xref: /openbmc/linux/fs/zonefs/super.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	/*
39 	 * With ZNS drives, closing an explicitly open zone that has not been
40 	 * written will change the zone state to "closed", that is, the zone
41 	 * will remain active. Since this can then cause failure of explicit
42 	 * open operation on other zones if the drive active zone resources
43 	 * are exceeded, make sure that the zone does not remain active by
44 	 * resetting it.
45 	 */
46 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
47 		op = REQ_OP_ZONE_RESET;
48 
49 	trace_zonefs_zone_mgmt(inode, op);
50 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
51 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
52 	if (ret) {
53 		zonefs_err(inode->i_sb,
54 			   "Zone management operation %s at %llu failed %d\n",
55 			   blk_op_str(op), zi->i_zsector, ret);
56 		return ret;
57 	}
58 
59 	return 0;
60 }
61 
62 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
63 {
64 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 
66 	i_size_write(inode, isize);
67 	/*
68 	 * A full zone is no longer open/active and does not need
69 	 * explicit closing.
70 	 */
71 	if (isize >= zi->i_max_size)
72 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
73 }
74 
75 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
76 			      unsigned int flags, struct iomap *iomap,
77 			      struct iomap *srcmap)
78 {
79 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
80 	struct super_block *sb = inode->i_sb;
81 	loff_t isize;
82 
83 	/* All I/Os should always be within the file maximum size */
84 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
85 		return -EIO;
86 
87 	/*
88 	 * Sequential zones can only accept direct writes. This is already
89 	 * checked when writes are issued, so warn if we see a page writeback
90 	 * operation.
91 	 */
92 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
93 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
94 		return -EIO;
95 
96 	/*
97 	 * For conventional zones, all blocks are always mapped. For sequential
98 	 * zones, all blocks after always mapped below the inode size (zone
99 	 * write pointer) and unwriten beyond.
100 	 */
101 	mutex_lock(&zi->i_truncate_mutex);
102 	isize = i_size_read(inode);
103 	if (offset >= isize)
104 		iomap->type = IOMAP_UNWRITTEN;
105 	else
106 		iomap->type = IOMAP_MAPPED;
107 	if (flags & IOMAP_WRITE)
108 		length = zi->i_max_size - offset;
109 	else
110 		length = min(length, isize - offset);
111 	mutex_unlock(&zi->i_truncate_mutex);
112 
113 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
114 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
115 	iomap->bdev = inode->i_sb->s_bdev;
116 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
117 
118 	trace_zonefs_iomap_begin(inode, iomap);
119 
120 	return 0;
121 }
122 
123 static const struct iomap_ops zonefs_iomap_ops = {
124 	.iomap_begin	= zonefs_iomap_begin,
125 };
126 
127 static int zonefs_readpage(struct file *unused, struct page *page)
128 {
129 	return iomap_readpage(page, &zonefs_iomap_ops);
130 }
131 
132 static void zonefs_readahead(struct readahead_control *rac)
133 {
134 	iomap_readahead(rac, &zonefs_iomap_ops);
135 }
136 
137 /*
138  * Map blocks for page writeback. This is used only on conventional zone files,
139  * which implies that the page range can only be within the fixed inode size.
140  */
141 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
142 			     struct inode *inode, loff_t offset)
143 {
144 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
145 
146 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
147 		return -EIO;
148 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
149 		return -EIO;
150 
151 	/* If the mapping is already OK, nothing needs to be done */
152 	if (offset >= wpc->iomap.offset &&
153 	    offset < wpc->iomap.offset + wpc->iomap.length)
154 		return 0;
155 
156 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
157 				  IOMAP_WRITE, &wpc->iomap, NULL);
158 }
159 
160 static const struct iomap_writeback_ops zonefs_writeback_ops = {
161 	.map_blocks		= zonefs_map_blocks,
162 };
163 
164 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
165 {
166 	struct iomap_writepage_ctx wpc = { };
167 
168 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
169 }
170 
171 static int zonefs_writepages(struct address_space *mapping,
172 			     struct writeback_control *wbc)
173 {
174 	struct iomap_writepage_ctx wpc = { };
175 
176 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
177 }
178 
179 static int zonefs_swap_activate(struct swap_info_struct *sis,
180 				struct file *swap_file, sector_t *span)
181 {
182 	struct inode *inode = file_inode(swap_file);
183 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
184 
185 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
186 		zonefs_err(inode->i_sb,
187 			   "swap file: not a conventional zone file\n");
188 		return -EINVAL;
189 	}
190 
191 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
192 }
193 
194 static const struct address_space_operations zonefs_file_aops = {
195 	.readpage		= zonefs_readpage,
196 	.readahead		= zonefs_readahead,
197 	.writepage		= zonefs_writepage,
198 	.writepages		= zonefs_writepages,
199 	.dirty_folio		= filemap_dirty_folio,
200 	.releasepage		= iomap_releasepage,
201 	.invalidate_folio	= iomap_invalidate_folio,
202 	.migratepage		= iomap_migrate_page,
203 	.is_partially_uptodate	= iomap_is_partially_uptodate,
204 	.error_remove_page	= generic_error_remove_page,
205 	.direct_IO		= noop_direct_IO,
206 	.swap_activate		= zonefs_swap_activate,
207 };
208 
209 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
210 {
211 	struct super_block *sb = inode->i_sb;
212 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
213 	loff_t old_isize = i_size_read(inode);
214 	loff_t nr_blocks;
215 
216 	if (new_isize == old_isize)
217 		return;
218 
219 	spin_lock(&sbi->s_lock);
220 
221 	/*
222 	 * This may be called for an update after an IO error.
223 	 * So beware of the values seen.
224 	 */
225 	if (new_isize < old_isize) {
226 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
227 		if (sbi->s_used_blocks > nr_blocks)
228 			sbi->s_used_blocks -= nr_blocks;
229 		else
230 			sbi->s_used_blocks = 0;
231 	} else {
232 		sbi->s_used_blocks +=
233 			(new_isize - old_isize) >> sb->s_blocksize_bits;
234 		if (sbi->s_used_blocks > sbi->s_blocks)
235 			sbi->s_used_blocks = sbi->s_blocks;
236 	}
237 
238 	spin_unlock(&sbi->s_lock);
239 }
240 
241 /*
242  * Check a zone condition and adjust its file inode access permissions for
243  * offline and readonly zones. Return the inode size corresponding to the
244  * amount of readable data in the zone.
245  */
246 static loff_t zonefs_check_zone_condition(struct inode *inode,
247 					  struct blk_zone *zone, bool warn,
248 					  bool mount)
249 {
250 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
251 
252 	switch (zone->cond) {
253 	case BLK_ZONE_COND_OFFLINE:
254 		/*
255 		 * Dead zone: make the inode immutable, disable all accesses
256 		 * and set the file size to 0 (zone wp set to zone start).
