xref: /openbmc/linux/fs/zonefs/super.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	trace_zonefs_zone_mgmt(inode, op);
39 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
40 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
41 	if (ret) {
42 		zonefs_err(inode->i_sb,
43 			   "Zone management operation %s at %llu failed %d\n",
44 			   blk_op_str(op), zi->i_zsector, ret);
45 		return ret;
46 	}
47 
48 	return 0;
49 }
50 
51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
52 {
53 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
54 
55 	i_size_write(inode, isize);
56 	/*
57 	 * A full zone is no longer open/active and does not need
58 	 * explicit closing.
59 	 */
60 	if (isize >= zi->i_max_size)
61 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
62 }
63 
64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
65 			      unsigned int flags, struct iomap *iomap,
66 			      struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct super_block *sb = inode->i_sb;
70 	loff_t isize;
71 
72 	/* All I/Os should always be within the file maximum size */
73 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
74 		return -EIO;
75 
76 	/*
77 	 * Sequential zones can only accept direct writes. This is already
78 	 * checked when writes are issued, so warn if we see a page writeback
79 	 * operation.
80 	 */
81 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
82 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	isize = i_size_read(inode);
92 	if (offset >= isize)
93 		iomap->type = IOMAP_UNWRITTEN;
94 	else
95 		iomap->type = IOMAP_MAPPED;
96 	if (flags & IOMAP_WRITE)
97 		length = zi->i_max_size - offset;
98 	else
99 		length = min(length, isize - offset);
100 	mutex_unlock(&zi->i_truncate_mutex);
101 
102 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
103 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
104 	iomap->bdev = inode->i_sb->s_bdev;
105 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
106 
107 	trace_zonefs_iomap_begin(inode, iomap);
108 
109 	return 0;
110 }
111 
112 static const struct iomap_ops zonefs_iomap_ops = {
113 	.iomap_begin	= zonefs_iomap_begin,
114 };
115 
116 static int zonefs_readpage(struct file *unused, struct page *page)
117 {
118 	return iomap_readpage(page, &zonefs_iomap_ops);
119 }
120 
121 static void zonefs_readahead(struct readahead_control *rac)
122 {
123 	iomap_readahead(rac, &zonefs_iomap_ops);
124 }
125 
126 /*
127  * Map blocks for page writeback. This is used only on conventional zone files,
128  * which implies that the page range can only be within the fixed inode size.
129  */
130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
131 			     struct inode *inode, loff_t offset)
132 {
133 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
134 
135 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
136 		return -EIO;
137 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
138 		return -EIO;
139 
140 	/* If the mapping is already OK, nothing needs to be done */
141 	if (offset >= wpc->iomap.offset &&
142 	    offset < wpc->iomap.offset + wpc->iomap.length)
143 		return 0;
144 
145 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
146 				  IOMAP_WRITE, &wpc->iomap, NULL);
147 }
148 
149 static const struct iomap_writeback_ops zonefs_writeback_ops = {
150 	.map_blocks		= zonefs_map_blocks,
151 };
152 
153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 	struct iomap_writepage_ctx wpc = { };
156 
157 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
158 }
159 
160 static int zonefs_writepages(struct address_space *mapping,
161 			     struct writeback_control *wbc)
162 {
163 	struct iomap_writepage_ctx wpc = { };
164 
165 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
166 }
167 
168 static int zonefs_swap_activate(struct swap_info_struct *sis,
169 				struct file *swap_file, sector_t *span)
170 {
171 	struct inode *inode = file_inode(swap_file);
172 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
173 
174 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
175 		zonefs_err(inode->i_sb,
176 			   "swap file: not a conventional zone file\n");
177 		return -EINVAL;
178 	}
179 
180 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
181 }
182 
183 static const struct address_space_operations zonefs_file_aops = {
184 	.readpage		= zonefs_readpage,
185 	.readahead		= zonefs_readahead,
186 	.writepage		= zonefs_writepage,
187 	.writepages		= zonefs_writepages,
188 	.set_page_dirty		= __set_page_dirty_nobuffers,
189 	.releasepage		= iomap_releasepage,
190 	.invalidatepage		= iomap_invalidatepage,
191 	.migratepage		= iomap_migrate_page,
192 	.is_partially_uptodate	= iomap_is_partially_uptodate,
193 	.error_remove_page	= generic_error_remove_page,
194 	.direct_IO		= noop_direct_IO,
195 	.swap_activate		= zonefs_swap_activate,
196 };
197 
198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
199 {
200 	struct super_block *sb = inode->i_sb;
201 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
202 	loff_t old_isize = i_size_read(inode);
203 	loff_t nr_blocks;
204 
205 	if (new_isize == old_isize)
206 		return;
207 
208 	spin_lock(&sbi->s_lock);
209 
210 	/*
211 	 * This may be called for an update after an IO error.
