 143 #define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) 144 #define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) 145 146 /* Declare the various hypercall operations. */ 147 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE 0x0002 148 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST 0x0003 149 #define HVCALL_NOTIFY_LONG_SPIN_WAIT 0x0008 150 #define HVCALL_SEND_IPI 0x000b 151 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX 0x0013 152 #define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX 0x0014 153 #define HVCALL_SEND_IPI_EX 0x0015 154 #define HVCALL_GET_PARTITION_ID 0x0046 155 #define HVCALL_DEPOSIT_MEMORY 0x0048 156 #define HVCALL_CREATE_VP 0x004e 157 #define HVCALL_GET_VP_REGISTERS 0x0050 158 #define HVCALL_SET_VP_REGISTERS 0x0051 159 #define HVCALL_POST_MESSAGE 0x005c 160 #define HVCALL_SIGNAL_EVENT 0x005d 161 #define HVCALL_POST_DEBUG_DATA 0x0069 162 #define HVCALL_RETRIEVE_DEBUG_DATA 0x006a 163 #define HVCALL_RESET_DEBUG_SESSION 0x006b 164 #define HVCALL_ADD_LOGICAL_PROCESSOR 0x0076 165 #define HVCALL_MAP_DEVICE_INTERRUPT 0x007c 166 #define HVCALL_UNMAP_DEVICE_INTERRUPT 0x007d 167 #define HVCALL_RETARGET_INTERRUPT 0x007e 168 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af 169 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 170 #define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db 171 172 /* Extended hypercalls */ 173 #define HV_EXT_CALL_QUERY_CAPABILITIES 0x8001 174 #define HV_EXT_CALL_MEMORY_HEAT_HINT 0x8003 175 176 #define HV_FLUSH_ALL_PROCESSORS BIT(0) 177 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) 178 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) 179 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) 180 181 /* Extended capability bits */ 182 #define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8) 183 184 enum HV_GENERIC_SET_FORMAT { 185 HV_GENERIC_SET_SPARSE_4K, 186 HV_GENERIC_SET_ALL, 187 }; 188 189 #define HV_PARTITION_ID_SELF ((u64)-1) 190 #define HV_VP_INDEX_SELF ((u32)-2) 191 192 #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0) 193 #define HV_HYPERCALL_FAST_BIT BIT(16) 194 #define HV_HYPERCALL_VARHEAD_OFFSET 17 195 #define HV_HYPERCALL_VARHEAD_MASK GENMASK_ULL(26, 17) 196 #define HV_HYPERCALL_RSVD0_MASK GENMASK_ULL(31, 27) 197 #define HV_HYPERCALL_REP_COMP_OFFSET 32 198 #define HV_HYPERCALL_REP_COMP_1 BIT_ULL(32) 199 #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32) 200 #define HV_HYPERCALL_RSVD1_MASK GENMASK_ULL(47, 44) 201 #define HV_HYPERCALL_REP_START_OFFSET 48 202 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48) 203 #define HV_HYPERCALL_RSVD2_MASK GENMASK_ULL(63, 60) 204 #define HV_HYPERCALL_RSVD_MASK (HV_HYPERCALL_RSVD0_MASK | \ 205 HV_HYPERCALL_RSVD1_MASK | \ 206 HV_HYPERCALL_RSVD2_MASK) 207 208 /* hypercall status code */ 209 #define HV_STATUS_SUCCESS 0 210 #define HV_STATUS_INVALID_HYPERCALL_CODE 2 211 #define HV_STATUS_INVALID_HYPERCALL_INPUT 3 212 #define HV_STATUS_INVALID_ALIGNMENT 4 213 #define HV_STATUS_INVALID_PARAMETER 5 214 #define HV_STATUS_ACCESS_DENIED 6 215 #define HV_STATUS_OPERATION_DENIED 8 216 #define HV_STATUS_INSUFFICIENT_MEMORY 11 217 #define HV_STATUS_INVALID_PORT_ID 17 218 #define HV_STATUS_INVALID_CONNECTION_ID 18 219 #define HV_STATUS_INSUFFICIENT_BUFFERS 19 220 221 /* 222 * The Hyper-V TimeRefCount register and the TSC 223 * page provide a guest VM clock with 100ns tick rate 224 */ 225 #define HV_CLOCK_HZ (NSEC_PER_SEC/100) 226 