257 		 */
258 		if (warn)
259 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
260 				    inode->i_ino);
261 		inode->i_flags |= S_IMMUTABLE;
262 		inode->i_mode &= ~0777;
263 		zone->wp = zone->start;
264 		return 0;
265 	case BLK_ZONE_COND_READONLY:
266 		/*
267 		 * The write pointer of read-only zones is invalid. If such a
268 		 * zone is found during mount, the file size cannot be retrieved
269 		 * so we treat the zone as offline (mount == true case).
270 		 * Otherwise, keep the file size as it was when last updated
271 		 * so that the user can recover data. In both cases, writes are
272 		 * always disabled for the zone.
273 		 */
274 		if (warn)
275 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
276 				    inode->i_ino);
277 		inode->i_flags |= S_IMMUTABLE;
278 		if (mount) {
279 			zone->cond = BLK_ZONE_COND_OFFLINE;
280 			inode->i_mode &= ~0777;
281 			zone->wp = zone->start;
282 			return 0;
283 		}
284 		inode->i_mode &= ~0222;
285 		return i_size_read(inode);
286 	case BLK_ZONE_COND_FULL:
287 		/* The write pointer of full zones is invalid. */
288 		return zi->i_max_size;
289 	default:
290 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
291 			return zi->i_max_size;
292 		return (zone->wp - zone->start) << SECTOR_SHIFT;
293 	}
294 }
295 
296 struct zonefs_ioerr_data {
297 	struct inode	*inode;
298 	bool		write;
299 };
300 
301 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
302 			      void *data)
303 {
304 	struct zonefs_ioerr_data *err = data;
305 	struct inode *inode = err->inode;
306 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
307 	struct super_block *sb = inode->i_sb;
308 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
309 	loff_t isize, data_size;
310 
311 	/*
312 	 * Check the zone condition: if the zone is not "bad" (offline or
313 	 * read-only), read errors are simply signaled to the IO issuer as long
314 	 * as there is no inconsistency between the inode size and the amount of
315 	 * data writen in the zone (data_size).
316 	 */
317 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
318 	isize = i_size_read(inode);
319 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
320 	    zone->cond != BLK_ZONE_COND_READONLY &&
321 	    !err->write && isize == data_size)
322 		return 0;
323 
324 	/*
325 	 * At this point, we detected either a bad zone or an inconsistency
326 	 * between the inode size and the amount of data written in the zone.
327 	 * For the latter case, the cause may be a write IO error or an external
328 	 * action on the device. Two error patterns exist:
329 	 * 1) The inode size is lower than the amount of data in the zone:
330 	 *    a write operation partially failed and data was writen at the end
331 	 *    of the file. This can happen in the case of a large direct IO
332 	 *    needing several BIOs and/or write requests to be processed.
333 	 * 2) The inode size is larger than the amount of data in the zone:
334 	 *    this can happen with a deferred write error with the use of the
335 	 *    device side write cache after getting successful write IO
336 	 *    completions. Other possibilities are (a) an external corruption,
337 	 *    e.g. an application reset the zone directly, or (b) the device
338 	 *    has a serious problem (e.g. firmware bug).
339 	 *
340 	 * In all cases, warn about inode size inconsistency and handle the
341 	 * IO error according to the zone condition and to the mount options.
342 	 */
343 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
344 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
345 			    inode->i_ino, isize, data_size);
346 
347 	/*
348 	 * First handle bad zones signaled by hardware. The mount options
349 	 * errors=zone-ro and errors=zone-offline result in changing the
350 	 * zone condition to read-only and offline respectively, as if the
351 	 * condition was signaled by the hardware.
352 	 */
353 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
354 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
355 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
356 			    inode->i_ino);
357 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
358 			zone->cond = BLK_ZONE_COND_OFFLINE;
359 			data_size = zonefs_check_zone_condition(inode, zone,
360 								false, false);
361 		}
362 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
363 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
364 		zonefs_warn(sb, "inode %lu: write access disabled\n",
365 			    inode->i_ino);
366 		if (zone->cond != BLK_ZONE_COND_READONLY) {
367 			zone->cond = BLK_ZONE_COND_READONLY;
368 			data_size = zonefs_check_zone_condition(inode, zone,
369 								false, false);
370 		}
371 	}
372 
373 	/*
374 	 * If the filesystem is mounted with the explicit-open mount option, we
375 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
376 	 * the read-only or offline condition, to avoid attempting an explicit
377 	 * close of the zone when the inode file is closed.
378 	 */
379 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
380 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
381 	     zone->cond == BLK_ZONE_COND_READONLY))
382 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
383 
384 	/*
385 	 * If error=remount-ro was specified, any error result in remounting
386 	 * the volume as read-only.
387 	 */
388 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
389 		zonefs_warn(sb, "remounting filesystem read-only\n");
390 		sb->s_flags |= SB_RDONLY;
391 	}
392 
393 	/*
394 	 * Update block usage stats and the inode size  to prevent access to
395 	 * invalid data.
396 	 */
397 	zonefs_update_stats(inode, data_size);
398 	zonefs_i_size_write(inode, data_size);
399 	zi->i_wpoffset = data_size;
400 
401 	return 0;
402 }
403 
404 /*
405  * When an file IO error occurs, check the file zone to see if there is a change
406  * in the zone condition (e.g. offline or read-only). For a failed write to a
407  * sequential zone, the zone write pointer position must also be checked to
408  * eventually correct the file size and zonefs inode write pointer offset
409  * (which can be out of sync with the drive due to partial write failures).
410  */
411 static void __zonefs_io_error(struct inode *inode, bool write)
412 {
413 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
414 	struct super_block *sb = inode->i_sb;
415 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
416 	unsigned int noio_flag;
417 	unsigned int nr_zones =
418 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
419 	struct zonefs_ioerr_data err = {
420 		.inode = inode,
421 		.write = write,
422 	};
423 	int ret;
424 
425 	/*
426 	 * Memory allocations in blkdev_report_zones() can trigger a memory
427 	 * reclaim which may in turn cause a recursion into zonefs as well as
428 	 * struct request allocations for the same device. The former case may
429 	 * end up in a deadlock on the inode truncate mutex, while the latter
430 	 * may prevent IO forward progress. Executing the report zones under
431 	 * the GFP_NOIO context avoids both problems.