212 	 * So beware of the values seen.
213 	 */
214 	if (new_isize < old_isize) {
215 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
216 		if (sbi->s_used_blocks > nr_blocks)
217 			sbi->s_used_blocks -= nr_blocks;
218 		else
219 			sbi->s_used_blocks = 0;
220 	} else {
221 		sbi->s_used_blocks +=
222 			(new_isize - old_isize) >> sb->s_blocksize_bits;
223 		if (sbi->s_used_blocks > sbi->s_blocks)
224 			sbi->s_used_blocks = sbi->s_blocks;
225 	}
226 
227 	spin_unlock(&sbi->s_lock);
228 }
229 
230 /*
231  * Check a zone condition and adjust its file inode access permissions for
232  * offline and readonly zones. Return the inode size corresponding to the
233  * amount of readable data in the zone.
234  */
235 static loff_t zonefs_check_zone_condition(struct inode *inode,
236 					  struct blk_zone *zone, bool warn,
237 					  bool mount)
238 {
239 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
240 
241 	switch (zone->cond) {
242 	case BLK_ZONE_COND_OFFLINE:
243 		/*
244 		 * Dead zone: make the inode immutable, disable all accesses
245 		 * and set the file size to 0 (zone wp set to zone start).
246 		 */
247 		if (warn)
248 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
249 				    inode->i_ino);
250 		inode->i_flags |= S_IMMUTABLE;
251 		inode->i_mode &= ~0777;
252 		zone->wp = zone->start;
253 		return 0;
254 	case BLK_ZONE_COND_READONLY:
255 		/*
256 		 * The write pointer of read-only zones is invalid. If such a
257 		 * zone is found during mount, the file size cannot be retrieved
258 		 * so we treat the zone as offline (mount == true case).
259 		 * Otherwise, keep the file size as it was when last updated
260 		 * so that the user can recover data. In both cases, writes are
261 		 * always disabled for the zone.
262 		 */
263 		if (warn)
264 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
265 				    inode->i_ino);
266 		inode->i_flags |= S_IMMUTABLE;
267 		if (mount) {
268 			zone->cond = BLK_ZONE_COND_OFFLINE;
269 			inode->i_mode &= ~0777;
270 			zone->wp = zone->start;
271 			return 0;
272 		}
273 		inode->i_mode &= ~0222;
274 		return i_size_read(inode);
275 	case BLK_ZONE_COND_FULL:
276 		/* The write pointer of full zones is invalid. */
277 		return zi->i_max_size;
278 	default:
279 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
280 			return zi->i_max_size;
281 		return (zone->wp - zone->start) << SECTOR_SHIFT;
282 	}
283 }
284 
285 struct zonefs_ioerr_data {
286 	struct inode	*inode;
287 	bool		write;
288 };
289 
290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
291 			      void *data)
292 {
293 	struct zonefs_ioerr_data *err = data;
294 	struct inode *inode = err->inode;
295 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
296 	struct super_block *sb = inode->i_sb;
297 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
298 	loff_t isize, data_size;
299 
300 	/*
301 	 * Check the zone condition: if the zone is not "bad" (offline or
302 	 * read-only), read errors are simply signaled to the IO issuer as long
303 	 * as there is no inconsistency between the inode size and the amount of
304 	 * data writen in the zone (data_size).
305 	 */
306 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
307 	isize = i_size_read(inode);
308 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
309 	    zone->cond != BLK_ZONE_COND_READONLY &&
310 	    !err->write && isize == data_size)
311 		return 0;
312 
313 	/*
314 	 * At this point, we detected either a bad zone or an inconsistency
315 	 * between the inode size and the amount of data written in the zone.
316 	 * For the latter case, the cause may be a write IO error or an external
317 	 * action on the device. Two error patterns exist:
318 	 * 1) The inode size is lower than the amount of data in the zone:
319 	 *    a write operation partially failed and data was writen at the end
320 	 *    of the file. This can happen in the case of a large direct IO
321 	 *    needing several BIOs and/or write requests to be processed.
