xref: /openbmc/linux/fs/zonefs/super.c (revision fd067c8b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Get the name of a zone group directory.
32  */
33 static const char *zonefs_zgroup_name(enum zonefs_ztype ztype)
34 {
35 	switch (ztype) {
36 	case ZONEFS_ZTYPE_CNV:
37 		return "cnv";
38 	case ZONEFS_ZTYPE_SEQ:
39 		return "seq";
40 	default:
41 		WARN_ON_ONCE(1);
42 		return "???";
43 	}
44 }
45 
46 /*
47  * Manage the active zone count.
48  */
49 static void zonefs_account_active(struct super_block *sb,
50 				  struct zonefs_zone *z)
51 {
52 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
53 
54 	if (zonefs_zone_is_cnv(z))
55 		return;
56 
57 	/*
58 	 * For zones that transitioned to the offline or readonly condition,
59 	 * we only need to clear the active state.
60 	 */
61 	if (z->z_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY))
62 		goto out;
63 
64 	/*
65 	 * If the zone is active, that is, if it is explicitly open or
66 	 * partially written, check if it was already accounted as active.
67 	 */
68 	if ((z->z_flags & ZONEFS_ZONE_OPEN) ||
69 	    (z->z_wpoffset > 0 && z->z_wpoffset < z->z_capacity)) {
70 		if (!(z->z_flags & ZONEFS_ZONE_ACTIVE)) {
71 			z->z_flags |= ZONEFS_ZONE_ACTIVE;
72 			atomic_inc(&sbi->s_active_seq_files);
73 		}
74 		return;
75 	}
76 
77 out:
78 	/* The zone is not active. If it was, update the active count */
79 	if (z->z_flags & ZONEFS_ZONE_ACTIVE) {
80 		z->z_flags &= ~ZONEFS_ZONE_ACTIVE;
81 		atomic_dec(&sbi->s_active_seq_files);
82 	}
83 }
84 
85 /*
86  * Manage the active zone count. Called with zi->i_truncate_mutex held.
87  */
88 void zonefs_inode_account_active(struct inode *inode)
89 {
90 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
91 
92 	return zonefs_account_active(inode->i_sb, zonefs_inode_zone(inode));
93 }
94 
95 /*
96  * Execute a zone management operation.
97  */
98 static int zonefs_zone_mgmt(struct super_block *sb,
99 			    struct zonefs_zone *z, enum req_op op)
100 {
101 	int ret;
102 
103 	/*
104 	 * With ZNS drives, closing an explicitly open zone that has not been
105 	 * written will change the zone state to "closed", that is, the zone
106 	 * will remain active. Since this can then cause failure of explicit
107 	 * open operation on other zones if the drive active zone resources
108 	 * are exceeded, make sure that the zone does not remain active by
109 	 * resetting it.
110 	 */
111 	if (op == REQ_OP_ZONE_CLOSE && !z->z_wpoffset)
112 		op = REQ_OP_ZONE_RESET;
113 
114 	trace_zonefs_zone_mgmt(sb, z, op);
115 	ret = blkdev_zone_mgmt(sb->s_bdev, op, z->z_sector,
116 			       z->z_size >> SECTOR_SHIFT, GFP_NOFS);
117 	if (ret) {
118 		zonefs_err(sb,
119 			   "Zone management operation %s at %llu failed %d\n",
120 			   blk_op_str(op), z->z_sector, ret);
121 		return ret;
122 	}
123 
124 	return 0;
125 }
126 
127 int zonefs_inode_zone_mgmt(struct inode *inode, enum req_op op)
128 {
129 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
130 
131 	return zonefs_zone_mgmt(inode->i_sb, zonefs_inode_zone(inode), op);
132 }
133 
134 void zonefs_i_size_write(struct inode *inode, loff_t isize)
135 {
136 	struct zonefs_zone *z = zonefs_inode_zone(inode);
137 
138 	i_size_write(inode, isize);
139 
140 	/*
141 	 * A full zone is no longer open/active and does not need
142 	 * explicit closing.
143 	 */
144 	if (isize >= z->z_capacity) {
145 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
146 
147 		if (z->z_flags & ZONEFS_ZONE_ACTIVE)
148 			atomic_dec(&sbi->s_active_seq_files);
149 		z->z_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
150 	}
151 }
152 
153 void zonefs_update_stats(struct inode *inode, loff_t new_isize)
154 {
155 	struct super_block *sb = inode->i_sb;
156 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
157 	loff_t old_isize = i_size_read(inode);
158 	loff_t nr_blocks;
159 
160 	if (new_isize == old_isize)
161 		return;
162 
163 	spin_lock(&sbi->s_lock);
164 
165 	/*
166 	 * This may be called for an update after an IO error.
167 	 * So beware of the values seen.
168 	 */
169 	if (new_isize < old_isize) {
170 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
171 		if (sbi->s_used_blocks > nr_blocks)
172 			sbi->s_used_blocks -= nr_blocks;
173 		else
174 			sbi->s_used_blocks = 0;
175 	} else {
176 		sbi->s_used_blocks +=
177 			(new_isize - old_isize) >> sb->s_blocksize_bits;
178 		if (sbi->s_used_blocks > sbi->s_blocks)
179 			sbi->s_used_blocks = sbi->s_blocks;
180 	}
181 
182 	spin_unlock(&sbi->s_lock);
183 }
184 
185 /*
186  * Check a zone condition. Return the amount of written (and still readable)
187  * data in the zone.
188  */
189 static loff_t zonefs_check_zone_condition(struct super_block *sb,
190 					  struct zonefs_zone *z,
191 					  struct blk_zone *zone)
192 {
193 	switch (zone->cond) {
194 	case BLK_ZONE_COND_OFFLINE:
195 		zonefs_warn(sb, "Zone %llu: offline zone\n",
196 			    z->z_sector);
197 		z->z_flags |= ZONEFS_ZONE_OFFLINE;
198 		return 0;
199 	case BLK_ZONE_COND_READONLY:
200 		/*
201 		 * The write pointer of read-only zones is invalid, so we cannot
202 		 * determine the zone wpoffset (inode size). We thus keep the
203 		 * zone wpoffset as is, which leads to an empty file
204 		 * (wpoffset == 0) on mount. For a runtime error, this keeps
205 		 * the inode size as it was when last updated so that the user
206 		 * can recover data.