432 	 */
433 	noio_flag = memalloc_noio_save();
434 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
435 				  zonefs_io_error_cb, &err);
436 	if (ret != nr_zones)
437 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
438 			   inode->i_ino, ret);
439 	memalloc_noio_restore(noio_flag);
440 }
441 
442 static void zonefs_io_error(struct inode *inode, bool write)
443 {
444 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
445 
446 	mutex_lock(&zi->i_truncate_mutex);
447 	__zonefs_io_error(inode, write);
448 	mutex_unlock(&zi->i_truncate_mutex);
449 }
450 
451 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
452 {
453 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
454 	loff_t old_isize;
455 	enum req_opf op;
456 	int ret = 0;
457 
458 	/*
459 	 * Only sequential zone files can be truncated and truncation is allowed
460 	 * only down to a 0 size, which is equivalent to a zone reset, and to
461 	 * the maximum file size, which is equivalent to a zone finish.
462 	 */
463 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
464 		return -EPERM;
465 
466 	if (!isize)
467 		op = REQ_OP_ZONE_RESET;
468 	else if (isize == zi->i_max_size)
469 		op = REQ_OP_ZONE_FINISH;
470 	else
471 		return -EPERM;
472 
473 	inode_dio_wait(inode);
474 
475 	/* Serialize against page faults */
476 	filemap_invalidate_lock(inode->i_mapping);
477 
478 	/* Serialize against zonefs_iomap_begin() */
479 	mutex_lock(&zi->i_truncate_mutex);
480 
481 	old_isize = i_size_read(inode);
482 	if (isize == old_isize)
483 		goto unlock;
484 
485 	ret = zonefs_zone_mgmt(inode, op);
486 	if (ret)
487 		goto unlock;
488 
489 	/*
490 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
491 	 * take care of open zones.
492 	 */
493 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
494 		/*
495 		 * Truncating a zone to EMPTY or FULL is the equivalent of
496 		 * closing the zone. For a truncation to 0, we need to
497 		 * re-open the zone to ensure new writes can be processed.
498 		 * For a truncation to the maximum file size, the zone is
499 		 * closed and writes cannot be accepted anymore, so clear
500 		 * the open flag.
501 		 */
502 		if (!isize)
503 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
504 		else
505 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
506 	}
507 
508 	zonefs_update_stats(inode, isize);
509 	truncate_setsize(inode, isize);
510 	zi->i_wpoffset = isize;
511 
512 unlock:
513 	mutex_unlock(&zi->i_truncate_mutex);
514 	filemap_invalidate_unlock(inode->i_mapping);
515 
516 	return ret;
517 }
518 
519 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
520 				struct dentry *dentry, struct iattr *iattr)
521 {
522 	struct inode *inode = d_inode(dentry);
523 	int ret;
524 
525 	if (unlikely(IS_IMMUTABLE(inode)))
526 		return -EPERM;
527 
528 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
529 	if (ret)
530 		return ret;
531 
532 	/*
533 	 * Since files and directories cannot be created nor deleted, do not
534 	 * allow setting any write attributes on the sub-directories grouping
535 	 * files by zone type.
536 	 */
537 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
538 	    (iattr->ia_mode & 0222))
539 		return -EPERM;
540 
541 	if (((iattr->ia_valid & ATTR_UID) &&
542 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
543 	    ((iattr->ia_valid & ATTR_GID) &&
544 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
545 		ret = dquot_transfer(inode, iattr);
546 		if (ret)
547 			return ret;
548 	}
549 
550 	if (iattr->ia_valid & ATTR_SIZE) {
551 		ret = zonefs_file_truncate(inode, iattr->ia_size);
552 		if (ret)
553 			return ret;
554 	}
555 
556 	setattr_copy(&init_user_ns, inode, iattr);
557 
558 	return 0;
559 }
560 
561 static const struct inode_operations zonefs_file_inode_operations = {
562 	.setattr	= zonefs_inode_setattr,
563 };
564 
565 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
566 			     int datasync)
567 {
568 	struct inode *inode = file_inode(file);
569 	int ret = 0;
570 
571 	if (unlikely(IS_IMMUTABLE(inode)))
572 		return -EPERM;
573 
574 	/*
575 	 * Since only direct writes are allowed in sequential files, page cache
576 	 * flush is needed only for conventional zone files.
577 	 */
578 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
579 		ret = file_write_and_wait_range(file, start, end);
580 	if (!ret)
581 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
582 
583 	if (ret)
584 		zonefs_io_error(inode, true);
585 
586 	return ret;
587 }
588 
589 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
590 {
591 	struct inode *inode = file_inode(vmf->vma->vm_file);
592 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
593 	vm_fault_t ret;
594 
595 	if (unlikely(IS_IMMUTABLE(inode)))
596 		return VM_FAULT_SIGBUS;
597 
598 	/*
599 	 * Sanity check: only conventional zone files can have shared
600 	 * writeable mappings.
601 	 */
602 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
603 		return VM_FAULT_NOPAGE;
604 
605 	sb_start_pagefault(inode->i_sb);
606 	file_update_time(vmf->vma->vm_file);
607 
608 	/* Serialize against truncates */
609 	filemap_invalidate_lock_shared(inode->i_mapping);
610 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
611 	filemap_invalidate_unlock_shared(inode->i_mapping);
612 
613 	sb_end_pagefault(inode->i_sb);
614 	return ret;
615 }
616 
617 static const struct vm_operations_struct zonefs_file_vm_ops = {
618 	.fault		= filemap_fault,
619 	.map_pages	= filemap_map_pages,
620 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
621 };
622 
623 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
624 {
625 	/*
626 	 * Conventional zones accept random writes, so their files can support
627 	 * shared writable mappings. For sequential zone files, only read
628 	 * mappings are possible since there are no guarantees for write
629 	 * ordering between msync() and page cache writeback.
630 	 */
631 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
632 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
633 		return -EINVAL;
634 
635 	file_accessed(file);
636 	vma->vm_ops = &zonefs_file_vm_ops;
637 
638 	return 0;
639 }
640 
641 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
642 {
643 	loff_t isize = i_size_read(file_inode(file));
644 
645 	/*
646 	 * Seeks are limited to below the zone size for conventional zones
647 	 * and below the zone write pointer for sequential zones. In both
648 	 * cases, this limit is the inode size.
649 	 */
650 	return generic_file_llseek_size(file, offset, whence, isize, isize);
651 }
652 
653 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
654 					int error, unsigned int flags)
655 {
656 	struct inode *inode = file_inode(iocb->ki_filp);
657 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
658 
659 	if (error) {
660 		zonefs_io_error(inode, true);
661 		return error;
662 	}
663 
664 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
665 		/*
666 		 * Note that we may be seeing completions out of order,
667 		 * but that is not a problem since a write completed
668 		 * successfully necessarily means that all preceding writes
669 		 * were also successful. So we can safely increase the inode
670 		 * size to the write end location.