227 /* Define the number of synthetic interrupt sources. */ 228 #define HV_SYNIC_SINT_COUNT (16) 229 /* Define the expected SynIC version. */ 230 #define HV_SYNIC_VERSION_1 (0x1) 231 /* Valid SynIC vectors are 16-255. */ 232 #define HV_SYNIC_FIRST_VALID_VECTOR (16) 233 234 #define HV_SYNIC_CONTROL_ENABLE (1ULL << 0) 235 #define HV_SYNIC_SIMP_ENABLE (1ULL << 0) 236 #define HV_SYNIC_SIEFP_ENABLE (1ULL << 0) 237 #define HV_SYNIC_SINT_MASKED (1ULL << 16) 238 #define HV_SYNIC_SINT_AUTO_EOI (1ULL << 17) 239 #define HV_SYNIC_SINT_VECTOR_MASK (0xFF) 240 241 #define HV_SYNIC_STIMER_COUNT (4) 242 243 /* Define synthetic interrupt controller message constants. */ 244 #define HV_MESSAGE_SIZE (256) 245 #define HV_MESSAGE_PAYLOAD_BYTE_COUNT (240) 246 #define HV_MESSAGE_PAYLOAD_QWORD_COUNT (30) 247 248 /* 249 * Define hypervisor message types. Some of the message types 250 * are x86/x64 specific, but there's no good way to separate 251 * them out into the arch-specific version of hyperv-tlfs.h 252 * because C doesn't provide a way to extend enum types. 253 * Keeping them all in the arch neutral hyperv-tlfs.h seems 254 * the least messy compromise. 255 */ 256 enum hv_message_type { 257 HVMSG_NONE = 0x00000000, 258 259 /* Memory access messages. */ 260 HVMSG_UNMAPPED_GPA = 0x80000000, 261 HVMSG_GPA_INTERCEPT = 0x80000001, 262 263 /* Timer notification messages. */ 264 HVMSG_TIMER_EXPIRED = 0x80000010, 265 266 /* Error messages. */ 267 HVMSG_INVALID_VP_REGISTER_VALUE = 0x80000020, 268 HVMSG_UNRECOVERABLE_EXCEPTION = 0x80000021, 269 HVMSG_UNSUPPORTED_FEATURE = 0x80000022, 270 271 /* Trace buffer complete messages. */ 272 HVMSG_EVENTLOG_BUFFERCOMPLETE = 0x80000040, 273 274 /* Platform-specific processor intercept messages. */ 275 HVMSG_X64_IOPORT_INTERCEPT = 0x80010000, 276 HVMSG_X64_MSR_INTERCEPT = 0x80010001, 277 HVMSG_X64_CPUID_INTERCEPT = 0x80010002, 278 HVMSG_X64_EXCEPTION_INTERCEPT = 0x80010003, 279 HVMSG_X64_APIC_EOI = 0x80010004, 280 HVMSG_X64_LEGACY_FP_ERROR = 0x80010005 281 }; 282 283 /* Define synthetic interrupt controller message flags. */ 284 union hv_message_flags { 285 __u8 asu8; 286 struct { 287 __u8 msg_pending:1; 288 __u8 reserved:7; 289 } __packed; 290 }; 291 292 /* Define port identifier type. */ 293 union hv_port_id { 294 __u32 asu32; 295 struct { 296 __u32 id:24; 297 __u32 reserved:8; 298 } __packed u; 299 }; 300 301 /* Define synthetic interrupt controller message header. */ 302 struct hv_message_header { 303 __u32 message_type; 304 __u8 payload_size; 305 union hv_message_flags message_flags; 306 __u8 reserved[2]; 307 union { 308 __u64 sender; 309 union hv_port_id port; 310 }; 311 } __packed; 312 313 /* Define synthetic interrupt controller message format. */ 314 struct hv_message { 315 struct hv_message_header header; 316 union { 317 __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; 318 } u; 319 } __packed; 320 321 /* Define the synthetic interrupt message page layout. */ 322 struct hv_message_page { 323 struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; 324 } __packed; 325 326 /* Define timer message payload structure. */ 327 struct hv_timer_message_payload { 328 __u32 timer_index; 329 __u32 reserved; 330 __u64 expiration_time; /* When the timer expired */ 331 __u64 delivery_time; /* When the message was delivered */ 332 } __packed; 333 334 335 /* Define synthetic interrupt controller flag constants. */ 336 #define HV_EVENT_FLAGS_COUNT (256 * 8) 337 #define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) 338 339 /* 340 * Synthetic timer configuration. 