207 		 */
208 		zonefs_warn(sb, "Zone %llu: read-only zone\n",
209 			    z->z_sector);
210 		z->z_flags |= ZONEFS_ZONE_READONLY;
211 		if (zonefs_zone_is_cnv(z))
212 			return z->z_capacity;
213 		return z->z_wpoffset;
214 	case BLK_ZONE_COND_FULL:
215 		/* The write pointer of full zones is invalid. */
216 		return z->z_capacity;
217 	default:
218 		if (zonefs_zone_is_cnv(z))
219 			return z->z_capacity;
220 		return (zone->wp - zone->start) << SECTOR_SHIFT;
221 	}
222 }
223 
224 /*
225  * Check a zone condition and adjust its inode access permissions for
226  * offline and readonly zones.
227  */
228 static void zonefs_inode_update_mode(struct inode *inode)
229 {
230 	struct zonefs_zone *z = zonefs_inode_zone(inode);
231 
232 	if (z->z_flags & ZONEFS_ZONE_OFFLINE) {
233 		/* Offline zones cannot be read nor written */
234 		inode->i_flags |= S_IMMUTABLE;
235 		inode->i_mode &= ~0777;
236 	} else if (z->z_flags & ZONEFS_ZONE_READONLY) {
237 		/* Readonly zones cannot be written */
238 		inode->i_flags |= S_IMMUTABLE;
239 		if (z->z_flags & ZONEFS_ZONE_INIT_MODE)
240 			inode->i_mode &= ~0777;
241 		else
242 			inode->i_mode &= ~0222;
243 	}
244 
245 	z->z_flags &= ~ZONEFS_ZONE_INIT_MODE;
246 	z->z_mode = inode->i_mode;
247 }
248 
249 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
250 			      void *data)
251 {
252 	struct blk_zone *z = data;
253 
254 	*z = *zone;
255 	return 0;
256 }
257 
258 static void zonefs_handle_io_error(struct inode *inode, struct blk_zone *zone,
259 				   bool write)
260 {
261 	struct zonefs_zone *z = zonefs_inode_zone(inode);
262 	struct super_block *sb = inode->i_sb;
263 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
264 	loff_t isize, data_size;
265 
266 	/*
267 	 * Check the zone condition: if the zone is not "bad" (offline or
268 	 * read-only), read errors are simply signaled to the IO issuer as long
269 	 * as there is no inconsistency between the inode size and the amount of
270 	 * data writen in the zone (data_size).
271 	 */
272 	data_size = zonefs_check_zone_condition(sb, z, zone);
273 	isize = i_size_read(inode);
274 	if (!(z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)) &&
275 	    !write && isize == data_size)
276 		return;
277 
278 	/*
279 	 * At this point, we detected either a bad zone or an inconsistency
280 	 * between the inode size and the amount of data written in the zone.
281 	 * For the latter case, the cause may be a write IO error or an external
282 	 * action on the device. Two error patterns exist:
283 	 * 1) The inode size is lower than the amount of data in the zone:
284 	 *    a write operation partially failed and data was writen at the end
285 	 *    of the file. This can happen in the case of a large direct IO
286 	 *    needing several BIOs and/or write requests to be processed.
287 	 * 2) The inode size is larger than the amount of data in the zone:
288 	 *    this can happen with a deferred write error with the use of the
289 	 *    device side write cache after getting successful write IO
290 	 *    completions. Other possibilities are (a) an external corruption,
291 	 *    e.g. an application reset the zone directly, or (b) the device
292 	 *    has a serious problem (e.g. firmware bug).
293 	 *
294 	 * In all cases, warn about inode size inconsistency and handle the
295 	 * IO error according to the zone condition and to the mount options.
296 	 */
297 	if (isize != data_size)
298 		zonefs_warn(sb,
299 			    "inode %lu: invalid size %lld (should be %lld)\n",
300 			    inode->i_ino, isize, data_size);
301 
302 	/*
303 	 * First handle bad zones signaled by hardware. The mount options
304 	 * errors=zone-ro and errors=zone-offline result in changing the
305 	 * zone condition to read-only and offline respectively, as if the
306 	 * condition was signaled by the hardware.
307 	 */
308 	if ((z->z_flags & ZONEFS_ZONE_OFFLINE) ||
309 	    (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)) {
310 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
311 			    inode->i_ino);
312 		if (!(z->z_flags & ZONEFS_ZONE_OFFLINE))
313 			z->z_flags |= ZONEFS_ZONE_OFFLINE;
314 		zonefs_inode_update_mode(inode);
315 		data_size = 0;
316 	} else if ((z->z_flags & ZONEFS_ZONE_READONLY) ||
317 		   (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)) {
318 		zonefs_warn(sb, "inode %lu: write access disabled\n",
319 			    inode->i_ino);
320 		if (!(z->z_flags & ZONEFS_ZONE_READONLY))
321 			z->z_flags |= ZONEFS_ZONE_READONLY;
322 		zonefs_inode_update_mode(inode);
323 		data_size = isize;
324 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
325 		   data_size > isize) {
326 		/* Do not expose garbage data */
327 		data_size = isize;
328 	}
329 
330 	/*
331 	 * If the filesystem is mounted with the explicit-open mount option, we
332 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
333 	 * the read-only or offline condition, to avoid attempting an explicit
334 	 * close of the zone when the inode file is closed.
335 	 */
336 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
337 	    (z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)))
338 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
339 
340 	/*
341 	 * If error=remount-ro was specified, any error result in remounting
342 	 * the volume as read-only.
343 	 */
344 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
345 		zonefs_warn(sb, "remounting filesystem read-only\n");
346 		sb->s_flags |= SB_RDONLY;
347 	}
348 
349 	/*
350 	 * Update block usage stats and the inode size  to prevent access to
351 	 * invalid data.