671 		 */
672 		mutex_lock(&zi->i_truncate_mutex);
673 		if (i_size_read(inode) < iocb->ki_pos + size) {
674 			zonefs_update_stats(inode, iocb->ki_pos + size);
675 			zonefs_i_size_write(inode, iocb->ki_pos + size);
676 		}
677 		mutex_unlock(&zi->i_truncate_mutex);
678 	}
679 
680 	return 0;
681 }
682 
683 static const struct iomap_dio_ops zonefs_write_dio_ops = {
684 	.end_io			= zonefs_file_write_dio_end_io,
685 };
686 
687 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
688 {
689 	struct inode *inode = file_inode(iocb->ki_filp);
690 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
691 	struct block_device *bdev = inode->i_sb->s_bdev;
692 	unsigned int max;
693 	struct bio *bio;
694 	ssize_t size;
695 	int nr_pages;
696 	ssize_t ret;
697 
698 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
699 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
700 	iov_iter_truncate(from, max);
701 
702 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
703 	if (!nr_pages)
704 		return 0;
705 
706 	bio = bio_alloc(bdev, nr_pages,
707 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
708 	bio->bi_iter.bi_sector = zi->i_zsector;
709 	bio->bi_ioprio = iocb->ki_ioprio;
710 	if (iocb->ki_flags & IOCB_DSYNC)
711 		bio->bi_opf |= REQ_FUA;
712 
713 	ret = bio_iov_iter_get_pages(bio, from);
714 	if (unlikely(ret))
715 		goto out_release;
716 
717 	size = bio->bi_iter.bi_size;
718 	task_io_account_write(size);
719 
720 	if (iocb->ki_flags & IOCB_HIPRI)
721 		bio_set_polled(bio, iocb);
722 
723 	ret = submit_bio_wait(bio);
724 
725 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
726 	trace_zonefs_file_dio_append(inode, size, ret);
727 
728 out_release:
729 	bio_release_pages(bio, false);
730 	bio_put(bio);
731 
732 	if (ret >= 0) {
733 		iocb->ki_pos += size;
734 		return size;
735 	}
736 
737 	return ret;
738 }
739 
740 /*
741  * Do not exceed the LFS limits nor the file zone size. If pos is under the
742  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
743  */
744 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
745 					loff_t count)
746 {
747 	struct inode *inode = file_inode(file);
748 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
749 	loff_t limit = rlimit(RLIMIT_FSIZE);
750 	loff_t max_size = zi->i_max_size;
751 
752 	if (limit != RLIM_INFINITY) {
753 		if (pos >= limit) {
754 			send_sig(SIGXFSZ, current, 0);
755 			return -EFBIG;
756 		}
757 		count = min(count, limit - pos);
758 	}
759 
760 	if (!(file->f_flags & O_LARGEFILE))
761 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
762 
763 	if (unlikely(pos >= max_size))
764 		return -EFBIG;
765 
766 	return min(count, max_size - pos);
767 }
768 
769 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
770 {
771 	struct file *file = iocb->ki_filp;
772 	struct inode *inode = file_inode(file);
773 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
774 	loff_t count;
775 
776 	if (IS_SWAPFILE(inode))
777 		return -ETXTBSY;
778 
779 	if (!iov_iter_count(from))
780 		return 0;
781 
782 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
783 		return -EINVAL;
784 
785 	if (iocb->ki_flags & IOCB_APPEND) {
786 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
787 			return -EINVAL;
788 		mutex_lock(&zi->i_truncate_mutex);
789 		iocb->ki_pos = zi->i_wpoffset;
790 		mutex_unlock(&zi->i_truncate_mutex);
791 	}
792 
793 	count = zonefs_write_check_limits(file, iocb->ki_pos,
794 					  iov_iter_count(from));
795 	if (count < 0)
796 		return count;
797 
798 	iov_iter_truncate(from, count);
799 	return iov_iter_count(from);
800 }
801 
802 /*
803  * Handle direct writes. For sequential zone files, this is the only possible
804  * write path. For these files, check that the user is issuing writes
805  * sequentially from the end of the file. This code assumes that the block layer
806  * delivers write requests to the device in sequential order. This is always the
807  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
808  * elevator feature is being used (e.g. mq-deadline). The block layer always
809  * automatically select such an elevator for zoned block devices during the
810  * device initialization.
811  */
812 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
813 {
814 	struct inode *inode = file_inode(iocb->ki_filp);
815 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
816 	struct super_block *sb = inode->i_sb;
817 	bool sync = is_sync_kiocb(iocb);
818 	bool append = false;
819 	ssize_t ret, count;
820 
821 	/*
822 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
823 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
824 	 * on the inode lock but the second goes through but is now unaligned).
825 	 */
826 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
827 	    (iocb->ki_flags & IOCB_NOWAIT))
828 		return -EOPNOTSUPP;
829 
830 	if (iocb->ki_flags & IOCB_NOWAIT) {
831 		if (!inode_trylock(inode))
832 			return -EAGAIN;
833 	} else {
834 		inode_lock(inode);
835 	}
836 
837 	count = zonefs_write_checks(iocb, from);
838 	if (count <= 0) {
839 		ret = count;
840 		goto inode_unlock;
841 	}
842 
843 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
844 		ret = -EINVAL;
845 		goto inode_unlock;
846 	}
847 
848 	/* Enforce sequential writes (append only) in sequential zones */
849 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
850 		mutex_lock(&zi->i_truncate_mutex);
851 		if (iocb->ki_pos != zi->i_wpoffset) {
852 			mutex_unlock(&zi->i_truncate_mutex);
853 			ret = -EINVAL;
854 			goto inode_unlock;
855 		}
856 		mutex_unlock(&zi->i_truncate_mutex);
857 		append = sync;
858 	}
859 
860 	if (append)
861 		ret = zonefs_file_dio_append(iocb, from);
862 	else
863 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
864 				   &zonefs_write_dio_ops, 0, 0);
865 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
866 	    (ret > 0 || ret == -EIOCBQUEUED)) {
867 		if (ret > 0)
868 			count = ret;
869 		mutex_lock(&zi->i_truncate_mutex);
870 		zi->i_wpoffset += count;
871 		mutex_unlock(&zi->i_truncate_mutex);
872 	}
873 
874 inode_unlock:
875 	inode_unlock(inode);
876 
877 	return ret;
878 }
879 
880 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
881 					  struct iov_iter *from)
882 {
883 	struct inode *inode = file_inode(iocb->ki_filp);
884 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
885 	ssize_t ret;
886 
887 	/*
888 	 * Direct IO writes are mandatory for sequential zone files so that the
889 	 * write IO issuing order is preserved.