322 	 * 2) The inode size is larger than the amount of data in the zone:
323 	 *    this can happen with a deferred write error with the use of the
324 	 *    device side write cache after getting successful write IO
325 	 *    completions. Other possibilities are (a) an external corruption,
326 	 *    e.g. an application reset the zone directly, or (b) the device
327 	 *    has a serious problem (e.g. firmware bug).
328 	 *
329 	 * In all cases, warn about inode size inconsistency and handle the
330 	 * IO error according to the zone condition and to the mount options.
331 	 */
332 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
333 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
334 			    inode->i_ino, isize, data_size);
335 
336 	/*
337 	 * First handle bad zones signaled by hardware. The mount options
338 	 * errors=zone-ro and errors=zone-offline result in changing the
339 	 * zone condition to read-only and offline respectively, as if the
340 	 * condition was signaled by the hardware.
341 	 */
342 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
343 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
344 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
345 			    inode->i_ino);
346 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
347 			zone->cond = BLK_ZONE_COND_OFFLINE;
348 			data_size = zonefs_check_zone_condition(inode, zone,
349 								false, false);
350 		}
351 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
352 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
353 		zonefs_warn(sb, "inode %lu: write access disabled\n",
354 			    inode->i_ino);
355 		if (zone->cond != BLK_ZONE_COND_READONLY) {
356 			zone->cond = BLK_ZONE_COND_READONLY;
357 			data_size = zonefs_check_zone_condition(inode, zone,
358 								false, false);
359 		}
360 	}
361 
362 	/*
363 	 * If the filesystem is mounted with the explicit-open mount option, we
364 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
365 	 * the read-only or offline condition, to avoid attempting an explicit
366 	 * close of the zone when the inode file is closed.
367 	 */
368 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
369 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
370 	     zone->cond == BLK_ZONE_COND_READONLY))
371 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
372 
373 	/*
374 	 * If error=remount-ro was specified, any error result in remounting
375 	 * the volume as read-only.
376 	 */
377 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
378 		zonefs_warn(sb, "remounting filesystem read-only\n");
379 		sb->s_flags |= SB_RDONLY;
380 	}
381 
382 	/*
383 	 * Update block usage stats and the inode size  to prevent access to
384 	 * invalid data.
385 	 */
386 	zonefs_update_stats(inode, data_size);
387 	zonefs_i_size_write(inode, data_size);
388 	zi->i_wpoffset = data_size;
389 
390 	return 0;
391 }
392 
393 /*
394  * When an file IO error occurs, check the file zone to see if there is a change
395  * in the zone condition (e.g. offline or read-only). For a failed write to a
396  * sequential zone, the zone write pointer position must also be checked to
397  * eventually correct the file size and zonefs inode write pointer offset
398  * (which can be out of sync with the drive due to partial write failures).
399  */
400 static void __zonefs_io_error(struct inode *inode, bool write)
401 {
402 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
403 	struct super_block *sb = inode->i_sb;
404 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
405 	unsigned int noio_flag;
406 	unsigned int nr_zones =
407 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
408 	struct zonefs_ioerr_data err = {
409 		.inode = inode,
410 		.write = write,
411 	};
412 	int ret;
413 
414 	/*
415 	 * Memory allocations in blkdev_report_zones() can trigger a memory
416 	 * reclaim which may in turn cause a recursion into zonefs as well as
417 	 * struct request allocations for the same device. The former case may
418 	 * end up in a deadlock on the inode truncate mutex, while the latter
419 	 * may prevent IO forward progress. Executing the report zones under
420 	 * the GFP_NOIO context avoids both problems.
421 	 */
422 	noio_flag = memalloc_noio_save();
423 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
424 				  zonefs_io_error_cb, &err);
425 	if (ret != nr_zones)
426 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
427 			   inode->i_ino, ret);
428 	memalloc_noio_restore(noio_flag);
429 }
430 
431 static void zonefs_io_error(struct inode *inode, bool write)
432 {
433 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
434 
435 	mutex_lock(&zi->i_truncate_mutex);
436 	__zonefs_io_error(inode, write);
437 	mutex_unlock(&zi->i_truncate_mutex);
438 }
439 
440 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
441 {
442 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
443 	loff_t old_isize;
444 	enum req_opf op;
445 	int ret = 0;
446 
447 	/*
448 	 * Only sequential zone files can be truncated and truncation is allowed
449 	 * only down to a 0 size, which is equivalent to a zone reset, and to
450 	 * the maximum file size, which is equivalent to a zone finish.