352 	 */
353 	zonefs_update_stats(inode, data_size);
354 	zonefs_i_size_write(inode, data_size);
355 	z->z_wpoffset = data_size;
356 	zonefs_inode_account_active(inode);
357 }
358 
359 /*
360  * When an file IO error occurs, check the file zone to see if there is a change
361  * in the zone condition (e.g. offline or read-only). For a failed write to a
362  * sequential zone, the zone write pointer position must also be checked to
363  * eventually correct the file size and zonefs inode write pointer offset
364  * (which can be out of sync with the drive due to partial write failures).
365  */
366 void __zonefs_io_error(struct inode *inode, bool write)
367 {
368 	struct zonefs_zone *z = zonefs_inode_zone(inode);
369 	struct super_block *sb = inode->i_sb;
370 	unsigned int noio_flag;
371 	struct blk_zone zone;
372 	int ret;
373 
374 	/*
375 	 * Conventional zone have no write pointer and cannot become read-only
376 	 * or offline. So simply fake a report for a single or aggregated zone
377 	 * and let zonefs_handle_io_error() correct the zone inode information
378 	 * according to the mount options.
379 	 */
380 	if (!zonefs_zone_is_seq(z)) {
381 		zone.start = z->z_sector;
382 		zone.len = z->z_size >> SECTOR_SHIFT;
383 		zone.wp = zone.start + zone.len;
384 		zone.type = BLK_ZONE_TYPE_CONVENTIONAL;
385 		zone.cond = BLK_ZONE_COND_NOT_WP;
386 		zone.capacity = zone.len;
387 		goto handle_io_error;
388 	}
389 
390 	/*
391 	 * Memory allocations in blkdev_report_zones() can trigger a memory
392 	 * reclaim which may in turn cause a recursion into zonefs as well as
393 	 * struct request allocations for the same device. The former case may
394 	 * end up in a deadlock on the inode truncate mutex, while the latter
395 	 * may prevent IO forward progress. Executing the report zones under
396 	 * the GFP_NOIO context avoids both problems.
397 	 */
398 	noio_flag = memalloc_noio_save();
399 	ret = blkdev_report_zones(sb->s_bdev, z->z_sector, 1,
400 				  zonefs_io_error_cb, &zone);
401 	memalloc_noio_restore(noio_flag);
402 
403 	if (ret != 1) {
404 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
405 			   inode->i_ino, ret);
406 		zonefs_warn(sb, "remounting filesystem read-only\n");
407 		sb->s_flags |= SB_RDONLY;
408 		return;
409 	}
410 
411 handle_io_error:
412 	zonefs_handle_io_error(inode, &zone, write);
413 }
414 
415 static struct kmem_cache *zonefs_inode_cachep;
416 
417 static struct inode *zonefs_alloc_inode(struct super_block *sb)
418 {
419 	struct zonefs_inode_info *zi;
420 
421 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
422 	if (!zi)
423 		return NULL;
424 
425 	inode_init_once(&zi->i_vnode);
426 	mutex_init(&zi->i_truncate_mutex);
427 	zi->i_wr_refcnt = 0;
428 
429 	return &zi->i_vnode;
430 }
431 
432 static void zonefs_free_inode(struct inode *inode)
433 {
434 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
435 }
436 
437 /*
438  * File system stat.
439  */
440 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
441 {
442 	struct super_block *sb = dentry->d_sb;
443 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
444 	enum zonefs_ztype t;
445 
446 	buf->f_type = ZONEFS_MAGIC;
447 	buf->f_bsize = sb->s_blocksize;
448 	buf->f_namelen = ZONEFS_NAME_MAX;
449 
450 	spin_lock(&sbi->s_lock);
451 
452 	buf->f_blocks = sbi->s_blocks;
453 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
454 		buf->f_bfree = 0;
455 	else
456 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
457 	buf->f_bavail = buf->f_bfree;
458 
459 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
460 		if (sbi->s_zgroup[t].g_nr_zones)
461 			buf->f_files += sbi->s_zgroup[t].g_nr_zones + 1;
462 	}
463 	buf->f_ffree = 0;
464 
465 	spin_unlock(&sbi->s_lock);
466 
467 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
468 
469 	return 0;
470 }
471 
472 enum {
473 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
474 	Opt_explicit_open, Opt_err,
475 };
476 
477 static const match_table_t tokens = {
478 	{ Opt_errors_ro,	"errors=remount-ro"},
479 	{ Opt_errors_zro,	"errors=zone-ro"},
480 	{ Opt_errors_zol,	"errors=zone-offline"},
481 	{ Opt_errors_repair,	"errors=repair"},
482 	{ Opt_explicit_open,	"explicit-open" },
483 	{ Opt_err,		NULL}
484 };
485 
486 static int zonefs_parse_options(struct super_block *sb, char *options)
487 {
488 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
489 	substring_t args[MAX_OPT_ARGS];
490 	char *p;
491 
492 	if (!options)
493 		return 0;
494 
495 	while ((p = strsep(&options, ",")) != NULL) {
496 		int token;
497 
498 		if (!*p)
499 			continue;
500 
501 		token = match_token(p, tokens, args);
502 		switch (token) {
503 		case Opt_errors_ro:
504 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
505 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
506 			break;
507 		case Opt_errors_zro:
508 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
509 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
510 			break;
511 		case Opt_errors_zol:
512 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
513 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
514 			break;
515 		case Opt_errors_repair:
516 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
517 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
518 			break;
519 		case Opt_explicit_open:
520 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
521 			break;
522 		default:
523 			return -EINVAL;
524 		}
525 	}
526 
527 	return 0;
528 }
529 
530 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
531 {
532 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
533 
534 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
535 		seq_puts(seq, ",errors=remount-ro");
536 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
537 		seq_puts(seq, ",errors=zone-ro");
538 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
539 		seq_puts(seq, ",errors=zone-offline");
540 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
541 		seq_puts(seq, ",errors=repair");
542 
543 	return 0;
544 }
545 
546 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
547 {
548 	sync_filesystem(sb);
549 
550 	return zonefs_parse_options(sb, data);
551 }
552 
553 static int zonefs_inode_setattr(struct mnt_idmap *idmap,
554 				struct dentry *dentry, struct iattr *iattr)
555 {
556 	struct inode *inode = d_inode(dentry);
557 	int ret;
558 
559 	if (unlikely(IS_IMMUTABLE(inode)))
560 		return -EPERM;
561 
562 	ret = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
563 	if (ret)
564 		return ret;
565 
566 	/*
567 	 * Since files and directories cannot be created nor deleted, do not
568 	 * allow setting any write attributes on the sub-directories grouping
569 	 * files by zone type.