890 	 */
891 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
892 		return -EIO;
893 
894 	if (iocb->ki_flags & IOCB_NOWAIT) {
895 		if (!inode_trylock(inode))
896 			return -EAGAIN;
897 	} else {
898 		inode_lock(inode);
899 	}
900 
901 	ret = zonefs_write_checks(iocb, from);
902 	if (ret <= 0)
903 		goto inode_unlock;
904 
905 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
906 	if (ret > 0)
907 		iocb->ki_pos += ret;
908 	else if (ret == -EIO)
909 		zonefs_io_error(inode, true);
910 
911 inode_unlock:
912 	inode_unlock(inode);
913 	if (ret > 0)
914 		ret = generic_write_sync(iocb, ret);
915 
916 	return ret;
917 }
918 
919 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
920 {
921 	struct inode *inode = file_inode(iocb->ki_filp);
922 
923 	if (unlikely(IS_IMMUTABLE(inode)))
924 		return -EPERM;
925 
926 	if (sb_rdonly(inode->i_sb))
927 		return -EROFS;
928 
929 	/* Write operations beyond the zone size are not allowed */
930 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
931 		return -EFBIG;
932 
933 	if (iocb->ki_flags & IOCB_DIRECT) {
934 		ssize_t ret = zonefs_file_dio_write(iocb, from);
935 		if (ret != -ENOTBLK)
936 			return ret;
937 	}
938 
939 	return zonefs_file_buffered_write(iocb, from);
940 }
941 
942 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
943 				       int error, unsigned int flags)
944 {
945 	if (error) {
946 		zonefs_io_error(file_inode(iocb->ki_filp), false);
947 		return error;
948 	}
949 
950 	return 0;
951 }
952 
953 static const struct iomap_dio_ops zonefs_read_dio_ops = {
954 	.end_io			= zonefs_file_read_dio_end_io,
955 };
956 
957 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
958 {
959 	struct inode *inode = file_inode(iocb->ki_filp);
960 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
961 	struct super_block *sb = inode->i_sb;
962 	loff_t isize;
963 	ssize_t ret;
964 
965 	/* Offline zones cannot be read */
966 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
967 		return -EPERM;
968 
969 	if (iocb->ki_pos >= zi->i_max_size)
970 		return 0;
971 
972 	if (iocb->ki_flags & IOCB_NOWAIT) {
973 		if (!inode_trylock_shared(inode))
974 			return -EAGAIN;
975 	} else {
976 		inode_lock_shared(inode);
977 	}
978 
979 	/* Limit read operations to written data */
980 	mutex_lock(&zi->i_truncate_mutex);
981 	isize = i_size_read(inode);
982 	if (iocb->ki_pos >= isize) {
983 		mutex_unlock(&zi->i_truncate_mutex);
984 		ret = 0;
985 		goto inode_unlock;
986 	}
987 	iov_iter_truncate(to, isize - iocb->ki_pos);
988 	mutex_unlock(&zi->i_truncate_mutex);
989 
990 	if (iocb->ki_flags & IOCB_DIRECT) {
991 		size_t count = iov_iter_count(to);
992 
993 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
994 			ret = -EINVAL;
995 			goto inode_unlock;
996 		}
997 		file_accessed(iocb->ki_filp);
998 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
999 				   &zonefs_read_dio_ops, 0, 0);
1000 	} else {
1001 		ret = generic_file_read_iter(iocb, to);
1002 		if (ret == -EIO)
1003 			zonefs_io_error(inode, false);
1004 	}
1005 
1006 inode_unlock:
1007 	inode_unlock_shared(inode);
1008 
1009 	return ret;
1010 }
1011 
1012 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1013 {
1014 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1015 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1016 
1017 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1018 		return false;
1019 
1020 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1021 		return false;
1022 
1023 	if (!(file->f_mode & FMODE_WRITE))
1024 		return false;
1025 
1026 	return true;
1027 }
1028 
1029 static int zonefs_open_zone(struct inode *inode)
1030 {
1031 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1032 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1033 	int ret = 0;
1034 
1035 	mutex_lock(&zi->i_truncate_mutex);
1036 
1037 	if (!zi->i_wr_refcnt) {
1038 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1039 			atomic_dec(&sbi->s_open_zones);
1040 			ret = -EBUSY;
1041 			goto unlock;
1042 		}
1043 
1044 		if (i_size_read(inode) < zi->i_max_size) {
1045 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1046 			if (ret) {
1047 				atomic_dec(&sbi->s_open_zones);
1048 				goto unlock;
1049 			}
1050 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1051 		}
1052 	}
1053 
1054 	zi->i_wr_refcnt++;
1055 
1056 unlock:
1057 	mutex_unlock(&zi->i_truncate_mutex);
1058 
1059 	return ret;
1060 }
1061 
1062 static int zonefs_file_open(struct inode *inode, struct file *file)
1063 {
1064 	int ret;
1065 
1066 	ret = generic_file_open(inode, file);
1067 	if (ret)
1068 		return ret;
1069 
1070 	if (zonefs_file_use_exp_open(inode, file))
1071 		return zonefs_open_zone(inode);
1072 
1073 	return 0;
1074 }
1075 
1076 static void zonefs_close_zone(struct inode *inode)
1077 {
1078 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1079 	int ret = 0;
1080 
1081 	mutex_lock(&zi->i_truncate_mutex);
1082 	zi->i_wr_refcnt--;
1083 	if (!zi->i_wr_refcnt) {
1084 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1085 		struct super_block *sb = inode->i_sb;
1086 
1087 		/*
1088 		 * If the file zone is full, it is not open anymore and we only
1089 		 * need to decrement the open count.
1090 		 */
1091 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1092 			goto dec;
1093 
1094 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1095 		if (ret) {
1096 			__zonefs_io_error(inode, false);
1097 			/*
1098 			 * Leaving zones explicitly open may lead to a state
1099 			 * where most zones cannot be written (zone resources
1100 			 * exhausted). So take preventive action by remounting
1101 			 * read-only.
1102 			 */
1103 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1104 			    !(sb->s_flags & SB_RDONLY)) {
1105 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1106 				sb->s_flags |= SB_RDONLY;
1107 			}
1108 		}
1109 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1110 dec:
1111 		atomic_dec(&sbi->s_open_zones);
1112 	}
1113 	mutex_unlock(&zi->i_truncate_mutex);
1114 }
1115 
1116 static int zonefs_file_release(struct inode *inode, struct file *file)
1117 {
1118 	/*
1119 	 * If we explicitly open a zone we must close it again as well, but the
1120 	 * zone management operation can fail (either due to an IO error or as
1121 	 * the zone has gone offline or read-only). Make sure we don't fail the
1122 	 * close(2) for user-space.