451 	 */
452 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
453 		return -EPERM;
454 
455 	if (!isize)
456 		op = REQ_OP_ZONE_RESET;
457 	else if (isize == zi->i_max_size)
458 		op = REQ_OP_ZONE_FINISH;
459 	else
460 		return -EPERM;
461 
462 	inode_dio_wait(inode);
463 
464 	/* Serialize against page faults */
465 	filemap_invalidate_lock(inode->i_mapping);
466 
467 	/* Serialize against zonefs_iomap_begin() */
468 	mutex_lock(&zi->i_truncate_mutex);
469 
470 	old_isize = i_size_read(inode);
471 	if (isize == old_isize)
472 		goto unlock;
473 
474 	ret = zonefs_zone_mgmt(inode, op);
475 	if (ret)
476 		goto unlock;
477 
478 	/*
479 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
480 	 * take care of open zones.
481 	 */
482 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
483 		/*
484 		 * Truncating a zone to EMPTY or FULL is the equivalent of
485 		 * closing the zone. For a truncation to 0, we need to
486 		 * re-open the zone to ensure new writes can be processed.
487 		 * For a truncation to the maximum file size, the zone is
488 		 * closed and writes cannot be accepted anymore, so clear
489 		 * the open flag.
490 		 */
491 		if (!isize)
492 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
493 		else
494 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
495 	}
496 
497 	zonefs_update_stats(inode, isize);
498 	truncate_setsize(inode, isize);
499 	zi->i_wpoffset = isize;
500 
501 unlock:
502 	mutex_unlock(&zi->i_truncate_mutex);
503 	filemap_invalidate_unlock(inode->i_mapping);
504 
505 	return ret;
506 }
507 
508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
509 				struct dentry *dentry, struct iattr *iattr)
510 {
511 	struct inode *inode = d_inode(dentry);
512 	int ret;
513 
514 	if (unlikely(IS_IMMUTABLE(inode)))
515 		return -EPERM;
516 
517 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
518 	if (ret)
519 		return ret;
520 
521 	/*
522 	 * Since files and directories cannot be created nor deleted, do not
523 	 * allow setting any write attributes on the sub-directories grouping
524 	 * files by zone type.
525 	 */
526 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
527 	    (iattr->ia_mode & 0222))
528 		return -EPERM;
529 
530 	if (((iattr->ia_valid & ATTR_UID) &&
531 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
532 	    ((iattr->ia_valid & ATTR_GID) &&
533 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
534 		ret = dquot_transfer(inode, iattr);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	if (iattr->ia_valid & ATTR_SIZE) {
540 		ret = zonefs_file_truncate(inode, iattr->ia_size);
541 		if (ret)
542 			return ret;
543 	}
544 
545 	setattr_copy(&init_user_ns, inode, iattr);
546 
547 	return 0;
548 }
549 
550 static const struct inode_operations zonefs_file_inode_operations = {
551 	.setattr	= zonefs_inode_setattr,
552 };
553 
554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
555 			     int datasync)
556 {
557 	struct inode *inode = file_inode(file);
558 	int ret = 0;
559 
560 	if (unlikely(IS_IMMUTABLE(inode)))
561 		return -EPERM;
562 
563 	/*
564 	 * Since only direct writes are allowed in sequential files, page cache
565 	 * flush is needed only for conventional zone files.
566 	 */
567 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
568 		ret = file_write_and_wait_range(file, start, end);
569 	if (!ret)
570 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
571 
572 	if (ret)
573 		zonefs_io_error(inode, true);
574 
575 	return ret;
576 }
577 
578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
579 {
580 	struct inode *inode = file_inode(vmf->vma->vm_file);
581 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
582 	vm_fault_t ret;
583 
584 	if (unlikely(IS_IMMUTABLE(inode)))
585 		return VM_FAULT_SIGBUS;
586 
587 	/*
588 	 * Sanity check: only conventional zone files can have shared
589 	 * writeable mappings.