570 	 */
571 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
572 	    (iattr->ia_mode & 0222))
573 		return -EPERM;
574 
575 	if (((iattr->ia_valid & ATTR_UID) &&
576 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
577 	    ((iattr->ia_valid & ATTR_GID) &&
578 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
579 		ret = dquot_transfer(&nop_mnt_idmap, inode, iattr);
580 		if (ret)
581 			return ret;
582 	}
583 
584 	if (iattr->ia_valid & ATTR_SIZE) {
585 		ret = zonefs_file_truncate(inode, iattr->ia_size);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	setattr_copy(&nop_mnt_idmap, inode, iattr);
591 
592 	if (S_ISREG(inode->i_mode)) {
593 		struct zonefs_zone *z = zonefs_inode_zone(inode);
594 
595 		z->z_mode = inode->i_mode;
596 		z->z_uid = inode->i_uid;
597 		z->z_gid = inode->i_gid;
598 	}
599 
600 	return 0;
601 }
602 
603 static const struct inode_operations zonefs_file_inode_operations = {
604 	.setattr	= zonefs_inode_setattr,
605 };
606 
607 static long zonefs_fname_to_fno(const struct qstr *fname)
608 {
609 	const char *name = fname->name;
610 	unsigned int len = fname->len;
611 	long fno = 0, shift = 1;
612 	const char *rname;
613 	char c = *name;
614 	unsigned int i;
615 
616 	/*
617 	 * File names are always a base-10 number string without any
618 	 * leading 0s.
619 	 */
620 	if (!isdigit(c))
621 		return -ENOENT;
622 
623 	if (len > 1 && c == '0')
624 		return -ENOENT;
625 
626 	if (len == 1)
627 		return c - '0';
628 
629 	for (i = 0, rname = name + len - 1; i < len; i++, rname--) {
630 		c = *rname;
631 		if (!isdigit(c))
632 			return -ENOENT;
633 		fno += (c - '0') * shift;
634 		shift *= 10;
635 	}
636 
637 	return fno;
638 }
639 
640 static struct inode *zonefs_get_file_inode(struct inode *dir,
641 					   struct dentry *dentry)
642 {
643 	struct zonefs_zone_group *zgroup = dir->i_private;
644 	struct super_block *sb = dir->i_sb;
645 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
646 	struct zonefs_zone *z;
647 	struct inode *inode;
648 	ino_t ino;
649 	long fno;
650 
651 	/* Get the file number from the file name */
652 	fno = zonefs_fname_to_fno(&dentry->d_name);
653 	if (fno < 0)
654 		return ERR_PTR(fno);
655 
656 	if (!zgroup->g_nr_zones || fno >= zgroup->g_nr_zones)
657 		return ERR_PTR(-ENOENT);
658 
659 	z = &zgroup->g_zones[fno];
660 	ino = z->z_sector >> sbi->s_zone_sectors_shift;
661 	inode = iget_locked(sb, ino);
662 	if (!inode)
663 		return ERR_PTR(-ENOMEM);
664 	if (!(inode->i_state & I_NEW)) {
665 		WARN_ON_ONCE(inode->i_private != z);
666 		return inode;
667 	}
668 
669 	inode->i_ino = ino;
670 	inode->i_mode = z->z_mode;
671 	inode->i_mtime = inode->i_atime = inode_set_ctime_to_ts(inode,
672 								inode_get_ctime(dir));
673 	inode->i_uid = z->z_uid;
674 	inode->i_gid = z->z_gid;
675 	inode->i_size = z->z_wpoffset;
676 	inode->i_blocks = z->z_capacity >> SECTOR_SHIFT;
677 	inode->i_private = z;
678 
679 	inode->i_op = &zonefs_file_inode_operations;
680 	inode->i_fop = &zonefs_file_operations;
681 	inode->i_mapping->a_ops = &zonefs_file_aops;
682 
683 	/* Update the inode access rights depending on the zone condition */
684 	zonefs_inode_update_mode(inode);
685 
686 	unlock_new_inode(inode);
687 
688 	return inode;
689 }
690 
691 static struct inode *zonefs_get_zgroup_inode(struct super_block *sb,
692 					     enum zonefs_ztype ztype)
693 {
694 	struct inode *root = d_inode(sb->s_root);
695 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
696 	struct inode *inode;
697 	ino_t ino = bdev_nr_zones(sb->s_bdev) + ztype + 1;
698 
699 	inode = iget_locked(sb, ino);
700 	if (!inode)
701 		return ERR_PTR(-ENOMEM);
702 	if (!(inode->i_state & I_NEW))
703 		return inode;
704 
705 	inode->i_ino = ino;
706 	inode_init_owner(&nop_mnt_idmap, inode, root, S_IFDIR | 0555);
707 	inode->i_size = sbi->s_zgroup[ztype].g_nr_zones;
708 	inode->i_mtime = inode->i_atime = inode_set_ctime_to_ts(inode,
709 								inode_get_ctime(root));
710 	inode->i_private = &sbi->s_zgroup[ztype];
711 	set_nlink(inode, 2);
712 
713 	inode->i_op = &zonefs_dir_inode_operations;
714 	inode->i_fop = &zonefs_dir_operations;
715 
716 	unlock_new_inode(inode);
717 
718 	return inode;
719 }
720 
721 
722 static struct inode *zonefs_get_dir_inode(struct inode *dir,
723 					  struct dentry *dentry)
724 {
725 	struct super_block *sb = dir->i_sb;
726 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
727 	const char *name = dentry->d_name.name;
728 	enum zonefs_ztype ztype;
729 
730 	/*
731 	 * We only need to check for the "seq" directory and
732 	 * the "cnv" directory if we have conventional zones.
