xref: /openbmc/linux/include/asm-generic/barrier.h (revision 545094d9)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Generic barrier definitions.
4  *
5  * It should be possible to use these on really simple architectures,
6  * but it serves more as a starting point for new ports.
7  *
8  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
9  * Written by David Howells (dhowells@redhat.com)
10  */
11 #ifndef __ASM_GENERIC_BARRIER_H
12 #define __ASM_GENERIC_BARRIER_H
13 
14 #ifndef __ASSEMBLY__
15 
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <asm/rwonce.h>
19 
20 #ifndef nop
21 #define nop()	asm volatile ("nop")
22 #endif
23 
24 /*
25  * Architectures that want generic instrumentation can define __ prefixed
26  * variants of all barriers.
27  */
28 
29 #ifdef __mb
30 #define mb()	do { kcsan_mb(); __mb(); } while (0)
31 #endif
32 
33 #ifdef __rmb
34 #define rmb()	do { kcsan_rmb(); __rmb(); } while (0)
35 #endif
36 
37 #ifdef __wmb
38 #define wmb()	do { kcsan_wmb(); __wmb(); } while (0)
39 #endif
40 
41 #ifdef __dma_mb
42 #define dma_mb()	do { kcsan_mb(); __dma_mb(); } while (0)
43 #endif
44 
45 #ifdef __dma_rmb
46 #define dma_rmb()	do { kcsan_rmb(); __dma_rmb(); } while (0)
47 #endif
48 
49 #ifdef __dma_wmb
50 #define dma_wmb()	do { kcsan_wmb(); __dma_wmb(); } while (0)
51 #endif
52 
53 /*
54  * Force strict CPU ordering. And yes, this is required on UP too when we're
55  * talking to devices.
56  *
57  * Fall back to compiler barriers if nothing better is provided.
58  */
59 
60 #ifndef mb
61 #define mb()	barrier()
62 #endif
63 
64 #ifndef rmb
65 #define rmb()	mb()
66 #endif
67 
68 #ifndef wmb
69 #define wmb()	mb()
70 #endif
71 
72 #ifndef dma_mb
73 #define dma_mb()	mb()
74 #endif
75 
76 #ifndef dma_rmb
77 #define dma_rmb()	rmb()
78 #endif
79 
80 #ifndef dma_wmb
81 #define dma_wmb()	wmb()
82 #endif
83 
84 #ifndef __smp_mb
85 #define __smp_mb()	mb()
86 #endif
87 
88 #ifndef __smp_rmb
89 #define __smp_rmb()	rmb()
90 #endif
91 
92 #ifndef __smp_wmb
93 #define __smp_wmb()	wmb()
94 #endif
95 
96 #ifdef CONFIG_SMP
97 
98 #ifndef smp_mb
99 #define smp_mb()	do { kcsan_mb(); __smp_mb(); } while (0)
100 #endif
101 
102 #ifndef smp_rmb
103 #define smp_rmb()	do { kcsan_rmb(); __smp_rmb(); } while (0)
104 #endif
105 
106 #ifndef smp_wmb
107 #define smp_wmb()	do { kcsan_wmb(); __smp_wmb(); } while (0)
108 #endif
109 
110 #else	/* !CONFIG_SMP */
111 
112 #ifndef smp_mb
113 #define smp_mb()	barrier()
114 #endif
115 
116 #ifndef smp_rmb
117 #define smp_rmb()	barrier()
118 #endif
119 
120 #ifndef smp_wmb
121 #define smp_wmb()	barrier()
122 #endif
123 
124 #endif	/* CONFIG_SMP */
125 
126 #ifndef __smp_store_mb
127 #define __smp_store_mb(var, value)  do { WRITE_ONCE(var, value); __smp_mb(); } while (0)
128 #endif
129 
130 #ifndef __smp_mb__before_atomic
131 #define __smp_mb__before_atomic()	__smp_mb()
132 #endif
133 
134 #ifndef __smp_mb__after_atomic
135 #define __smp_mb__after_atomic()	__smp_mb()
136 #endif
137 
138 #ifndef __smp_store_release
139 #define __smp_store_release(p, v)					\
140 do {									\
141 	compiletime_assert_atomic_type(*p);				\
142 	__smp_mb();							\
143 	WRITE_ONCE(*p, v);						\
144 } while (0)
145 #endif
146 
147 #ifndef __smp_load_acquire
148 #define __smp_load_acquire(p)						\
149 ({									\
150 	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
151 	compiletime_assert_atomic_type(*p);				\
152 	__smp_mb();							\
153 	(typeof(*p))___p1;						\
154 })
155 #endif
156 
157 #ifdef CONFIG_SMP
158 
159 #ifndef smp_store_mb
160 #define smp_store_mb(var, value)  do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
161 #endif
162 
163 #ifndef smp_mb__before_atomic
164 #define smp_mb__before_atomic()	do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
165 #endif
166 
167 #ifndef smp_mb__after_atomic
168 #define smp_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
169 #endif
170 
171 #ifndef smp_store_release
172 #define smp_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
173 #endif
174 
175 #ifndef smp_load_acquire
176 #define smp_load_acquire(p) __smp_load_acquire(p)
177 #endif
178 
179 #else	/* !CONFIG_SMP */
180 
181 #ifndef smp_store_mb
