xref: /openbmc/linux/fs/zonefs/super.c (revision d7955ce4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Get the name of a zone group directory.
32  */
33 static const char *zonefs_zgroup_name(enum zonefs_ztype ztype)
34 {
35 	switch (ztype) {
36 	case ZONEFS_ZTYPE_CNV:
37 		return "cnv";
38 	case ZONEFS_ZTYPE_SEQ:
39 		return "seq";
40 	default:
41 		WARN_ON_ONCE(1);
42 		return "???";
43 	}
44 }
45 
46 /*
47  * Manage the active zone count.
48  */
49 static void zonefs_account_active(struct super_block *sb,
50 				  struct zonefs_zone *z)
51 {
52 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
53 
54 	if (zonefs_zone_is_cnv(z))
55 		return;
56 
57 	/*
58 	 * For zones that transitioned to the offline or readonly condition,
59 	 * we only need to clear the active state.
60 	 */
61 	if (z->z_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY))
62 		goto out;
63 
64 	/*
65 	 * If the zone is active, that is, if it is explicitly open or
66 	 * partially written, check if it was already accounted as active.
67 	 */
68 	if ((z->z_flags & ZONEFS_ZONE_OPEN) ||
69 	    (z->z_wpoffset > 0 && z->z_wpoffset < z->z_capacity)) {
70 		if (!(z->z_flags & ZONEFS_ZONE_ACTIVE)) {
71 			z->z_flags |= ZONEFS_ZONE_ACTIVE;
72 			atomic_inc(&sbi->s_active_seq_files);
73 		}
74 		return;
75 	}
76 
77 out:
78 	/* The zone is not active. If it was, update the active count */
79 	if (z->z_flags & ZONEFS_ZONE_ACTIVE) {
80 		z->z_flags &= ~ZONEFS_ZONE_ACTIVE;
81 		atomic_dec(&sbi->s_active_seq_files);
82 	}
83 }
84 
85 /*
86  * Manage the active zone count. Called with zi->i_truncate_mutex held.
87  */
88 void zonefs_inode_account_active(struct inode *inode)
89 {
90 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
91 
92 	return zonefs_account_active(inode->i_sb, zonefs_inode_zone(inode));
93 }
94 
95 /*
96  * Execute a zone management operation.
97  */
98 static int zonefs_zone_mgmt(struct super_block *sb,
99 			    struct zonefs_zone *z, enum req_op op)
100 {
101 	int ret;
102 
103 	/*
104 	 * With ZNS drives, closing an explicitly open zone that has not been
105 	 * written will change the zone state to "closed", that is, the zone
106 	 * will remain active. Since this can then cause failure of explicit
107 	 * open operation on other zones if the drive active zone resources
108 	 * are exceeded, make sure that the zone does not remain active by
109 	 * resetting it.
110 	 */
111 	if (op == REQ_OP_ZONE_CLOSE && !z->z_wpoffset)
112 		op = REQ_OP_ZONE_RESET;
113 
114 	trace_zonefs_zone_mgmt(sb, z, op);
115 	ret = blkdev_zone_mgmt(sb->s_bdev, op, z->z_sector,
116 			       z->z_size >> SECTOR_SHIFT, GFP_NOFS);
117 	if (ret) {
118 		zonefs_err(sb,
119 			   "Zone management operation %s at %llu failed %d\n",
120 			   blk_op_str(op), z->z_sector, ret);
121 		return ret;
122 	}
123 
124 	return 0;
125 }
126 
127 int zonefs_inode_zone_mgmt(struct inode *inode, enum req_op op)
128 {
129 	lockdep_assert_held(&ZONEFS_I(inode)->i_truncate_mutex);
130 
131 	return zonefs_zone_mgmt(inode->i_sb, zonefs_inode_zone(inode), op);
132 }
133 
134 void zonefs_i_size_write(struct inode *inode, loff_t isize)
135 {
136 	struct zonefs_zone *z = zonefs_inode_zone(inode);
137 
138 	i_size_write(inode, isize);
139 
140 	/*
141 	 * A full zone is no longer open/active and does not need
142 	 * explicit closing.
143 	 */
144 	if (isize >= z->z_capacity) {
145 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
146 
147 		if (z->z_flags & ZONEFS_ZONE_ACTIVE)
148 			atomic_dec(&sbi->s_active_seq_files);
149 		z->z_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
150 	}
151 }
152 
153 void zonefs_update_stats(struct inode *inode, loff_t new_isize)
154 {
155 	struct super_block *sb = inode->i_sb;
156 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
157 	loff_t old_isize = i_size_read(inode);
158 	loff_t nr_blocks;
159 
160 	if (new_isize == old_isize)
161 		return;
162 
163 	spin_lock(&sbi->s_lock);
164 
165 	/*
166 	 * This may be called for an update after an IO error.
167 	 * So beware of the values seen.
168 	 */
169 	if (new_isize < old_isize) {
170 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
171 		if (sbi->s_used_blocks > nr_blocks)
172 			sbi->s_used_blocks -= nr_blocks;
173 		else
174 			sbi->s_used_blocks = 0;
175 	} else {
176 		sbi->s_used_blocks +=
177 			(new_isize - old_isize) >> sb->s_blocksize_bits;
178 		if (sbi->s_used_blocks > sbi->s_blocks)
179 			sbi->s_used_blocks = sbi->s_blocks;
180 	}
181 
182 	spin_unlock(&sbi->s_lock);
183 }
184 
185 /*
186  * Check a zone condition. Return the amount of written (and still readable)
187  * data in the zone.
188  */
189 static loff_t zonefs_check_zone_condition(struct super_block *sb,
190 					  struct zonefs_zone *z,
191 					  struct blk_zone *zone)
192 {
193 	switch (zone->cond) {
194 	case BLK_ZONE_COND_OFFLINE:
195 		zonefs_warn(sb, "Zone %llu: offline zone\n",
196 			    z->z_sector);
197 		z->z_flags |= ZONEFS_ZONE_OFFLINE;
198 		return 0;
199 	case BLK_ZONE_COND_READONLY:
200 		/*
201 		 * The write pointer of read-only zones is invalid, so we cannot
202 		 * determine the zone wpoffset (inode size). We thus keep the
203 		 * zone wpoffset as is, which leads to an empty file
204 		 * (wpoffset == 0) on mount. For a runtime error, this keeps
205 		 * the inode size as it was when last updated so that the user
206 		 * can recover data.