733 	 */
734 	if (dentry->d_name.len != 3)
735 		return ERR_PTR(-ENOENT);
736 
737 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
738 		if (sbi->s_zgroup[ztype].g_nr_zones &&
739 		    memcmp(name, zonefs_zgroup_name(ztype), 3) == 0)
740 			break;
741 	}
742 	if (ztype == ZONEFS_ZTYPE_MAX)
743 		return ERR_PTR(-ENOENT);
744 
745 	return zonefs_get_zgroup_inode(sb, ztype);
746 }
747 
748 static struct dentry *zonefs_lookup(struct inode *dir, struct dentry *dentry,
749 				    unsigned int flags)
750 {
751 	struct inode *inode;
752 
753 	if (dentry->d_name.len > ZONEFS_NAME_MAX)
754 		return ERR_PTR(-ENAMETOOLONG);
755 
756 	if (dir == d_inode(dir->i_sb->s_root))
757 		inode = zonefs_get_dir_inode(dir, dentry);
758 	else
759 		inode = zonefs_get_file_inode(dir, dentry);
760 	if (IS_ERR(inode))
761 		return ERR_CAST(inode);
762 
763 	return d_splice_alias(inode, dentry);
764 }
765 
766 static int zonefs_readdir_root(struct file *file, struct dir_context *ctx)
767 {
768 	struct inode *inode = file_inode(file);
769 	struct super_block *sb = inode->i_sb;
770 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
771 	enum zonefs_ztype ztype = ZONEFS_ZTYPE_CNV;
772 	ino_t base_ino = bdev_nr_zones(sb->s_bdev) + 1;
773 
774 	if (ctx->pos >= inode->i_size)
775 		return 0;
776 
777 	if (!dir_emit_dots(file, ctx))
778 		return 0;
779 
780 	if (ctx->pos == 2) {
781 		if (!sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones)
782 			ztype = ZONEFS_ZTYPE_SEQ;
783 
784 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
785 			      base_ino + ztype, DT_DIR))
786 			return 0;
787 		ctx->pos++;
788 	}
789 
790 	if (ctx->pos == 3 && ztype != ZONEFS_ZTYPE_SEQ) {
791 		ztype = ZONEFS_ZTYPE_SEQ;
792 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
793 			      base_ino + ztype, DT_DIR))
794 			return 0;
795 		ctx->pos++;
796 	}
797 
798 	return 0;
799 }
800 
801 static int zonefs_readdir_zgroup(struct file *file,
802 				 struct dir_context *ctx)
803 {
804 	struct inode *inode = file_inode(file);
805 	struct zonefs_zone_group *zgroup = inode->i_private;
806 	struct super_block *sb = inode->i_sb;
807 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
808 	struct zonefs_zone *z;
809 	int fname_len;
810 	char *fname;
811 	ino_t ino;
812 	int f;
813 
814 	/*
815 	 * The size of zone group directories is equal to the number
816 	 * of zone files in the group and does note include the "." and
817 	 * ".." entries. Hence the "+ 2" here.
818 	 */
819 	if (ctx->pos >= inode->i_size + 2)
820 		return 0;
821 
822 	if (!dir_emit_dots(file, ctx))
823 		return 0;
824 
825 	fname = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
826 	if (!fname)
827 		return -ENOMEM;
828 
829 	for (f = ctx->pos - 2; f < zgroup->g_nr_zones; f++) {
830 		z = &zgroup->g_zones[f];
831 		ino = z->z_sector >> sbi->s_zone_sectors_shift;
832 		fname_len = snprintf(fname, ZONEFS_NAME_MAX - 1, "%u", f);
833 		if (!dir_emit(ctx, fname, fname_len, ino, DT_REG))
834 			break;
835 		ctx->pos++;
836 	}
837 
838 	kfree(fname);
839 
840 	return 0;
841 }
842 
843 static int zonefs_readdir(struct file *file, struct dir_context *ctx)
844 {
845 	struct inode *inode = file_inode(file);
846 
847 	if (inode == d_inode(inode->i_sb->s_root))
848 		return zonefs_readdir_root(file, ctx);
849 
850 	return zonefs_readdir_zgroup(file, ctx);
851 }
852 
853 const struct inode_operations zonefs_dir_inode_operations = {
854 	.lookup		= zonefs_lookup,
855 	.setattr	= zonefs_inode_setattr,
856 };
857 
858 const struct file_operations zonefs_dir_operations = {
859 	.llseek		= generic_file_llseek,
860 	.read		= generic_read_dir,
861 	.iterate_shared	= zonefs_readdir,
862 };
863 
864 struct zonefs_zone_data {
865 	struct super_block	*sb;
866 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
867 	sector_t		cnv_zone_start;
868 	struct blk_zone		*zones;
869 };
870 
871 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
872 				   void *data)
873 {
874 	struct zonefs_zone_data *zd = data;
875 	struct super_block *sb = zd->sb;
876 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
877 
878 	/*
879 	 * We do not care about the first zone: it contains the super block
880 	 * and not exposed as a file.
881 	 */
882 	if (!idx)
883 		return 0;
884 
885 	/*
886 	 * Count the number of zones that will be exposed as files.
887 	 * For sequential zones, we always have as many files as zones.
888 	 * FOr conventional zones, the number of files depends on if we have
889 	 * conventional zones aggregation enabled.