1123 	 */
1124 	if (zonefs_file_use_exp_open(inode, file))
1125 		zonefs_close_zone(inode);
1126 
1127 	return 0;
1128 }
1129 
1130 static const struct file_operations zonefs_file_operations = {
1131 	.open		= zonefs_file_open,
1132 	.release	= zonefs_file_release,
1133 	.fsync		= zonefs_file_fsync,
1134 	.mmap		= zonefs_file_mmap,
1135 	.llseek		= zonefs_file_llseek,
1136 	.read_iter	= zonefs_file_read_iter,
1137 	.write_iter	= zonefs_file_write_iter,
1138 	.splice_read	= generic_file_splice_read,
1139 	.splice_write	= iter_file_splice_write,
1140 	.iopoll		= iocb_bio_iopoll,
1141 };
1142 
1143 static struct kmem_cache *zonefs_inode_cachep;
1144 
1145 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1146 {
1147 	struct zonefs_inode_info *zi;
1148 
1149 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1150 	if (!zi)
1151 		return NULL;
1152 
1153 	inode_init_once(&zi->i_vnode);
1154 	mutex_init(&zi->i_truncate_mutex);
1155 	zi->i_wr_refcnt = 0;
1156 	zi->i_flags = 0;
1157 
1158 	return &zi->i_vnode;
1159 }
1160 
1161 static void zonefs_free_inode(struct inode *inode)
1162 {
1163 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1164 }
1165 
1166 /*
1167  * File system stat.
1168  */
1169 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1170 {
1171 	struct super_block *sb = dentry->d_sb;
1172 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1173 	enum zonefs_ztype t;
1174 
1175 	buf->f_type = ZONEFS_MAGIC;
1176 	buf->f_bsize = sb->s_blocksize;
1177 	buf->f_namelen = ZONEFS_NAME_MAX;
1178 
1179 	spin_lock(&sbi->s_lock);
1180 
1181 	buf->f_blocks = sbi->s_blocks;
1182 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1183 		buf->f_bfree = 0;
1184 	else
1185 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1186 	buf->f_bavail = buf->f_bfree;
1187 
1188 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1189 		if (sbi->s_nr_files[t])
1190 			buf->f_files += sbi->s_nr_files[t] + 1;
1191 	}
1192 	buf->f_ffree = 0;
1193 
1194 	spin_unlock(&sbi->s_lock);
1195 
1196 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1197 
1198 	return 0;
1199 }
1200 
1201 enum {
1202 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1203 	Opt_explicit_open, Opt_err,
1204 };
1205 
1206 static const match_table_t tokens = {
1207 	{ Opt_errors_ro,	"errors=remount-ro"},
1208 	{ Opt_errors_zro,	"errors=zone-ro"},
1209 	{ Opt_errors_zol,	"errors=zone-offline"},
1210 	{ Opt_errors_repair,	"errors=repair"},
1211 	{ Opt_explicit_open,	"explicit-open" },
1212 	{ Opt_err,		NULL}
1213 };
1214 
1215 static int zonefs_parse_options(struct super_block *sb, char *options)
1216 {
1217 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1218 	substring_t args[MAX_OPT_ARGS];
1219 	char *p;
1220 
1221 	if (!options)
1222 		return 0;
1223 
1224 	while ((p = strsep(&options, ",")) != NULL) {
1225 		int token;
1226 
1227 		if (!*p)
1228 			continue;
1229 
1230 		token = match_token(p, tokens, args);
1231 		switch (token) {
1232 		case Opt_errors_ro:
1233 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1234 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1235 			break;
1236 		case Opt_errors_zro:
1237 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1238 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1239 			break;
1240 		case Opt_errors_zol:
1241 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1242 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1243 			break;
1244 		case Opt_errors_repair:
1245 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1246 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1247 			break;
1248 		case Opt_explicit_open:
1249 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1250 			break;
1251 		default:
1252 			return -EINVAL;
1253 		}
1254 	}
1255 
1256 	return 0;
1257 }
1258 
1259 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1260 {
1261 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1262 
1263 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1264 		seq_puts(seq, ",errors=remount-ro");
1265 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1266 		seq_puts(seq, ",errors=zone-ro");
1267 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1268 		seq_puts(seq, ",errors=zone-offline");
1269 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1270 		seq_puts(seq, ",errors=repair");
1271 
1272 	return 0;
1273 }
1274 
1275 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1276 {
1277 	sync_filesystem(sb);
1278 
1279 	return zonefs_parse_options(sb, data);
1280 }
1281 
1282 static const struct super_operations zonefs_sops = {
1283 	.alloc_inode	= zonefs_alloc_inode,
1284 	.free_inode	= zonefs_free_inode,
1285 	.statfs		= zonefs_statfs,
1286 	.remount_fs	= zonefs_remount,
1287 	.show_options	= zonefs_show_options,
1288 };
1289 
1290 static const struct inode_operations zonefs_dir_inode_operations = {
1291 	.lookup		= simple_lookup,
1292 	.setattr	= zonefs_inode_setattr,
1293 };
1294 
1295 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1296 				  enum zonefs_ztype type)
1297 {
1298 	struct super_block *sb = parent->i_sb;
1299 
1300 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1301 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1302 	inode->i_op = &zonefs_dir_inode_operations;
1303 	inode->i_fop = &simple_dir_operations;
1304 	set_nlink(inode, 2);
1305 	inc_nlink(parent);
1306 }
1307 
1308 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1309 				  enum zonefs_ztype type)
1310 {
1311 	struct super_block *sb = inode->i_sb;
1312 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1313 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1314 	int ret = 0;
1315 
1316 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1317 	inode->i_mode = S_IFREG | sbi->s_perm;
1318 
1319 	zi->i_ztype = type;
1320 	zi->i_zsector = zone->start;
1321 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1322 
1323 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1324 			       zone->capacity << SECTOR_SHIFT);
1325 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1326 
1327 	inode->i_uid = sbi->s_uid;
1328 	inode->i_gid = sbi->s_gid;
1329 	inode->i_size = zi->i_wpoffset;
1330 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1331 
1332 	inode->i_op = &zonefs_file_inode_operations;
1333 	inode->i_fop = &zonefs_file_operations;
1334 	inode->i_mapping->a_ops = &zonefs_file_aops;
1335 
1336 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1337 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1338 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1339 
1340 	/*
1341 	 * For sequential zones, make sure that any open zone is closed first
1342 	 * to ensure that the initial number of open zones is 0, in sync with
1343 	 * the open zone accounting done when the mount option
1344 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1345 	 */
1346 	if (type == ZONEFS_ZTYPE_SEQ &&
1347 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1348 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1349 		mutex_lock(&zi->i_truncate_mutex);
1350 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1351 		mutex_unlock(&zi->i_truncate_mutex);
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 static struct dentry *zonefs_create_inode(struct dentry *parent,
1358 					const char *name, struct blk_zone *zone,
1359 					enum zonefs_ztype type)
1360 {
1361 	struct inode *dir = d_inode(parent);
1362 	struct dentry *dentry;
1363 	struct inode *inode;
1364 	int ret;
1365 
1366 	dentry = d_alloc_name(parent, name);
1367 	if (!dentry)
1368 		return NULL;
1369 
1370 	inode = new_inode(parent->d_sb);
1371 	if (!inode)
1372 		goto dput;
1373 
1374 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1375 	if (zone) {
1376 		ret = zonefs_init_file_inode(inode, zone, type);
1377 		if (ret) {
1378 			iput(inode);
1379 			goto dput;
1380 		}
1381 	} else {
1382 		zonefs_init_dir_inode(dir, inode, type);
1383 	}
1384 
1385 	d_add(dentry, inode);
1386 	dir->i_size++;
1387 
1388 	return dentry;
1389 
1390 dput:
1391 	dput(dentry);
1392 
1393 	return NULL;
1394 }
1395 
1396 struct zonefs_zone_data {
1397 	struct super_block	*sb;
1398 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1399 	struct blk_zone		*zones;
1400 };
1401 
1402 /*
1403  * Create a zone group and populate it with zone files.