207 		 */
208 		zonefs_warn(sb, "Zone %llu: read-only zone\n",
209 			    z->z_sector);
210 		z->z_flags |= ZONEFS_ZONE_READONLY;
211 		if (zonefs_zone_is_cnv(z))
212 			return z->z_capacity;
213 		return z->z_wpoffset;
214 	case BLK_ZONE_COND_FULL:
215 		/* The write pointer of full zones is invalid. */
216 		return z->z_capacity;
217 	default:
218 		if (zonefs_zone_is_cnv(z))
219 			return z->z_capacity;
220 		return (zone->wp - zone->start) << SECTOR_SHIFT;
221 	}
222 }
223 
224 /*
225  * Check a zone condition and adjust its inode access permissions for
226  * offline and readonly zones.
227  */
228 static void zonefs_inode_update_mode(struct inode *inode)
229 {
230 	struct zonefs_zone *z = zonefs_inode_zone(inode);
231 
232 	if (z->z_flags & ZONEFS_ZONE_OFFLINE) {
233 		/* Offline zones cannot be read nor written */
234 		inode->i_flags |= S_IMMUTABLE;
235 		inode->i_mode &= ~0777;
236 	} else if (z->z_flags & ZONEFS_ZONE_READONLY) {
237 		/* Readonly zones cannot be written */
238 		inode->i_flags |= S_IMMUTABLE;
239 		if (z->z_flags & ZONEFS_ZONE_INIT_MODE)
240 			inode->i_mode &= ~0777;
241 		else
242 			inode->i_mode &= ~0222;
243 	}
244 
245 	z->z_flags &= ~ZONEFS_ZONE_INIT_MODE;
246 	z->z_mode = inode->i_mode;
247 }
248 
249 struct zonefs_ioerr_data {
250 	struct inode	*inode;
251 	bool		write;
252 };
253 
254 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
255 			      void *data)
256 {
257 	struct zonefs_ioerr_data *err = data;
258 	struct inode *inode = err->inode;
259 	struct zonefs_zone *z = zonefs_inode_zone(inode);
260 	struct super_block *sb = inode->i_sb;
261 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
262 	loff_t isize, data_size;
263 
264 	/*
265 	 * Check the zone condition: if the zone is not "bad" (offline or
266 	 * read-only), read errors are simply signaled to the IO issuer as long
267 	 * as there is no inconsistency between the inode size and the amount of
268 	 * data writen in the zone (data_size).
269 	 */
270 	data_size = zonefs_check_zone_condition(sb, z, zone);
271 	isize = i_size_read(inode);
272 	if (!(z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)) &&
273 	    !err->write && isize == data_size)
274 		return 0;
275 
276 	/*
277 	 * At this point, we detected either a bad zone or an inconsistency
278 	 * between the inode size and the amount of data written in the zone.
279 	 * For the latter case, the cause may be a write IO error or an external
280 	 * action on the device. Two error patterns exist:
281 	 * 1) The inode size is lower than the amount of data in the zone:
282 	 *    a write operation partially failed and data was writen at the end
283 	 *    of the file. This can happen in the case of a large direct IO
284 	 *    needing several BIOs and/or write requests to be processed.
285 	 * 2) The inode size is larger than the amount of data in the zone:
286 	 *    this can happen with a deferred write error with the use of the
287 	 *    device side write cache after getting successful write IO
288 	 *    completions. Other possibilities are (a) an external corruption,
289 	 *    e.g. an application reset the zone directly, or (b) the device
290 	 *    has a serious problem (e.g. firmware bug).
291 	 *
292 	 * In all cases, warn about inode size inconsistency and handle the
293 	 * IO error according to the zone condition and to the mount options.
294 	 */
295 	if (zonefs_zone_is_seq(z) && isize != data_size)
296 		zonefs_warn(sb,
297 			    "inode %lu: invalid size %lld (should be %lld)\n",
298 			    inode->i_ino, isize, data_size);
299 
300 	/*
301 	 * First handle bad zones signaled by hardware. The mount options
302 	 * errors=zone-ro and errors=zone-offline result in changing the
303 	 * zone condition to read-only and offline respectively, as if the
304 	 * condition was signaled by the hardware.
305 	 */
306 	if ((z->z_flags & ZONEFS_ZONE_OFFLINE) ||
307 	    (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)) {
308 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
309 			    inode->i_ino);
310 		if (!(z->z_flags & ZONEFS_ZONE_OFFLINE))
311 			z->z_flags |= ZONEFS_ZONE_OFFLINE;
312 		zonefs_inode_update_mode(inode);
313 		data_size = 0;
314 	} else if ((z->z_flags & ZONEFS_ZONE_READONLY) ||
315 		   (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)) {
316 		zonefs_warn(sb, "inode %lu: write access disabled\n",
317 			    inode->i_ino);
318 		if (!(z->z_flags & ZONEFS_ZONE_READONLY))
319 			z->z_flags |= ZONEFS_ZONE_READONLY;
320 		zonefs_inode_update_mode(inode);
321 		data_size = isize;
322 	} else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO &&
323 		   data_size > isize) {
324 		/* Do not expose garbage data */
325 		data_size = isize;
326 	}
327 
328 	/*
329 	 * If the filesystem is mounted with the explicit-open mount option, we
330 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
331 	 * the read-only or offline condition, to avoid attempting an explicit
332 	 * close of the zone when the inode file is closed.
333 	 */
334 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
335 	    (z->z_flags & (ZONEFS_ZONE_READONLY | ZONEFS_ZONE_OFFLINE)))
336 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
337 
338 	/*
339 	 * If error=remount-ro was specified, any error result in remounting
340 	 * the volume as read-only.