890 	 */
891 	switch (zone->type) {
892 	case BLK_ZONE_TYPE_CONVENTIONAL:
893 		if (sbi->s_features & ZONEFS_F_AGGRCNV) {
894 			/* One file per set of contiguous conventional zones */
895 			if (!(sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) ||
896 			    zone->start != zd->cnv_zone_start)
897 				sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
898 			zd->cnv_zone_start = zone->start + zone->len;
899 		} else {
900 			/* One file per zone */
901 			sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
902 		}
903 		break;
904 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
905 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
906 		sbi->s_zgroup[ZONEFS_ZTYPE_SEQ].g_nr_zones++;
907 		break;
908 	default:
909 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
910 			   zone->type);
911 		return -EIO;
912 	}
913 
914 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
915 
916 	return 0;
917 }
918 
919 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
920 {
921 	struct block_device *bdev = zd->sb->s_bdev;
922 	int ret;
923 
924 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
925 			     GFP_KERNEL);
926 	if (!zd->zones)
927 		return -ENOMEM;
928 
929 	/* Get zones information from the device */
930 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
931 				  zonefs_get_zone_info_cb, zd);
932 	if (ret < 0) {
933 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
934 		return ret;
935 	}
936 
937 	if (ret != bdev_nr_zones(bdev)) {
938 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
939 			   ret, bdev_nr_zones(bdev));
940 		return -EIO;
941 	}
942 
943 	return 0;
944 }
945 
946 static inline void zonefs_free_zone_info(struct zonefs_zone_data *zd)
947 {
948 	kvfree(zd->zones);
949 }
950 
951 /*
952  * Create a zone group and populate it with zone files.
953  */
954 static int zonefs_init_zgroup(struct super_block *sb,
955 			      struct zonefs_zone_data *zd,
956 			      enum zonefs_ztype ztype)
957 {
958 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
959 	struct zonefs_zone_group *zgroup = &sbi->s_zgroup[ztype];
960 	struct blk_zone *zone, *next, *end;
961 	struct zonefs_zone *z;
962 	unsigned int n = 0;
963 	int ret;
964 
965 	/* Allocate the zone group. If it is empty, we have nothing to do. */
966 	if (!zgroup->g_nr_zones)
967 		return 0;
968 
969 	zgroup->g_zones = kvcalloc(zgroup->g_nr_zones,
970 				   sizeof(struct zonefs_zone), GFP_KERNEL);
971 	if (!zgroup->g_zones)
972 		return -ENOMEM;
973 
974 	/*
975 	 * Initialize the zone groups using the device zone information.
976 	 * We always skip the first zone as it contains the super block
977 	 * and is not use to back a file.
978 	 */
979 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
980 	for (zone = &zd->zones[1]; zone < end; zone = next) {
981 
982 		next = zone + 1;
983 		if (zonefs_zone_type(zone) != ztype)
984 			continue;
985 
986 		if (WARN_ON_ONCE(n >= zgroup->g_nr_zones))
987 			return -EINVAL;
988 
989 		/*
990 		 * For conventional zones, contiguous zones can be aggregated
991 		 * together to form larger files. Note that this overwrites the
992 		 * length of the first zone of the set of contiguous zones
993 		 * aggregated together. If one offline or read-only zone is
994 		 * found, assume that all zones aggregated have the same
995 		 * condition.
996 		 */
997 		if (ztype == ZONEFS_ZTYPE_CNV &&
998 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
999 			for (; next < end; next++) {
1000 				if (zonefs_zone_type(next) != ztype)
1001 					break;
1002 				zone->len += next->len;
1003 				zone->capacity += next->capacity;
1004 				if (next->cond == BLK_ZONE_COND_READONLY &&
1005 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1006 					zone->cond = BLK_ZONE_COND_READONLY;
1007 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1008 					zone->cond = BLK_ZONE_COND_OFFLINE;
1009 			}
1010 		}
1011 
1012 		z = &zgroup->g_zones[n];
1013 		if (ztype == ZONEFS_ZTYPE_CNV)
1014 			z->z_flags |= ZONEFS_ZONE_CNV;
1015 		z->z_sector = zone->start;
1016 		z->z_size = zone->len << SECTOR_SHIFT;
1017 		if (z->z_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1018 		    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1019 			zonefs_err(sb,
1020 				"Invalid zone size %llu (device zone sectors %llu)\n",
1021 				z->z_size,
1022 				bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1023 			return -EINVAL;
1024 		}
1025 
1026 		z->z_capacity = min_t(loff_t, MAX_LFS_FILESIZE,
1027 				      zone->capacity << SECTOR_SHIFT);
1028 		z->z_wpoffset = zonefs_check_zone_condition(sb, z, zone);
1029 
1030 		z->z_mode = S_IFREG | sbi->s_perm;
1031 		z->z_uid = sbi->s_uid;
1032 		z->z_gid = sbi->s_gid;
1033 
1034 		/*
1035 		 * Let zonefs_inode_update_mode() know that we will need
1036 		 * special initialization of the inode mode the first time
1037 		 * it is accessed.
1038 		 */
1039 		z->z_flags |= ZONEFS_ZONE_INIT_MODE;
1040 
1041 		sb->s_maxbytes = max(z->z_capacity, sb->s_maxbytes);
1042 		sbi->s_blocks += z->z_capacity >> sb->s_blocksize_bits;
1043 		sbi->s_used_blocks += z->z_wpoffset >> sb->s_blocksize_bits;
1044 
1045 		/*
1046 		 * For sequential zones, make sure that any open zone is closed
1047 		 * first to ensure that the initial number of open zones is 0,
1048 		 * in sync with the open zone accounting done when the mount
1049 		 * option ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1050 		 */
1051 		if (ztype == ZONEFS_ZTYPE_SEQ &&
1052 		    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1053 		     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1054 			ret = zonefs_zone_mgmt(sb, z, REQ_OP_ZONE_CLOSE);
1055 			if (ret)
1056 				return ret;
1057 		}
1058 
1059 		zonefs_account_active(sb, z);
1060 
1061 		n++;
1062 	}
1063 
1064 	if (WARN_ON_ONCE(n != zgroup->g_nr_zones))
1065 		return -EINVAL;
1066 
1067 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1068 		    zonefs_zgroup_name(ztype),
1069 		    zgroup->g_nr_zones,
1070 		    zgroup->g_nr_zones > 1 ? "s" : "");
1071 
1072 	return 0;
1073 }
1074 
1075 static void zonefs_free_zgroups(struct super_block *sb)
1076 {
1077 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1078 	enum zonefs_ztype ztype;
1079 
1080 	if (!sbi)
1081 		return;
1082 
1083 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1084 		kvfree(sbi->s_zgroup[ztype].g_zones);
1085 		sbi->s_zgroup[ztype].g_zones = NULL;
1086 	}
1087 }
1088 
1089 /*
1090  * Create a zone group and populate it with zone files.