1404  */
1405 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1406 				enum zonefs_ztype type)
1407 {
1408 	struct super_block *sb = zd->sb;
1409 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1410 	struct blk_zone *zone, *next, *end;
1411 	const char *zgroup_name;
1412 	char *file_name;
1413 	struct dentry *dir;
1414 	unsigned int n = 0;
1415 	int ret;
1416 
1417 	/* If the group is empty, there is nothing to do */
1418 	if (!zd->nr_zones[type])
1419 		return 0;
1420 
1421 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1422 	if (!file_name)
1423 		return -ENOMEM;
1424 
1425 	if (type == ZONEFS_ZTYPE_CNV)
1426 		zgroup_name = "cnv";
1427 	else
1428 		zgroup_name = "seq";
1429 
1430 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1431 	if (!dir) {
1432 		ret = -ENOMEM;
1433 		goto free;
1434 	}
1435 
1436 	/*
1437 	 * The first zone contains the super block: skip it.
1438 	 */
1439 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1440 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1441 
1442 		next = zone + 1;
1443 		if (zonefs_zone_type(zone) != type)
1444 			continue;
1445 
1446 		/*
1447 		 * For conventional zones, contiguous zones can be aggregated
1448 		 * together to form larger files. Note that this overwrites the
1449 		 * length of the first zone of the set of contiguous zones
1450 		 * aggregated together. If one offline or read-only zone is
1451 		 * found, assume that all zones aggregated have the same
1452 		 * condition.
1453 		 */
1454 		if (type == ZONEFS_ZTYPE_CNV &&
1455 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1456 			for (; next < end; next++) {
1457 				if (zonefs_zone_type(next) != type)
1458 					break;
1459 				zone->len += next->len;
1460 				zone->capacity += next->capacity;
1461 				if (next->cond == BLK_ZONE_COND_READONLY &&
1462 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1463 					zone->cond = BLK_ZONE_COND_READONLY;
1464 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1465 					zone->cond = BLK_ZONE_COND_OFFLINE;
1466 			}
1467 			if (zone->capacity != zone->len) {
1468 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1469 				ret = -EINVAL;
1470 				goto free;
1471 			}
1472 		}
1473 
1474 		/*
1475 		 * Use the file number within its group as file name.
1476 		 */
1477 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1478 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1479 			ret = -ENOMEM;
1480 			goto free;
1481 		}
1482 
1483 		n++;
1484 	}
1485 
1486 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1487 		    zgroup_name, n, n > 1 ? "s" : "");
1488 
1489 	sbi->s_nr_files[type] = n;
1490 	ret = 0;
1491 
1492 free:
1493 	kfree(file_name);
1494 
1495 	return ret;
1496 }
1497 
1498 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1499 				   void *data)
1500 {
1501 	struct zonefs_zone_data *zd = data;
1502 
1503 	/*
1504 	 * Count the number of usable zones: the first zone at index 0 contains
1505 	 * the super block and is ignored.
1506 	 */
1507 	switch (zone->type) {
1508 	case BLK_ZONE_TYPE_CONVENTIONAL:
1509 		zone->wp = zone->start + zone->len;
1510 		if (idx)
1511 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1512 		break;
1513 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1514 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1515 		if (idx)
1516 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1517 		break;
1518 	default:
1519 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1520 			   zone->type);
1521 		return -EIO;
1522 	}
1523 
1524 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1525 
1526 	return 0;
1527 }
1528 
1529 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1530 {
1531 	struct block_device *bdev = zd->sb->s_bdev;
1532 	int ret;
1533 
1534 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1535 			     sizeof(struct blk_zone), GFP_KERNEL);
1536 	if (!zd->zones)
1537 		return -ENOMEM;
1538 
1539 	/* Get zones information from the device */
1540 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1541 				  zonefs_get_zone_info_cb, zd);
1542 	if (ret < 0) {
1543 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1544 		return ret;
1545 	}
1546 
1547 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1548 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1549 			   ret, blkdev_nr_zones(bdev->bd_disk));
1550 		return -EIO;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1557 {
1558 	kvfree(zd->zones);
1559 }
1560 
1561 /*
1562  * Read super block information from the device.