341 	 */
342 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
343 		zonefs_warn(sb, "remounting filesystem read-only\n");
344 		sb->s_flags |= SB_RDONLY;
345 	}
346 
347 	/*
348 	 * Update block usage stats and the inode size  to prevent access to
349 	 * invalid data.
350 	 */
351 	zonefs_update_stats(inode, data_size);
352 	zonefs_i_size_write(inode, data_size);
353 	z->z_wpoffset = data_size;
354 	zonefs_inode_account_active(inode);
355 
356 	return 0;
357 }
358 
359 /*
360  * When an file IO error occurs, check the file zone to see if there is a change
361  * in the zone condition (e.g. offline or read-only). For a failed write to a
362  * sequential zone, the zone write pointer position must also be checked to
363  * eventually correct the file size and zonefs inode write pointer offset
364  * (which can be out of sync with the drive due to partial write failures).
365  */
366 void __zonefs_io_error(struct inode *inode, bool write)
367 {
368 	struct zonefs_zone *z = zonefs_inode_zone(inode);
369 	struct super_block *sb = inode->i_sb;
370 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
371 	unsigned int noio_flag;
372 	unsigned int nr_zones = 1;
373 	struct zonefs_ioerr_data err = {
374 		.inode = inode,
375 		.write = write,
376 	};
377 	int ret;
378 
379 	/*
380 	 * The only files that have more than one zone are conventional zone
381 	 * files with aggregated conventional zones, for which the inode zone
382 	 * size is always larger than the device zone size.
383 	 */
384 	if (z->z_size > bdev_zone_sectors(sb->s_bdev))
385 		nr_zones = z->z_size >>
386 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
387 
388 	/*
389 	 * Memory allocations in blkdev_report_zones() can trigger a memory
390 	 * reclaim which may in turn cause a recursion into zonefs as well as
391 	 * struct request allocations for the same device. The former case may
392 	 * end up in a deadlock on the inode truncate mutex, while the latter
393 	 * may prevent IO forward progress. Executing the report zones under
394 	 * the GFP_NOIO context avoids both problems.
395 	 */
396 	noio_flag = memalloc_noio_save();
397 	ret = blkdev_report_zones(sb->s_bdev, z->z_sector, nr_zones,
398 				  zonefs_io_error_cb, &err);
399 	if (ret != nr_zones)
400 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
401 			   inode->i_ino, ret);
402 	memalloc_noio_restore(noio_flag);
403 }
404 
405 static struct kmem_cache *zonefs_inode_cachep;
406 
407 static struct inode *zonefs_alloc_inode(struct super_block *sb)
408 {
409 	struct zonefs_inode_info *zi;
410 
411 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
412 	if (!zi)
413 		return NULL;
414 
415 	inode_init_once(&zi->i_vnode);
416 	mutex_init(&zi->i_truncate_mutex);
417 	zi->i_wr_refcnt = 0;
418 
419 	return &zi->i_vnode;
420 }
421 
422 static void zonefs_free_inode(struct inode *inode)
423 {
424 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
425 }
426 
427 /*
428  * File system stat.
429  */
430 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
431 {
432 	struct super_block *sb = dentry->d_sb;
433 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
434 	enum zonefs_ztype t;
435 
436 	buf->f_type = ZONEFS_MAGIC;
437 	buf->f_bsize = sb->s_blocksize;
438 	buf->f_namelen = ZONEFS_NAME_MAX;
439 
440 	spin_lock(&sbi->s_lock);
441 
442 	buf->f_blocks = sbi->s_blocks;
443 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
444 		buf->f_bfree = 0;
445 	else
446 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
447 	buf->f_bavail = buf->f_bfree;
448 
449 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
450 		if (sbi->s_zgroup[t].g_nr_zones)
451 			buf->f_files += sbi->s_zgroup[t].g_nr_zones + 1;
452 	}
453 	buf->f_ffree = 0;
454 
455 	spin_unlock(&sbi->s_lock);
456 
457 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
458 
459 	return 0;
460 }
461 
462 enum {
463 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
464 	Opt_explicit_open, Opt_err,
465 };
466 
467 static const match_table_t tokens = {
468 	{ Opt_errors_ro,	"errors=remount-ro"},
469 	{ Opt_errors_zro,	"errors=zone-ro"},
470 	{ Opt_errors_zol,	"errors=zone-offline"},
471 	{ Opt_errors_repair,	"errors=repair"},
472 	{ Opt_explicit_open,	"explicit-open" },
473 	{ Opt_err,		NULL}
474 };
475 
476 static int zonefs_parse_options(struct super_block *sb, char *options)
477 {
478 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
479 	substring_t args[MAX_OPT_ARGS];
480 	char *p;
481 
482 	if (!options)
483 		return 0;
484 
485 	while ((p = strsep(&options, ",")) != NULL) {
486 		int token;
487 
488 		if (!*p)
489 			continue;
490 
491 		token = match_token(p, tokens, args);
492 		switch (token) {
493 		case Opt_errors_ro:
494 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
495 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
496 			break;
497 		case Opt_errors_zro:
498 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
499 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
500 			break;
501 		case Opt_errors_zol:
502 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
503 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
504 			break;
505 		case Opt_errors_repair:
506 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
507 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
508 			break;
509 		case Opt_explicit_open:
510 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
511 			break;
512 		default:
513 			return -EINVAL;
514 		}
515 	}
516 
517 	return 0;
518 }
519 
520 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
521 {
522 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
523 
524 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
525 		seq_puts(seq, ",errors=remount-ro");
526 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
527 		seq_puts(seq, ",errors=zone-ro");
528 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
529 		seq_puts(seq, ",errors=zone-offline");
530 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
531 		seq_puts(seq, ",errors=repair");
532 
533 	return 0;
534 }
535 
536 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
537 {
538 	sync_filesystem(sb);
539 
540 	return zonefs_parse_options(sb, data);
541 }
542 
543 static int zonefs_inode_setattr(struct mnt_idmap *idmap,
544 				struct dentry *dentry, struct iattr *iattr)
545 {
546 	struct inode *inode = d_inode(dentry);
547 	int ret;
548 
549 	if (unlikely(IS_IMMUTABLE(inode)))
550 		return -EPERM;
551 
552 	ret = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
553 	if (ret)
554 		return ret;
555 
556 	/*
557 	 * Since files and directories cannot be created nor deleted, do not
558 	 * allow setting any write attributes on the sub-directories grouping
559 	 * files by zone type.