1091  */
1092 static int zonefs_init_zgroups(struct super_block *sb)
1093 {
1094 	struct zonefs_zone_data zd;
1095 	enum zonefs_ztype ztype;
1096 	int ret;
1097 
1098 	/* First get the device zone information */
1099 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1100 	zd.sb = sb;
1101 	ret = zonefs_get_zone_info(&zd);
1102 	if (ret)
1103 		goto cleanup;
1104 
1105 	/* Allocate and initialize the zone groups */
1106 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1107 		ret = zonefs_init_zgroup(sb, &zd, ztype);
1108 		if (ret) {
1109 			zonefs_info(sb,
1110 				    "Zone group \"%s\" initialization failed\n",
1111 				    zonefs_zgroup_name(ztype));
1112 			break;
1113 		}
1114 	}
1115 
1116 cleanup:
1117 	zonefs_free_zone_info(&zd);
1118 	if (ret)
1119 		zonefs_free_zgroups(sb);
1120 
1121 	return ret;
1122 }
1123 
1124 /*
1125  * Read super block information from the device.
1126  */
1127 static int zonefs_read_super(struct super_block *sb)
1128 {
1129 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1130 	struct zonefs_super *super;
1131 	u32 crc, stored_crc;
1132 	struct page *page;
1133 	struct bio_vec bio_vec;
1134 	struct bio bio;
1135 	int ret;
1136 
1137 	page = alloc_page(GFP_KERNEL);
1138 	if (!page)
1139 		return -ENOMEM;
1140 
1141 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1142 	bio.bi_iter.bi_sector = 0;
1143 	__bio_add_page(&bio, page, PAGE_SIZE, 0);
1144 
1145 	ret = submit_bio_wait(&bio);
1146 	if (ret)
1147 		goto free_page;
1148 
1149 	super = page_address(page);
1150 
1151 	ret = -EINVAL;
1152 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1153 		goto free_page;
1154 
1155 	stored_crc = le32_to_cpu(super->s_crc);
1156 	super->s_crc = 0;
1157 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1158 	if (crc != stored_crc) {
1159 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1160 			   crc, stored_crc);
1161 		goto free_page;
1162 	}
1163 
1164 	sbi->s_features = le64_to_cpu(super->s_features);
1165 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1166 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1167 			   sbi->s_features);
1168 		goto free_page;
1169 	}
1170 
1171 	if (sbi->s_features & ZONEFS_F_UID) {
1172 		sbi->s_uid = make_kuid(current_user_ns(),
1173 				       le32_to_cpu(super->s_uid));
1174 		if (!uid_valid(sbi->s_uid)) {
1175 			zonefs_err(sb, "Invalid UID feature\n");
1176 			goto free_page;
1177 		}
1178 	}
1179 
1180 	if (sbi->s_features & ZONEFS_F_GID) {
1181 		sbi->s_gid = make_kgid(current_user_ns(),
1182 				       le32_to_cpu(super->s_gid));
1183 		if (!gid_valid(sbi->s_gid)) {
1184 			zonefs_err(sb, "Invalid GID feature\n");
1185 			goto free_page;
1186 		}
1187 	}
1188 
1189 	if (sbi->s_features & ZONEFS_F_PERM)
1190 		sbi->s_perm = le32_to_cpu(super->s_perm);
1191 
1192 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1193 		zonefs_err(sb, "Reserved area is being used\n");
1194 		goto free_page;
1195 	}
1196 
1197 	import_uuid(&sbi->s_uuid, super->s_uuid);
1198 	ret = 0;
1199 
1200 free_page:
1201 	__free_page(page);
1202 
1203 	return ret;
1204 }
1205 
1206 static const struct super_operations zonefs_sops = {
1207 	.alloc_inode	= zonefs_alloc_inode,
1208 	.free_inode	= zonefs_free_inode,
1209 	.statfs		= zonefs_statfs,
1210 	.remount_fs	= zonefs_remount,
1211 	.show_options	= zonefs_show_options,
1212 };
1213 
1214 static int zonefs_get_zgroup_inodes(struct super_block *sb)
1215 {
1216 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1217 	struct inode *dir_inode;
1218 	enum zonefs_ztype ztype;
1219 
1220 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1221 		if (!sbi->s_zgroup[ztype].g_nr_zones)
1222 			continue;
1223 
1224 		dir_inode = zonefs_get_zgroup_inode(sb, ztype);
1225 		if (IS_ERR(dir_inode))
1226 			return PTR_ERR(dir_inode);
1227 
1228 		sbi->s_zgroup[ztype].g_inode = dir_inode;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static void zonefs_release_zgroup_inodes(struct super_block *sb)
1235 {
1236 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1237 	enum zonefs_ztype ztype;
1238 
1239 	if (!sbi)
1240 		return;
1241 
1242 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1243 		if (sbi->s_zgroup[ztype].g_inode) {
1244 			iput(sbi->s_zgroup[ztype].g_inode);
1245 			sbi->s_zgroup[ztype].g_inode = NULL;
1246 		}
1247 	}
1248 }
1249 
1250 /*
1251  * Check that the device is zoned. If it is, get the list of zones and create
1252  * sub-directories and files according to the device zone configuration and
1253  * format options.
1254  */
1255 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1256 {
1257 	struct zonefs_sb_info *sbi;
1258 	struct inode *inode;
1259 	enum zonefs_ztype ztype;
1260 	int ret;
1261 
1262 	if (!bdev_is_zoned(sb->s_bdev)) {
1263 		zonefs_err(sb, "Not a zoned block device\n");
1264 		return -EINVAL;
1265 	}
1266 
1267 	/*
1268 	 * Initialize super block information: the maximum file size is updated
1269 	 * when the zone files are created so that the format option
1270 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1271 	 * beyond the zone size is taken into account.