182 #define smp_store_mb(var, value)  do { WRITE_ONCE(var, value); barrier(); } while (0)
183 #endif
184 
185 #ifndef smp_mb__before_atomic
186 #define smp_mb__before_atomic()	barrier()
187 #endif
188 
189 #ifndef smp_mb__after_atomic
190 #define smp_mb__after_atomic()	barrier()
191 #endif
192 
193 #ifndef smp_store_release
194 #define smp_store_release(p, v)						\
195 do {									\
196 	compiletime_assert_atomic_type(*p);				\
197 	barrier();							\
198 	WRITE_ONCE(*p, v);						\
199 } while (0)
200 #endif
201 
202 #ifndef smp_load_acquire
203 #define smp_load_acquire(p)						\
204 ({									\
205 	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
206 	compiletime_assert_atomic_type(*p);				\
207 	barrier();							\
208 	(typeof(*p))___p1;						\
209 })
210 #endif
211 
212 #endif	/* CONFIG_SMP */
213 
214 /* Barriers for virtual machine guests when talking to an SMP host */
215 #define virt_mb() do { kcsan_mb(); __smp_mb(); } while (0)
216 #define virt_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0)
217 #define virt_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0)
218 #define virt_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
219 #define virt_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
220 #define virt_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
221 #define virt_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
222 #define virt_load_acquire(p) __smp_load_acquire(p)
223 
224 /**
225  * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency
226  *
227  * A control dependency provides a LOAD->STORE order, the additional RMB
228  * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order,
229  * aka. (load)-ACQUIRE.
230  *
231  * Architectures that do not do load speculation can have this be barrier().
232  */
233 #ifndef smp_acquire__after_ctrl_dep
234 #define smp_acquire__after_ctrl_dep()		smp_rmb()
235 #endif
236 
237 /**
238  * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees
239  * @ptr: pointer to the variable to wait on
240  * @cond: boolean expression to wait for
241  *
242  * Equivalent to using READ_ONCE() on the condition variable.
243  *
244  * Due to C lacking lambda expressions we load the value of *ptr into a
245  * pre-named variable @VAL to be used in @cond.
246  */
247 #ifndef smp_cond_load_relaxed
248 #define smp_cond_load_relaxed(ptr, cond_expr) ({		\
249 	typeof(ptr) __PTR = (ptr);				\
250 	__unqual_scalar_typeof(*ptr) VAL;			\
251 	for (;;) {						\
252 		VAL = READ_ONCE(*__PTR);			\
253 		if (cond_expr)					\
254 			break;					\
255 		cpu_relax();					\
256 	}							\
257 	(typeof(*ptr))VAL;					\
258 })
259 #endif
260 
261 /**
262  * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
263  * @ptr: pointer to the variable to wait on
264  * @cond: boolean expression to wait for
265  *
266  * Equivalent to using smp_load_acquire() on the condition variable but employs
267  * the control dependency of the wait to reduce the barrier on many platforms.
268  */
269 #ifndef smp_cond_load_acquire
270 #define smp_cond_load_acquire(ptr, cond_expr) ({		\
271 	__unqual_scalar_typeof(*ptr) _val;			\
272 	_val = smp_cond_load_relaxed(ptr, cond_expr);		\
273 	smp_acquire__after_ctrl_dep();				\
274 	(typeof(*ptr))_val;					\
275 })
276 #endif
277 
278 /*
279  * pmem_wmb() ensures that all stores for which the modification
280  * are written to persistent storage by preceding instructions have
281  * updated persistent storage before any data  access or data transfer
282  * caused by subsequent instructions is initiated.
283  */
284 #ifndef pmem_wmb
285 #define pmem_wmb()	wmb()
286 #endif
287 
288 /*
289  * ioremap_wc() maps I/O memory as memory with write-combining attributes. For
290  * this kind of memory accesses, the CPU may wait for prior accesses to be
291  * merged with subsequent ones. In some situation, such wait is bad for the
292  * performance. io_stop_wc() can be used to prevent the merging of
293  * write-combining memory accesses before this macro with those after it.
294  */
295 #ifndef io_stop_wc
296 #define io_stop_wc() do { } while (0)
297 #endif
298 
299 #endif /* !__ASSEMBLY__ */
300 #endif /* __ASM_GENERIC_BARRIER_H */
301