560 	 */
561 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
562 	    (iattr->ia_mode & 0222))
563 		return -EPERM;
564 
565 	if (((iattr->ia_valid & ATTR_UID) &&
566 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
567 	    ((iattr->ia_valid & ATTR_GID) &&
568 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
569 		ret = dquot_transfer(&nop_mnt_idmap, inode, iattr);
570 		if (ret)
571 			return ret;
572 	}
573 
574 	if (iattr->ia_valid & ATTR_SIZE) {
575 		ret = zonefs_file_truncate(inode, iattr->ia_size);
576 		if (ret)
577 			return ret;
578 	}
579 
580 	setattr_copy(&nop_mnt_idmap, inode, iattr);
581 
582 	if (S_ISREG(inode->i_mode)) {
583 		struct zonefs_zone *z = zonefs_inode_zone(inode);
584 
585 		z->z_mode = inode->i_mode;
586 		z->z_uid = inode->i_uid;
587 		z->z_gid = inode->i_gid;
588 	}
589 
590 	return 0;
591 }
592 
593 static const struct inode_operations zonefs_file_inode_operations = {
594 	.setattr	= zonefs_inode_setattr,
595 };
596 
597 static long zonefs_fname_to_fno(const struct qstr *fname)
598 {
599 	const char *name = fname->name;
600 	unsigned int len = fname->len;
601 	long fno = 0, shift = 1;
602 	const char *rname;
603 	char c = *name;
604 	unsigned int i;
605 
606 	/*
607 	 * File names are always a base-10 number string without any
608 	 * leading 0s.
609 	 */
610 	if (!isdigit(c))
611 		return -ENOENT;
612 
613 	if (len > 1 && c == '0')
614 		return -ENOENT;
615 
616 	if (len == 1)
617 		return c - '0';
618 
619 	for (i = 0, rname = name + len - 1; i < len; i++, rname--) {
620 		c = *rname;
621 		if (!isdigit(c))
622 			return -ENOENT;
623 		fno += (c - '0') * shift;
624 		shift *= 10;
625 	}
626 
627 	return fno;
628 }
629 
630 static struct inode *zonefs_get_file_inode(struct inode *dir,
631 					   struct dentry *dentry)
632 {
633 	struct zonefs_zone_group *zgroup = dir->i_private;
634 	struct super_block *sb = dir->i_sb;
635 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
636 	struct zonefs_zone *z;
637 	struct inode *inode;
638 	ino_t ino;
639 	long fno;
640 
641 	/* Get the file number from the file name */
642 	fno = zonefs_fname_to_fno(&dentry->d_name);
643 	if (fno < 0)
644 		return ERR_PTR(fno);
645 
646 	if (!zgroup->g_nr_zones || fno >= zgroup->g_nr_zones)
647 		return ERR_PTR(-ENOENT);
648 
649 	z = &zgroup->g_zones[fno];
650 	ino = z->z_sector >> sbi->s_zone_sectors_shift;
651 	inode = iget_locked(sb, ino);
652 	if (!inode)
653 		return ERR_PTR(-ENOMEM);
654 	if (!(inode->i_state & I_NEW)) {
655 		WARN_ON_ONCE(inode->i_private != z);
656 		return inode;
657 	}
658 
659 	inode->i_ino = ino;
660 	inode->i_mode = z->z_mode;
661 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
662 	inode->i_uid = z->z_uid;
663 	inode->i_gid = z->z_gid;
664 	inode->i_size = z->z_wpoffset;
665 	inode->i_blocks = z->z_capacity >> SECTOR_SHIFT;
666 	inode->i_private = z;
667 
668 	inode->i_op = &zonefs_file_inode_operations;
669 	inode->i_fop = &zonefs_file_operations;
670 	inode->i_mapping->a_ops = &zonefs_file_aops;
671 
672 	/* Update the inode access rights depending on the zone condition */
673 	zonefs_inode_update_mode(inode);
674 
675 	unlock_new_inode(inode);
676 
677 	return inode;
678 }
679 
680 static struct inode *zonefs_get_zgroup_inode(struct super_block *sb,
681 					     enum zonefs_ztype ztype)
682 {
683 	struct inode *root = d_inode(sb->s_root);
684 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
685 	struct inode *inode;
686 	ino_t ino = bdev_nr_zones(sb->s_bdev) + ztype + 1;
687 
688 	inode = iget_locked(sb, ino);
689 	if (!inode)
690 		return ERR_PTR(-ENOMEM);
691 	if (!(inode->i_state & I_NEW))
692 		return inode;
693 
694 	inode->i_ino = ino;
695 	inode_init_owner(&nop_mnt_idmap, inode, root, S_IFDIR | 0555);
696 	inode->i_size = sbi->s_zgroup[ztype].g_nr_zones;
697 	inode->i_ctime = inode->i_mtime = inode->i_atime = root->i_ctime;
698 	inode->i_private = &sbi->s_zgroup[ztype];
699 	set_nlink(inode, 2);
700 
701 	inode->i_op = &zonefs_dir_inode_operations;
702 	inode->i_fop = &zonefs_dir_operations;
703 
704 	unlock_new_inode(inode);
705 
706 	return inode;
707 }
708 
709 
710 static struct inode *zonefs_get_dir_inode(struct inode *dir,
711 					  struct dentry *dentry)
712 {
713 	struct super_block *sb = dir->i_sb;
714 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
715 	const char *name = dentry->d_name.name;
716 	enum zonefs_ztype ztype;
717 
718 	/*
719 	 * We only need to check for the "seq" directory and
720 	 * the "cnv" directory if we have conventional zones.