1272 	 */
1273 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1274 	if (!sbi)
1275 		return -ENOMEM;
1276 
1277 	spin_lock_init(&sbi->s_lock);
1278 	sb->s_fs_info = sbi;
1279 	sb->s_magic = ZONEFS_MAGIC;
1280 	sb->s_maxbytes = 0;
1281 	sb->s_op = &zonefs_sops;
1282 	sb->s_time_gran	= 1;
1283 
1284 	/*
1285 	 * The block size is set to the device zone write granularity to ensure
1286 	 * that write operations are always aligned according to the device
1287 	 * interface constraints.
1288 	 */
1289 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1290 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1291 	sbi->s_uid = GLOBAL_ROOT_UID;
1292 	sbi->s_gid = GLOBAL_ROOT_GID;
1293 	sbi->s_perm = 0640;
1294 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1295 
1296 	atomic_set(&sbi->s_wro_seq_files, 0);
1297 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1298 	atomic_set(&sbi->s_active_seq_files, 0);
1299 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1300 
1301 	ret = zonefs_read_super(sb);
1302 	if (ret)
1303 		return ret;
1304 
1305 	ret = zonefs_parse_options(sb, data);
1306 	if (ret)
1307 		return ret;
1308 
1309 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1310 
1311 	if (!sbi->s_max_wro_seq_files &&
1312 	    !sbi->s_max_active_seq_files &&
1313 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1314 		zonefs_info(sb,
1315 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1316 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1317 	}
1318 
1319 	/* Initialize the zone groups */
1320 	ret = zonefs_init_zgroups(sb);
1321 	if (ret)
1322 		goto cleanup;
1323 
1324 	/* Create the root directory inode */
1325 	ret = -ENOMEM;
1326 	inode = new_inode(sb);
1327 	if (!inode)
1328 		goto cleanup;
1329 
1330 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1331 	inode->i_mode = S_IFDIR | 0555;
1332 	inode->i_mtime = inode->i_atime = inode_set_ctime_current(inode);
1333 	inode->i_op = &zonefs_dir_inode_operations;
1334 	inode->i_fop = &zonefs_dir_operations;
1335 	inode->i_size = 2;
1336 	set_nlink(inode, 2);
1337 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1338 		if (sbi->s_zgroup[ztype].g_nr_zones) {
1339 			inc_nlink(inode);
1340 			inode->i_size++;
1341 		}
1342 	}
1343 
1344 	sb->s_root = d_make_root(inode);
1345 	if (!sb->s_root)
1346 		goto cleanup;
1347 
1348 	/*
1349 	 * Take a reference on the zone groups directory inodes
1350 	 * to keep them in the inode cache.
1351 	 */
1352 	ret = zonefs_get_zgroup_inodes(sb);
1353 	if (ret)
1354 		goto cleanup;
1355 
1356 	ret = zonefs_sysfs_register(sb);
1357 	if (ret)
1358 		goto cleanup;
1359 
1360 	return 0;
1361 
1362 cleanup:
1363 	zonefs_release_zgroup_inodes(sb);
1364 	zonefs_free_zgroups(sb);
1365 
1366 	return ret;
1367 }
1368 
1369 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1370 				   int flags, const char *dev_name, void *data)
1371 {
1372 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1373 }
1374 
1375 static void zonefs_kill_super(struct super_block *sb)
1376 {
1377 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1378 
1379 	/* Release the reference on the zone group directory inodes */
1380 	zonefs_release_zgroup_inodes(sb);
1381 
1382 	kill_block_super(sb);
1383 
1384 	zonefs_sysfs_unregister(sb);
1385 	zonefs_free_zgroups(sb);
1386 	kfree(sbi);
1387 }
1388 
1389 /*
1390  * File system definition and registration.
1391  */
1392 static struct file_system_type zonefs_type = {
1393 	.owner		= THIS_MODULE,
1394 	.name		= "zonefs",
1395 	.mount		= zonefs_mount,
1396 	.kill_sb	= zonefs_kill_super,
1397 	.fs_flags	= FS_REQUIRES_DEV,
1398 };
1399 
1400 static int __init zonefs_init_inodecache(void)
1401 {
1402 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1403 			sizeof(struct zonefs_inode_info), 0,
1404 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1405 			NULL);
1406 	if (zonefs_inode_cachep == NULL)
1407 		return -ENOMEM;
1408 	return 0;
1409 }
1410 
1411 static void zonefs_destroy_inodecache(void)
1412 {
1413 	/*
1414 	 * Make sure all delayed rcu free inodes are flushed before we
1415 	 * destroy the inode cache.
1416 	 */
1417 	rcu_barrier();
1418 	kmem_cache_destroy(zonefs_inode_cachep);
1419 }
1420 
1421 static int __init zonefs_init(void)
1422 {
1423 	int ret;
1424 
1425 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1426 
1427 	ret = zonefs_init_inodecache();
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = zonefs_sysfs_init();
1432 	if (ret)
1433 		goto destroy_inodecache;
1434 
1435 	ret = register_filesystem(&zonefs_type);
1436 	if (ret)
1437 		goto sysfs_exit;
1438 
1439 	return 0;
1440 
1441 sysfs_exit:
1442 	zonefs_sysfs_exit();
1443 destroy_inodecache:
1444 	zonefs_destroy_inodecache();
1445 
1446 	return ret;
1447 }
1448 
1449 static void __exit zonefs_exit(void)
1450 {
1451 	unregister_filesystem(&zonefs_type);
1452 	zonefs_sysfs_exit();
1453 	zonefs_destroy_inodecache();
1454 }
1455 
1456 MODULE_AUTHOR("Damien Le Moal");
1457 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1458 MODULE_LICENSE("GPL");
1459 MODULE_ALIAS_FS("zonefs");
1460 module_init(zonefs_init);
1461 module_exit(zonefs_exit);
1462