590 	 */
591 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
592 		return VM_FAULT_NOPAGE;
593 
594 	sb_start_pagefault(inode->i_sb);
595 	file_update_time(vmf->vma->vm_file);
596 
597 	/* Serialize against truncates */
598 	filemap_invalidate_lock_shared(inode->i_mapping);
599 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
600 	filemap_invalidate_unlock_shared(inode->i_mapping);
601 
602 	sb_end_pagefault(inode->i_sb);
603 	return ret;
604 }
605 
606 static const struct vm_operations_struct zonefs_file_vm_ops = {
607 	.fault		= filemap_fault,
608 	.map_pages	= filemap_map_pages,
609 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
610 };
611 
612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
613 {
614 	/*
615 	 * Conventional zones accept random writes, so their files can support
616 	 * shared writable mappings. For sequential zone files, only read
617 	 * mappings are possible since there are no guarantees for write
618 	 * ordering between msync() and page cache writeback.
619 	 */
620 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
621 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
622 		return -EINVAL;
623 
624 	file_accessed(file);
625 	vma->vm_ops = &zonefs_file_vm_ops;
626 
627 	return 0;
628 }
629 
630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
631 {
632 	loff_t isize = i_size_read(file_inode(file));
633 
634 	/*
635 	 * Seeks are limited to below the zone size for conventional zones
636 	 * and below the zone write pointer for sequential zones. In both
637 	 * cases, this limit is the inode size.
638 	 */
639 	return generic_file_llseek_size(file, offset, whence, isize, isize);
640 }
641 
642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
643 					int error, unsigned int flags)
644 {
645 	struct inode *inode = file_inode(iocb->ki_filp);
646 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
647 
648 	if (error) {
649 		zonefs_io_error(inode, true);
650 		return error;
651 	}
652 
653 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
654 		/*
655 		 * Note that we may be seeing completions out of order,
656 		 * but that is not a problem since a write completed
657 		 * successfully necessarily means that all preceding writes
658 		 * were also successful. So we can safely increase the inode
659 		 * size to the write end location.
660 		 */
661 		mutex_lock(&zi->i_truncate_mutex);
662 		if (i_size_read(inode) < iocb->ki_pos + size) {
663 			zonefs_update_stats(inode, iocb->ki_pos + size);
664 			zonefs_i_size_write(inode, iocb->ki_pos + size);
665 		}
666 		mutex_unlock(&zi->i_truncate_mutex);
667 	}
668 
669 	return 0;
670 }
671 
672 static const struct iomap_dio_ops zonefs_write_dio_ops = {
673 	.end_io			= zonefs_file_write_dio_end_io,
674 };
675 
676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
677 {
678 	struct inode *inode = file_inode(iocb->ki_filp);
679 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
680 	struct block_device *bdev = inode->i_sb->s_bdev;
681 	unsigned int max;
682 	struct bio *bio;
683 	ssize_t size;
684 	int nr_pages;
685 	ssize_t ret;
686 
687 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
688 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
689 	iov_iter_truncate(from, max);
690 
691 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
692 	if (!nr_pages)
693 		return 0;
694 
695 	bio = bio_alloc(GFP_NOFS, nr_pages);
696 	bio_set_dev(bio, bdev);
697 	bio->bi_iter.bi_sector = zi->i_zsector;
698 	bio->bi_write_hint = iocb->ki_hint;
699 	bio->bi_ioprio = iocb->ki_ioprio;
700 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
701 	if (iocb->ki_flags & IOCB_DSYNC)
702 		bio->bi_opf |= REQ_FUA;
703 
704 	ret = bio_iov_iter_get_pages(bio, from);
705 	if (unlikely(ret))
706 		goto out_release;
707 
708 	size = bio->bi_iter.bi_size;
709 	task_io_account_write(size);
710 
711 	if (iocb->ki_flags & IOCB_HIPRI)
712 		bio_set_polled(bio, iocb);
713 
714 	ret = submit_bio_wait(bio);
715 
716 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
717 	trace_zonefs_file_dio_append(inode, size, ret);
718 
719 out_release:
720 	bio_release_pages(bio, false);
721 	bio_put(bio);
722 
723 	if (ret >= 0) {
724 		iocb->ki_pos += size;
725 		return size;
726 	}
727 
728 	return ret;
729 }
730 
731 /*
732  * Do not exceed the LFS limits nor the file zone size. If pos is under the
733  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
734  */
735 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
736 					loff_t count)
737 {