341 */ 342 union hv_stimer_config { 343 u64 as_uint64; 344 struct { 345 u64 enable:1; 346 u64 periodic:1; 347 u64 lazy:1; 348 u64 auto_enable:1; 349 u64 apic_vector:8; 350 u64 direct_mode:1; 351 u64 reserved_z0:3; 352 u64 sintx:4; 353 u64 reserved_z1:44; 354 } __packed; 355 }; 356 357 358 /* Define the synthetic interrupt controller event flags format. */ 359 union hv_synic_event_flags { 360 unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; 361 }; 362 363 /* Define SynIC control register. */ 364 union hv_synic_scontrol { 365 u64 as_uint64; 366 struct { 367 u64 enable:1; 368 u64 reserved:63; 369 } __packed; 370 }; 371 372 /* Define synthetic interrupt source. */ 373 union hv_synic_sint { 374 u64 as_uint64; 375 struct { 376 u64 vector:8; 377 u64 reserved1:8; 378 u64 masked:1; 379 u64 auto_eoi:1; 380 u64 polling:1; 381 u64 reserved2:45; 382 } __packed; 383 }; 384 385 /* Define the format of the SIMP register */ 386 union hv_synic_simp { 387 u64 as_uint64; 388 struct { 389 u64 simp_enabled:1; 390 u64 preserved:11; 391 u64 base_simp_gpa:52; 392 } __packed; 393 }; 394 395 /* Define the format of the SIEFP register */ 396 union hv_synic_siefp { 397 u64 as_uint64; 398 struct { 399 u64 siefp_enabled:1; 400 u64 preserved:11; 401 u64 base_siefp_gpa:52; 402 } __packed; 403 }; 404 405 struct hv_vpset { 406 u64 format; 407 u64 valid_bank_mask; 408 u64 bank_contents[]; 409 } __packed; 410 411 /* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */ 412 #define HV_MAX_SPARSE_VCPU_BANKS (64) 413 /* The number of vCPUs in one sparse bank */ 414 #define HV_VCPUS_PER_SPARSE_BANK (64) 415 416 /* HvCallSendSyntheticClusterIpi hypercall */ 417 struct hv_send_ipi { 418 u32 vector; 419 u32 reserved; 420 u64 cpu_mask; 421 } __packed; 422 423 /* HvCallSendSyntheticClusterIpiEx hypercall */ 424 struct hv_send_ipi_ex { 425 u32 vector; 426 u32 reserved; 427 struct hv_vpset vp_set; 428 } __packed; 429 430 /* HvFlushGuestPhysicalAddressSpace hypercalls */ 431 struct hv_guest_mapping_flush { 432 u64 address_space; 433 u64 flags; 434 } __packed; 435 436 /* 437 * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited 438 * by the bitwidth of "additional_pages" in union hv_gpa_page_range. 439 */ 440 #define HV_MAX_FLUSH_PAGES (2048) 441 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB 0 442 #define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB 1 443 444 /* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */ 445 union hv_gpa_page_range { 446 u64 address_space; 447 struct { 448 u64 additional_pages:11; 449 u64 largepage:1; 450 u64 basepfn:52; 451 } page; 452 struct { 453 u64 reserved:12; 454 u64 page_size:1; 455 u64 reserved1:8; 456 u64 base_large_pfn:43; 457 }; 458 }; 459 460 /* 461 * All input flush parameters should be in single page. The max flush 462 * count is equal with how many entries of union hv_gpa_page_range can 463 * be populated into the input parameter page. 464 */ 465 #define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) / \ 466 sizeof(union hv_gpa_page_range)) 467 468 struct hv_guest_mapping_flush_list { 469 u64 address_space; 470 u64 flags; 471 union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; 472 }; 473 474 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ 475 struct hv_tlb_flush { 476 u64 address_space; 477 u64 flags; 478 u64 processor_mask; 479 u64 gva_list[]; 480 } __packed; 481 