1563  */
1564 static int zonefs_read_super(struct super_block *sb)
1565 {
1566 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1567 	struct zonefs_super *super;
1568 	u32 crc, stored_crc;
1569 	struct page *page;
1570 	struct bio_vec bio_vec;
1571 	struct bio bio;
1572 	int ret;
1573 
1574 	page = alloc_page(GFP_KERNEL);
1575 	if (!page)
1576 		return -ENOMEM;
1577 
1578 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1579 	bio.bi_iter.bi_sector = 0;
1580 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1581 
1582 	ret = submit_bio_wait(&bio);
1583 	if (ret)
1584 		goto free_page;
1585 
1586 	super = kmap(page);
1587 
1588 	ret = -EINVAL;
1589 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1590 		goto unmap;
1591 
1592 	stored_crc = le32_to_cpu(super->s_crc);
1593 	super->s_crc = 0;
1594 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1595 	if (crc != stored_crc) {
1596 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1597 			   crc, stored_crc);
1598 		goto unmap;
1599 	}
1600 
1601 	sbi->s_features = le64_to_cpu(super->s_features);
1602 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1603 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1604 			   sbi->s_features);
1605 		goto unmap;
1606 	}
1607 
1608 	if (sbi->s_features & ZONEFS_F_UID) {
1609 		sbi->s_uid = make_kuid(current_user_ns(),
1610 				       le32_to_cpu(super->s_uid));
1611 		if (!uid_valid(sbi->s_uid)) {
1612 			zonefs_err(sb, "Invalid UID feature\n");
1613 			goto unmap;
1614 		}
1615 	}
1616 
1617 	if (sbi->s_features & ZONEFS_F_GID) {
1618 		sbi->s_gid = make_kgid(current_user_ns(),
1619 				       le32_to_cpu(super->s_gid));
1620 		if (!gid_valid(sbi->s_gid)) {
1621 			zonefs_err(sb, "Invalid GID feature\n");
1622 			goto unmap;
1623 		}
1624 	}
1625 
1626 	if (sbi->s_features & ZONEFS_F_PERM)
1627 		sbi->s_perm = le32_to_cpu(super->s_perm);
1628 
1629 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1630 		zonefs_err(sb, "Reserved area is being used\n");
1631 		goto unmap;
1632 	}
1633 
1634 	import_uuid(&sbi->s_uuid, super->s_uuid);
1635 	ret = 0;
1636 
1637 unmap:
1638 	kunmap(page);
1639 free_page:
1640 	__free_page(page);
1641 
1642 	return ret;
1643 }
1644 
1645 /*
1646  * Check that the device is zoned. If it is, get the list of zones and create
1647  * sub-directories and files according to the device zone configuration and
1648  * format options.
1649  */
1650 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1651 {
1652 	struct zonefs_zone_data zd;
1653 	struct zonefs_sb_info *sbi;
1654 	struct inode *inode;
1655 	enum zonefs_ztype t;
1656 	int ret;
1657 
1658 	if (!bdev_is_zoned(sb->s_bdev)) {
1659 		zonefs_err(sb, "Not a zoned block device\n");
1660 		return -EINVAL;
1661 	}
1662 
1663 	/*
1664 	 * Initialize super block information: the maximum file size is updated
1665 	 * when the zone files are created so that the format option
1666 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1667 	 * beyond the zone size is taken into account.
1668 	 */
1669 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1670 	if (!sbi)
1671 		return -ENOMEM;
1672 
1673 	spin_lock_init(&sbi->s_lock);
1674 	sb->s_fs_info = sbi;
1675 	sb->s_magic = ZONEFS_MAGIC;
1676 	sb->s_maxbytes = 0;
1677 	sb->s_op = &zonefs_sops;
1678 	sb->s_time_gran	= 1;
1679 
1680 	/*
1681 	 * The block size is set to the device zone write granularity to ensure
1682 	 * that write operations are always aligned according to the device
1683 	 * interface constraints.
1684 	 */
1685 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1686 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1687 	sbi->s_uid = GLOBAL_ROOT_UID;
1688 	sbi->s_gid = GLOBAL_ROOT_GID;
1689 	sbi->s_perm = 0640;
1690 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1691 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1692 	atomic_set(&sbi->s_open_zones, 0);
1693 	if (!sbi->s_max_open_zones &&
1694 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1695 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1696 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1697 	}
1698 
1699 	ret = zonefs_read_super(sb);
1700 	if (ret)
1701 		return ret;
1702 
1703 	ret = zonefs_parse_options(sb, data);
1704 	if (ret)
1705 		return ret;
1706 
1707 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1708 	zd.sb = sb;
1709 	ret = zonefs_get_zone_info(&zd);
1710 	if (ret)
1711 		goto cleanup;
1712 
1713 	zonefs_info(sb, "Mounting %u zones",
1714 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1715 
1716 	/* Create root directory inode */
1717 	ret = -ENOMEM;
1718 	inode = new_inode(sb);
1719 	if (!inode)
1720 		goto cleanup;
1721 
1722 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1723 	inode->i_mode = S_IFDIR | 0555;
1724 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1725 	inode->i_op = &zonefs_dir_inode_operations;
1726 	inode->i_fop = &simple_dir_operations;
1727 	set_nlink(inode, 2);
1728 
1729 	sb->s_root = d_make_root(inode);
1730 	if (!sb->s_root)
1731 		goto cleanup;
1732 
1733 	/* Create and populate files in zone groups directories */
1734 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1735 		ret = zonefs_create_zgroup(&zd, t);
1736 		if (ret)
1737 			break;
1738 	}
1739 
1740 cleanup:
1741 	zonefs_cleanup_zone_info(&zd);
1742 
1743 	return ret;
1744 }
1745 
1746 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1747 				   int flags, const char *dev_name, void *data)
1748 {
1749 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1750 }
1751 
1752 static void zonefs_kill_super(struct super_block *sb)
1753 {
1754 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1755 
1756 	if (sb->s_root)
1757 		d_genocide(sb->s_root);
1758 	kill_block_super(sb);
1759 	kfree(sbi);
1760 }
1761 
1762 /*
1763  * File system definition and registration.
1764  */
1765 static struct file_system_type zonefs_type = {
1766 	.owner		= THIS_MODULE,
1767 	.name		= "zonefs",
1768 	.mount		= zonefs_mount,
1769 	.kill_sb	= zonefs_kill_super,
1770 	.fs_flags	= FS_REQUIRES_DEV,
1771 };
1772 
1773 static int __init zonefs_init_inodecache(void)
1774 {
1775 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1776 			sizeof(struct zonefs_inode_info), 0,
1777 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1778 			NULL);
1779 	if (zonefs_inode_cachep == NULL)
1780 		return -ENOMEM;
1781 	return 0;
1782 }
1783 
1784 static void zonefs_destroy_inodecache(void)
1785 {
1786 	/*
1787 	 * Make sure all delayed rcu free inodes are flushed before we
1788 	 * destroy the inode cache.
1789 	 */
1790 	rcu_barrier();
1791 	kmem_cache_destroy(zonefs_inode_cachep);
1792 }
1793 
1794 static int __init zonefs_init(void)
1795 {
1796 	int ret;
1797 
1798 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1799 
1800 	ret = zonefs_init_inodecache();
1801 	if (ret)
1802 		return ret;
1803 
1804 	ret = register_filesystem(&zonefs_type);
1805 	if (ret) {
1806 		zonefs_destroy_inodecache();
1807 		return ret;
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static void __exit zonefs_exit(void)
1814 {
1815 	zonefs_destroy_inodecache();
1816 	unregister_filesystem(&zonefs_type);
1817 }
1818 
1819 MODULE_AUTHOR("Damien Le Moal");
1820 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1821 MODULE_LICENSE("GPL");
1822 MODULE_ALIAS_FS("zonefs");
1823 module_init(zonefs_init);
1824 module_exit(zonefs_exit);
1825