721 	 */
722 	if (dentry->d_name.len != 3)
723 		return ERR_PTR(-ENOENT);
724 
725 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
726 		if (sbi->s_zgroup[ztype].g_nr_zones &&
727 		    memcmp(name, zonefs_zgroup_name(ztype), 3) == 0)
728 			break;
729 	}
730 	if (ztype == ZONEFS_ZTYPE_MAX)
731 		return ERR_PTR(-ENOENT);
732 
733 	return zonefs_get_zgroup_inode(sb, ztype);
734 }
735 
736 static struct dentry *zonefs_lookup(struct inode *dir, struct dentry *dentry,
737 				    unsigned int flags)
738 {
739 	struct inode *inode;
740 
741 	if (dentry->d_name.len > ZONEFS_NAME_MAX)
742 		return ERR_PTR(-ENAMETOOLONG);
743 
744 	if (dir == d_inode(dir->i_sb->s_root))
745 		inode = zonefs_get_dir_inode(dir, dentry);
746 	else
747 		inode = zonefs_get_file_inode(dir, dentry);
748 	if (IS_ERR(inode))
749 		return ERR_CAST(inode);
750 
751 	return d_splice_alias(inode, dentry);
752 }
753 
754 static int zonefs_readdir_root(struct file *file, struct dir_context *ctx)
755 {
756 	struct inode *inode = file_inode(file);
757 	struct super_block *sb = inode->i_sb;
758 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
759 	enum zonefs_ztype ztype = ZONEFS_ZTYPE_CNV;
760 	ino_t base_ino = bdev_nr_zones(sb->s_bdev) + 1;
761 
762 	if (ctx->pos >= inode->i_size)
763 		return 0;
764 
765 	if (!dir_emit_dots(file, ctx))
766 		return 0;
767 
768 	if (ctx->pos == 2) {
769 		if (!sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones)
770 			ztype = ZONEFS_ZTYPE_SEQ;
771 
772 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
773 			      base_ino + ztype, DT_DIR))
774 			return 0;
775 		ctx->pos++;
776 	}
777 
778 	if (ctx->pos == 3 && ztype != ZONEFS_ZTYPE_SEQ) {
779 		ztype = ZONEFS_ZTYPE_SEQ;
780 		if (!dir_emit(ctx, zonefs_zgroup_name(ztype), 3,
781 			      base_ino + ztype, DT_DIR))
782 			return 0;
783 		ctx->pos++;
784 	}
785 
786 	return 0;
787 }
788 
789 static int zonefs_readdir_zgroup(struct file *file,
790 				 struct dir_context *ctx)
791 {
792 	struct inode *inode = file_inode(file);
793 	struct zonefs_zone_group *zgroup = inode->i_private;
794 	struct super_block *sb = inode->i_sb;
795 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
796 	struct zonefs_zone *z;
797 	int fname_len;
798 	char *fname;
799 	ino_t ino;
800 	int f;
801 
802 	/*
803 	 * The size of zone group directories is equal to the number
804 	 * of zone files in the group and does note include the "." and
805 	 * ".." entries. Hence the "+ 2" here.
806 	 */
807 	if (ctx->pos >= inode->i_size + 2)
808 		return 0;
809 
810 	if (!dir_emit_dots(file, ctx))
811 		return 0;
812 
813 	fname = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
814 	if (!fname)
815 		return -ENOMEM;
816 
817 	for (f = ctx->pos - 2; f < zgroup->g_nr_zones; f++) {
818 		z = &zgroup->g_zones[f];
819 		ino = z->z_sector >> sbi->s_zone_sectors_shift;
820 		fname_len = snprintf(fname, ZONEFS_NAME_MAX - 1, "%u", f);
821 		if (!dir_emit(ctx, fname, fname_len, ino, DT_REG))
822 			break;
823 		ctx->pos++;
824 	}
825 
826 	kfree(fname);
827 
828 	return 0;
829 }
830 
831 static int zonefs_readdir(struct file *file, struct dir_context *ctx)
832 {
833 	struct inode *inode = file_inode(file);
834 
835 	if (inode == d_inode(inode->i_sb->s_root))
836 		return zonefs_readdir_root(file, ctx);
837 
838 	return zonefs_readdir_zgroup(file, ctx);
839 }
840 
841 const struct inode_operations zonefs_dir_inode_operations = {
842 	.lookup		= zonefs_lookup,
843 	.setattr	= zonefs_inode_setattr,
844 };
845 
846 const struct file_operations zonefs_dir_operations = {
847 	.llseek		= generic_file_llseek,
848 	.read		= generic_read_dir,
849 	.iterate_shared	= zonefs_readdir,
850 };
851 
852 struct zonefs_zone_data {
853 	struct super_block	*sb;
854 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
855 	sector_t		cnv_zone_start;
856 	struct blk_zone		*zones;
857 };
858 
859 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
860 				   void *data)
861 {
862 	struct zonefs_zone_data *zd = data;
863 	struct super_block *sb = zd->sb;
864 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
865 
866 	/*
867 	 * We do not care about the first zone: it contains the super block
868 	 * and not exposed as a file.
869 	 */
870 	if (!idx)
871 		return 0;
872 
873 	/*
874 	 * Count the number of zones that will be exposed as files.
875 	 * For sequential zones, we always have as many files as zones.
876 	 * FOr conventional zones, the number of files depends on if we have
877 	 * conventional zones aggregation enabled.