482 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ 483 struct hv_tlb_flush_ex { 484 u64 address_space; 485 u64 flags; 486 struct hv_vpset hv_vp_set; 487 u64 gva_list[]; 488 } __packed; 489 490 /* HvGetPartitionId hypercall (output only) */ 491 struct hv_get_partition_id { 492 u64 partition_id; 493 } __packed; 494 495 /* HvDepositMemory hypercall */ 496 struct hv_deposit_memory { 497 u64 partition_id; 498 u64 gpa_page_list[]; 499 } __packed; 500 501 struct hv_proximity_domain_flags { 502 u32 proximity_preferred : 1; 503 u32 reserved : 30; 504 u32 proximity_info_valid : 1; 505 } __packed; 506 507 /* Not a union in windows but useful for zeroing */ 508 union hv_proximity_domain_info { 509 struct { 510 u32 domain_id; 511 struct hv_proximity_domain_flags flags; 512 }; 513 u64 as_uint64; 514 } __packed; 515 516 struct hv_lp_startup_status { 517 u64 hv_status; 518 u64 substatus1; 519 u64 substatus2; 520 u64 substatus3; 521 u64 substatus4; 522 u64 substatus5; 523 u64 substatus6; 524 } __packed; 525 526 /* HvAddLogicalProcessor hypercall */ 527 struct hv_add_logical_processor_in { 528 u32 lp_index; 529 u32 apic_id; 530 union hv_proximity_domain_info proximity_domain_info; 531 u64 flags; 532 } __packed; 533 534 struct hv_add_logical_processor_out { 535 struct hv_lp_startup_status startup_status; 536 } __packed; 537 538 enum HV_SUBNODE_TYPE 539 { 540 HvSubnodeAny = 0, 541 HvSubnodeSocket = 1, 542 HvSubnodeAmdNode = 2, 543 HvSubnodeL3 = 3, 544 HvSubnodeCount = 4, 545 HvSubnodeInvalid = -1 546 }; 547 548 /* HvCreateVp hypercall */ 549 struct hv_create_vp { 550 u64 partition_id; 551 u32 vp_index; 552 u8 padding[3]; 553 u8 subnode_type; 554 u64 subnode_id; 555 union hv_proximity_domain_info proximity_domain_info; 556 u64 flags; 557 } __packed; 558 559 enum hv_interrupt_source { 560 HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */ 561 HV_INTERRUPT_SOURCE_IOAPIC, 562 }; 563 564 union hv_ioapic_rte { 565 u64 as_uint64; 566 567 struct { 568 u32 vector:8; 569 u32 delivery_mode:3; 570 u32 destination_mode:1; 571 u32 delivery_status:1; 572 u32 interrupt_polarity:1; 573 u32 remote_irr:1; 574 u32 trigger_mode:1; 575 u32 interrupt_mask:1; 576 u32 reserved1:15; 577 578 u32 reserved2:24; 579 u32 destination_id:8; 580 }; 581 582 struct { 583 u32 low_uint32; 584 u32 high_uint32; 585 }; 586 } __packed; 587 588 struct hv_interrupt_entry { 589 u32 source; 590 u32 reserved1; 591 union { 592 union hv_msi_entry msi_entry; 593 union hv_ioapic_rte ioapic_rte; 594 }; 595 } __packed; 596 597 /* 598 * flags for hv_device_interrupt_target.flags 599 */ 600 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 601 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 602 603 struct hv_device_interrupt_target { 604 u32 vector; 605 u32 flags; 606 union { 607 u64 vp_mask; 608 struct hv_vpset vp_set; 609 }; 610 } __packed; 611 612 struct hv_retarget_device_interrupt { 613 u64 partition_id; /* use "self" */ 614 u64 device_id; 615 struct hv_interrupt_entry int_entry; 616 u64 reserved2; 617 struct hv_device_interrupt_target int_target; 618 } __packed __aligned(8); 619 620 621 /* HvGetVpRegisters hypercall input with variable size reg name list*/ 622 struct hv_get_vp_registers_input { 623 struct { 624 u64 partitionid; 625 u32 vpindex; 626 u8 inputvtl; 627 u8 padding[3]; 628 } header; 629 struct input { 630 u32 name0; 631 u32 name1; 632 } element[]; 633 } __packed; 634 635 636 /* HvGetVpRegisters returns an array of these output