878 	 */
879 	switch (zone->type) {
880 	case BLK_ZONE_TYPE_CONVENTIONAL:
881 		if (sbi->s_features & ZONEFS_F_AGGRCNV) {
882 			/* One file per set of contiguous conventional zones */
883 			if (!(sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones) ||
884 			    zone->start != zd->cnv_zone_start)
885 				sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
886 			zd->cnv_zone_start = zone->start + zone->len;
887 		} else {
888 			/* One file per zone */
889 			sbi->s_zgroup[ZONEFS_ZTYPE_CNV].g_nr_zones++;
890 		}
891 		break;
892 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
893 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
894 		sbi->s_zgroup[ZONEFS_ZTYPE_SEQ].g_nr_zones++;
895 		break;
896 	default:
897 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
898 			   zone->type);
899 		return -EIO;
900 	}
901 
902 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
903 
904 	return 0;
905 }
906 
907 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
908 {
909 	struct block_device *bdev = zd->sb->s_bdev;
910 	int ret;
911 
912 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
913 			     GFP_KERNEL);
914 	if (!zd->zones)
915 		return -ENOMEM;
916 
917 	/* Get zones information from the device */
918 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
919 				  zonefs_get_zone_info_cb, zd);
920 	if (ret < 0) {
921 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
922 		return ret;
923 	}
924 
925 	if (ret != bdev_nr_zones(bdev)) {
926 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
927 			   ret, bdev_nr_zones(bdev));
928 		return -EIO;
929 	}
930 
931 	return 0;
932 }
933 
934 static inline void zonefs_free_zone_info(struct zonefs_zone_data *zd)
935 {
936 	kvfree(zd->zones);
937 }
938 
939 /*
940  * Create a zone group and populate it with zone files.
941  */
942 static int zonefs_init_zgroup(struct super_block *sb,
943 			      struct zonefs_zone_data *zd,
944 			      enum zonefs_ztype ztype)
945 {
946 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
947 	struct zonefs_zone_group *zgroup = &sbi->s_zgroup[ztype];
948 	struct blk_zone *zone, *next, *end;
949 	struct zonefs_zone *z;
950 	unsigned int n = 0;
951 	int ret;
952 
953 	/* Allocate the zone group. If it is empty, we have nothing to do. */
954 	if (!zgroup->g_nr_zones)
955 		return 0;
956 
957 	zgroup->g_zones = kvcalloc(zgroup->g_nr_zones,
958 				   sizeof(struct zonefs_zone), GFP_KERNEL);
959 	if (!zgroup->g_zones)
960 		return -ENOMEM;
961 
962 	/*
963 	 * Initialize the zone groups using the device zone information.
964 	 * We always skip the first zone as it contains the super block
965 	 * and is not use to back a file.
966 	 */
967 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
968 	for (zone = &zd->zones[1]; zone < end; zone = next) {
969 
970 		next = zone + 1;
971 		if (zonefs_zone_type(zone) != ztype)
972 			continue;
973 
974 		if (WARN_ON_ONCE(n >= zgroup->g_nr_zones))
975 			return -EINVAL;
976 
977 		/*
978 		 * For conventional zones, contiguous zones can be aggregated
979 		 * together to form larger files. Note that this overwrites the
980 		 * length of the first zone of the set of contiguous zones
981 		 * aggregated together. If one offline or read-only zone is
982 		 * found, assume that all zones aggregated have the same
983 		 * condition.
984 		 */
985 		if (ztype == ZONEFS_ZTYPE_CNV &&
986 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
987 			for (; next < end; next++) {
988 				if (zonefs_zone_type(next) != ztype)
989 					break;
990 				zone->len += next->len;
991 				zone->capacity += next->capacity;
992 				if (next->cond == BLK_ZONE_COND_READONLY &&
993 				    zone->cond != BLK_ZONE_COND_OFFLINE)
994 					zone->cond = BLK_ZONE_COND_READONLY;
995 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
996 					zone->cond = BLK_ZONE_COND_OFFLINE;
997 			}
998 		}
999 
1000 		z = &zgroup->g_zones[n];
1001 		if (ztype == ZONEFS_ZTYPE_CNV)
1002 			z->z_flags |= ZONEFS_ZONE_CNV;
1003 		z->z_sector = zone->start;
1004 		z->z_size = zone->len << SECTOR_SHIFT;
1005 		if (z->z_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1006 		    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1007 			zonefs_err(sb,
1008 				"Invalid zone size %llu (device zone sectors %llu)\n",
1009 				z->z_size,
1010 				bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1011 			return -EINVAL;
1012 		}
1013 
1014 		z->z_capacity = min_t(loff_t, MAX_LFS_FILESIZE,
1015 				      zone->capacity << SECTOR_SHIFT);
1016 		z->z_wpoffset = zonefs_check_zone_condition(sb, z, zone);
1017 
1018 		z->z_mode = S_IFREG | sbi->s_perm;
1019 		z->z_uid = sbi->s_uid;
1020 		z->z_gid = sbi->s_gid;
1021 
1022 		/*
1023 		 * Let zonefs_inode_update_mode() know that we will need
1024 		 * special initialization of the inode mode the first time
1025 		 * it is accessed.
1026 		 */
1027 		z->z_flags |= ZONEFS_ZONE_INIT_MODE;
1028 
1029 		sb->s_maxbytes = max(z->z_capacity, sb->s_maxbytes);
1030 		sbi->s_blocks += z->z_capacity >> sb->s_blocksize_bits;
1031 		sbi->s_used_blocks += z->z_wpoffset >> sb->s_blocksize_bits;
1032 
1033 		/*
1034 		 * For sequential zones, make sure that any open zone is closed
1035 		 * first to ensure that the initial number of open zones is 0,
1036 		 * in sync with the open zone accounting done when the mount
1037 		 * option ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1038 		 */
1039 		if (ztype == ZONEFS_ZTYPE_SEQ &&
1040 		    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1041 		     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1042 			ret = zonefs_zone_mgmt(sb, z, REQ_OP_ZONE_CLOSE);
1043 			if (ret)
1044 				return ret;
1045 		}
1046 
1047 		zonefs_account_active(sb, z);
1048 
1049 		n++;
1050 	}
1051 
1052 	if (WARN_ON_ONCE(n != zgroup->g_nr_zones))
1053 		return -EINVAL;
1054 
1055 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1056 		    zonefs_zgroup_name(ztype),
1057 		    zgroup->g_nr_zones,
1058 		    zgroup->g_nr_zones > 1 ? "s" : "");
1059 
1060 	return 0;
1061 }
1062 
1063 static void zonefs_free_zgroups(struct super_block *sb)
1064 {
1065 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1066 	enum zonefs_ztype ztype;
1067 
1068 	if (!sbi)
1069 		return;
1070 
1071 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1072 		kvfree(sbi->s_zgroup[ztype].g_zones);
1073 		sbi->s_zgroup[ztype].g_zones = NULL;
1074 	}
1075 }
1076 
1077 /*
1078  * Create a zone group and populate it with zone files.
1079  */
1080 static int zonefs_init_zgroups(struct super_block *sb)
1081 {
1082 	struct zonefs_zone_data zd;
1083 	enum zonefs_ztype ztype;
1084 	int ret;
1085 
1086 	/* First get the device zone information */
1087 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1088 	zd.sb = sb;
1089 	ret = zonefs_get_zone_info(&zd);
1090 	if (ret)
1091 		goto cleanup;
1092 
1093 	/* Allocate and initialize the zone groups */
1094 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1095 		ret = zonefs_init_zgroup(sb, &zd, ztype);
1096 		if (ret) {
1097 			zonefs_info(sb,
1098 				    "Zone group \"%s\" initialization failed\n",
1099 				    zonefs_zgroup_name(ztype));
1100 			break;
1101 		}
1102 	}
1103 
1104 cleanup:
1105 	zonefs_free_zone_info(&zd);
1106 	if (ret)
1107 		zonefs_free_zgroups(sb);
1108 
1109 	return ret;
1110 }
1111 
1112 /*
1113  * Read super block information from the device.
1114  */
1115 static int zonefs_read_super(struct super_block *sb)
1116 {
1117 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1118 	struct zonefs_super *super;
1119 	u32 crc, stored_crc;
1120 	struct page *page;
1121 	struct bio_vec bio_vec;
1122 	struct bio bio;
1123 	int ret;
1124 
1125 	page = alloc_page(GFP_KERNEL);
1126 	if (!page)
1127 		return -ENOMEM;
1128 
1129 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1130 	bio.bi_iter.bi_sector = 0;
1131 	__bio_add_page(&bio, page, PAGE_SIZE, 0);
1132 
1133 	ret = submit_bio_wait(&bio);
1134 	if (ret)
1135 		goto free_page;
1136 
1137 	super = page_address(page);
1138 
1139 	ret = -EINVAL;
1140 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1141 		goto free_page;
1142 
1143 	stored_crc = le32_to_cpu(super->s_crc);
1144 	super->s_crc = 0;
1145 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1146 	if (crc != stored_crc) {
1147 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1148 			   crc, stored_crc);
1149 		goto free_page;
1150 	}
1151 
1152 	sbi->s_features = le64_to_cpu(super->s_features);
1153 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1154 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1155 			   sbi->s_features);
1156 		goto free_page;
1157 	}
1158 
1159 	if (sbi->s_features & ZONEFS_F_UID) {
1160 		sbi->s_uid = make_kuid(current_user_ns(),
1161 				       le32_to_cpu(super->s_uid));
1162 		if (!uid_valid(sbi->s_uid)) {
1163 			zonefs_err(sb, "Invalid UID feature\n");
1164 			goto free_page;
1165 		}
1166 	}
1167 
1168 	if (sbi->s_features & ZONEFS_F_GID) {
1169 		sbi->s_gid = make_kgid(current_user_ns(),
1170 				       le32_to_cpu(super->s_gid));
1171 		if (!gid_valid(sbi->s_gid)) {
1172 			zonefs_err(sb, "Invalid GID feature\n");
1173 			goto free_page;
1174 		}
1175 	}
1176 
1177 	if (sbi->s_features & ZONEFS_F_PERM)
1178 		sbi->s_perm = le32_to_cpu(super->s_perm);
1179 
1180 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1181 		zonefs_err(sb, "Reserved area is being used\n");
1182 		goto free_page;
1183 	}
1184 
1185 	import_uuid(&sbi->s_uuid, super->s_uuid);
1186 	ret = 0;
1187 
1188 free_page:
1189 	__free_page(page);
1190 
1191 	return ret;
1192 }
1193 
1194 static const struct super_operations zonefs_sops = {
1195 	.alloc_inode	= zonefs_alloc_inode,
1196 	.free_inode	= zonefs_free_inode,
1197 	.statfs		= zonefs_statfs,
1198 	.remount_fs	= zonefs_remount,
1199 	.show_options	= zonefs_show_options,
1200 };
1201 
1202 static int zonefs_get_zgroup_inodes(struct super_block *sb)
1203 {
1204 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1205 	struct inode *dir_inode;
1206 	enum zonefs_ztype ztype;
1207 
1208 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1209 		if (!sbi->s_zgroup[ztype].g_nr_zones)
1210 			continue;
1211 
1212 		dir_inode = zonefs_get_zgroup_inode(sb, ztype);
1213 		if (IS_ERR(dir_inode))
1214 			return PTR_ERR(dir_inode);
1215 
1216 		sbi->s_zgroup[ztype].g_inode = dir_inode;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static void zonefs_release_zgroup_inodes(struct super_block *sb)
1223 {
1224 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1225 	enum zonefs_ztype ztype;
1226 
1227 	if (!sbi)
1228 		return;
1229 
1230 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1231 		if (sbi->s_zgroup[ztype].g_inode) {
1232 			iput(sbi->s_zgroup[ztype].g_inode);
1233 			sbi->s_zgroup[ztype].g_inode = NULL;
1234 		}
1235 	}
1236 }
1237 
1238 /*
1239  * Check that the device is zoned. If it is, get the list of zones and create
1240  * sub-directories and files according to the device zone configuration and
1241  * format options.
1242  */
1243 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1244 {
1245 	struct zonefs_sb_info *sbi;
1246 	struct inode *inode;
1247 	enum zonefs_ztype ztype;
1248 	int ret;
1249 
1250 	if (!bdev_is_zoned(sb->s_bdev)) {
1251 		zonefs_err(sb, "Not a zoned block device\n");
1252 		return -EINVAL;
1253 	}
1254 
1255 	/*
1256 	 * Initialize super block information: the maximum file size is updated
1257 	 * when the zone files are created so that the format option
1258 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1259 	 * beyond the zone size is taken into account.