elements */ 637 struct hv_get_vp_registers_output { 638 union { 639 struct { 640 u32 a; 641 u32 b; 642 u32 c; 643 u32 d; 644 } as32 __packed; 645 struct { 646 u64 low; 647 u64 high; 648 } as64 __packed; 649 }; 650 }; 651 652 /* HvSetVpRegisters hypercall with variable size reg name/value list*/ 653 struct hv_set_vp_registers_input { 654 struct { 655 u64 partitionid; 656 u32 vpindex; 657 u8 inputvtl; 658 u8 padding[3]; 659 } header; 660 struct { 661 u32 name; 662 u32 padding1; 663 u64 padding2; 664 u64 valuelow; 665 u64 valuehigh; 666 } element[]; 667 } __packed; 668 669 enum hv_device_type { 670 HV_DEVICE_TYPE_LOGICAL = 0, 671 HV_DEVICE_TYPE_PCI = 1, 672 HV_DEVICE_TYPE_IOAPIC = 2, 673 HV_DEVICE_TYPE_ACPI = 3, 674 }; 675 676 typedef u16 hv_pci_rid; 677 typedef u16 hv_pci_segment; 678 typedef u64 hv_logical_device_id; 679 union hv_pci_bdf { 680 u16 as_uint16; 681 682 struct { 683 u8 function:3; 684 u8 device:5; 685 u8 bus; 686 }; 687 } __packed; 688 689 union hv_pci_bus_range { 690 u16 as_uint16; 691 692 struct { 693 u8 subordinate_bus; 694 u8 secondary_bus; 695 }; 696 } __packed; 697 698 union hv_device_id { 699 u64 as_uint64; 700 701 struct { 702 u64 reserved0:62; 703 u64 device_type:2; 704 }; 705 706 /* HV_DEVICE_TYPE_LOGICAL */ 707 struct { 708 u64 id:62; 709 u64 device_type:2; 710 } logical; 711 712 /* HV_DEVICE_TYPE_PCI */ 713 struct { 714 union { 715 hv_pci_rid rid; 716 union hv_pci_bdf bdf; 717 }; 718 719 hv_pci_segment segment; 720 union hv_pci_bus_range shadow_bus_range; 721 722 u16 phantom_function_bits:2; 723 u16 source_shadow:1; 724 725 u16 rsvdz0:11; 726 u16 device_type:2; 727 } pci; 728 729 /* HV_DEVICE_TYPE_IOAPIC */ 730 struct { 731 u8 ioapic_id; 732 u8 rsvdz0; 733 u16 rsvdz1; 734 u16 rsvdz2; 735 736 u16 rsvdz3:14; 737 u16 device_type:2; 738 } ioapic; 739 740 /* HV_DEVICE_TYPE_ACPI */ 741 struct { 742 u32 input_mapping_base; 743 u32 input_mapping_count:30; 744 u32 device_type:2; 745 } acpi; 746 } __packed; 747 748 enum hv_interrupt_trigger_mode { 749 HV_INTERRUPT_TRIGGER_MODE_EDGE = 0, 750 HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1, 751 }; 752 753 struct hv_device_interrupt_descriptor { 754 u32 interrupt_type; 755 u32 trigger_mode; 756 u32 vector_count; 757 u32 reserved; 758 struct hv_device_interrupt_target target; 759 } __packed; 760 761 struct hv_input_map_device_interrupt { 762 u64 partition_id; 763 u64 device_id; 764 u64 flags; 765 struct hv_interrupt_entry logical_interrupt_entry; 766 struct hv_device_interrupt_descriptor interrupt_descriptor; 767 } __packed; 768 769 struct hv_output_map_device_interrupt { 770 struct hv_interrupt_entry interrupt_entry; 771 } __packed; 772 773 struct hv_input_unmap_device_interrupt { 774 u64 partition_id; 775 u64 device_id; 776 struct hv_interrupt_entry interrupt_entry; 777 } __packed; 778 779 #define HV_SOURCE_SHADOW_NONE 0x0 780 #define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE 0x1 781 782 /* 783 * The whole argument should fit in a page to be able to pass to the hypervisor 784 * in one hypercall. 785 */ 786 #define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES \ 787 ((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \ 788 sizeof(union hv_gpa_page_range)) 789 790 /* HvExtCallMemoryHeatHint hypercall */ 791 #define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD 2 792 struct hv_memory_hint { 793 u64 type:2; 794 u64 reserved:62; 795 union hv_gpa_page_range ranges[]; 796 } __packed; 797 798 #endif 799