1260 	 */
1261 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1262 	if (!sbi)
1263 		return -ENOMEM;
1264 
1265 	spin_lock_init(&sbi->s_lock);
1266 	sb->s_fs_info = sbi;
1267 	sb->s_magic = ZONEFS_MAGIC;
1268 	sb->s_maxbytes = 0;
1269 	sb->s_op = &zonefs_sops;
1270 	sb->s_time_gran	= 1;
1271 
1272 	/*
1273 	 * The block size is set to the device zone write granularity to ensure
1274 	 * that write operations are always aligned according to the device
1275 	 * interface constraints.
1276 	 */
1277 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1278 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1279 	sbi->s_uid = GLOBAL_ROOT_UID;
1280 	sbi->s_gid = GLOBAL_ROOT_GID;
1281 	sbi->s_perm = 0640;
1282 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1283 
1284 	atomic_set(&sbi->s_wro_seq_files, 0);
1285 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1286 	atomic_set(&sbi->s_active_seq_files, 0);
1287 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1288 
1289 	ret = zonefs_read_super(sb);
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = zonefs_parse_options(sb, data);
1294 	if (ret)
1295 		return ret;
1296 
1297 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1298 
1299 	if (!sbi->s_max_wro_seq_files &&
1300 	    !sbi->s_max_active_seq_files &&
1301 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1302 		zonefs_info(sb,
1303 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1304 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1305 	}
1306 
1307 	/* Initialize the zone groups */
1308 	ret = zonefs_init_zgroups(sb);
1309 	if (ret)
1310 		goto cleanup;
1311 
1312 	/* Create the root directory inode */
1313 	ret = -ENOMEM;
1314 	inode = new_inode(sb);
1315 	if (!inode)
1316 		goto cleanup;
1317 
1318 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1319 	inode->i_mode = S_IFDIR | 0555;
1320 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1321 	inode->i_op = &zonefs_dir_inode_operations;
1322 	inode->i_fop = &zonefs_dir_operations;
1323 	inode->i_size = 2;
1324 	set_nlink(inode, 2);
1325 	for (ztype = 0; ztype < ZONEFS_ZTYPE_MAX; ztype++) {
1326 		if (sbi->s_zgroup[ztype].g_nr_zones) {
1327 			inc_nlink(inode);
1328 			inode->i_size++;
1329 		}
1330 	}
1331 
1332 	sb->s_root = d_make_root(inode);
1333 	if (!sb->s_root)
1334 		goto cleanup;
1335 
1336 	/*
1337 	 * Take a reference on the zone groups directory inodes
1338 	 * to keep them in the inode cache.
1339 	 */
1340 	ret = zonefs_get_zgroup_inodes(sb);
1341 	if (ret)
1342 		goto cleanup;
1343 
1344 	ret = zonefs_sysfs_register(sb);
1345 	if (ret)
1346 		goto cleanup;
1347 
1348 	return 0;
1349 
1350 cleanup:
1351 	zonefs_release_zgroup_inodes(sb);
1352 	zonefs_free_zgroups(sb);
1353 
1354 	return ret;
1355 }
1356 
1357 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1358 				   int flags, const char *dev_name, void *data)
1359 {
1360 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1361 }
1362 
1363 static void zonefs_kill_super(struct super_block *sb)
1364 {
1365 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1366 
1367 	/* Release the reference on the zone group directory inodes */
1368 	zonefs_release_zgroup_inodes(sb);
1369 
1370 	kill_block_super(sb);
1371 
1372 	zonefs_sysfs_unregister(sb);
1373 	zonefs_free_zgroups(sb);
1374 	kfree(sbi);
1375 }
1376 
1377 /*
1378  * File system definition and registration.
1379  */
1380 static struct file_system_type zonefs_type = {
1381 	.owner		= THIS_MODULE,
1382 	.name		= "zonefs",
1383 	.mount		= zonefs_mount,
1384 	.kill_sb	= zonefs_kill_super,
1385 	.fs_flags	= FS_REQUIRES_DEV,
1386 };
1387 
1388 static int __init zonefs_init_inodecache(void)
1389 {
1390 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1391 			sizeof(struct zonefs_inode_info), 0,
1392 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1393 			NULL);
1394 	if (zonefs_inode_cachep == NULL)
1395 		return -ENOMEM;
1396 	return 0;
1397 }
1398 
1399 static void zonefs_destroy_inodecache(void)
1400 {
1401 	/*
1402 	 * Make sure all delayed rcu free inodes are flushed before we
1403 	 * destroy the inode cache.
1404 	 */
1405 	rcu_barrier();
1406 	kmem_cache_destroy(zonefs_inode_cachep);
1407 }
1408 
1409 static int __init zonefs_init(void)
1410 {
1411 	int ret;
1412 
1413 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1414 
1415 	ret = zonefs_file_bioset_init();
1416 	if (ret)
1417 		return ret;
1418 
1419 	ret = zonefs_init_inodecache();
1420 	if (ret)
1421 		goto destroy_bioset;
1422 
1423 	ret = zonefs_sysfs_init();
1424 	if (ret)
1425 		goto destroy_inodecache;
1426 
1427 	ret = register_filesystem(&zonefs_type);
1428 	if (ret)
1429 		goto sysfs_exit;
1430 
1431 	return 0;
1432 
1433 sysfs_exit:
1434 	zonefs_sysfs_exit();
1435 destroy_inodecache:
1436 	zonefs_destroy_inodecache();
1437 destroy_bioset:
1438 	zonefs_file_bioset_exit();
1439 
1440 	return ret;
1441 }
1442 
1443 static void __exit zonefs_exit(void)
1444 {
1445 	unregister_filesystem(&zonefs_type);
1446 	zonefs_sysfs_exit();
1447 	zonefs_destroy_inodecache();
1448 	zonefs_file_bioset_exit();
1449 }
1450 
1451 MODULE_AUTHOR("Damien Le Moal");
1452 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1453 MODULE_LICENSE("GPL");
1454 MODULE_ALIAS_FS("zonefs");
1455 module_init(zonefs_init);
1456 module_exit(zonefs_exit);
1457