738 	struct inode *inode = file_inode(file);
739 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
740 	loff_t limit = rlimit(RLIMIT_FSIZE);
741 	loff_t max_size = zi->i_max_size;
742 
743 	if (limit != RLIM_INFINITY) {
744 		if (pos >= limit) {
745 			send_sig(SIGXFSZ, current, 0);
746 			return -EFBIG;
747 		}
748 		count = min(count, limit - pos);
749 	}
750 
751 	if (!(file->f_flags & O_LARGEFILE))
752 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
753 
754 	if (unlikely(pos >= max_size))
755 		return -EFBIG;
756 
757 	return min(count, max_size - pos);
758 }
759 
760 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
761 {
762 	struct file *file = iocb->ki_filp;
763 	struct inode *inode = file_inode(file);
764 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
765 	loff_t count;
766 
767 	if (IS_SWAPFILE(inode))
768 		return -ETXTBSY;
769 
770 	if (!iov_iter_count(from))
771 		return 0;
772 
773 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
774 		return -EINVAL;
775 
776 	if (iocb->ki_flags & IOCB_APPEND) {
777 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
778 			return -EINVAL;
779 		mutex_lock(&zi->i_truncate_mutex);
780 		iocb->ki_pos = zi->i_wpoffset;
781 		mutex_unlock(&zi->i_truncate_mutex);
782 	}
783 
784 	count = zonefs_write_check_limits(file, iocb->ki_pos,
785 					  iov_iter_count(from));
786 	if (count < 0)
787 		return count;
788 
789 	iov_iter_truncate(from, count);
790 	return iov_iter_count(from);
791 }
792 
793 /*
794  * Handle direct writes. For sequential zone files, this is the only possible
795  * write path. For these files, check that the user is issuing writes
796  * sequentially from the end of the file. This code assumes that the block layer
797  * delivers write requests to the device in sequential order. This is always the
798  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
799  * elevator feature is being used (e.g. mq-deadline). The block layer always
800  * automatically select such an elevator for zoned block devices during the
801  * device initialization.
802  */
803 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
804 {
805 	struct inode *inode = file_inode(iocb->ki_filp);
806 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
807 	struct super_block *sb = inode->i_sb;
808 	bool sync = is_sync_kiocb(iocb);
809 	bool append = false;
810 	ssize_t ret, count;
811 
812 	/*
813 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
814 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
815 	 * on the inode lock but the second goes through but is now unaligned).
816 	 */
817 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
818 	    (iocb->ki_flags & IOCB_NOWAIT))
819 		return -EOPNOTSUPP;
820 
821 	if (iocb->ki_flags & IOCB_NOWAIT) {
822 		if (!inode_trylock(inode))
823 			return -EAGAIN;
824 	} else {
825 		inode_lock(inode);
826 	}
827 
828 	count = zonefs_write_checks(iocb, from);
829 	if (count <= 0) {
830 		ret = count;
831 		goto inode_unlock;
832 	}
833 
834 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
835 		ret = -EINVAL;
836 		goto inode_unlock;
837 	}
838 
839 	/* Enforce sequential writes (append only) in sequential zones */
840 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
841 		mutex_lock(&zi->i_truncate_mutex);
842 		if (iocb->ki_pos != zi->i_wpoffset) {
843 			mutex_unlock(&zi->i_truncate_mutex);
844 			ret = -EINVAL;
845 			goto inode_unlock;
846 		}
847 		mutex_unlock(&zi->i_truncate_mutex);
848 		append = sync;
849 	}
850 
851 	if (append)
852 		ret = zonefs_file_dio_append(iocb, from);
853 	else
854 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
855 				   &zonefs_write_dio_ops, 0, 0);
856 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
857 	    (ret > 0 || ret == -EIOCBQUEUED)) {
858 		if (ret > 0)
859 			count = ret;
860 		mutex_lock(&zi->i_truncate_mutex);
861 		zi->i_wpoffset += count;
862 		mutex_unlock(&zi->i_truncate_mutex);
863 	}
864 
865 inode_unlock:
866 	inode_unlock(inode);
867 
868 	return ret;
869 }
870 
871 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
872 					  struct iov_iter *from)
873 {
874 	struct inode *inode = file_inode(iocb->ki_filp);
875 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
876 	ssize_t ret;
877 
878 	/*
879 	 * Direct IO writes are mandatory for sequential zone files so that the
880 	 * write IO issuing order is preserved.
881 	 */
882 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
883 		return -EIO;
884 
885 	if (iocb->ki_flags & IOCB_NOWAIT) {
886 		if (!inode_trylock(inode))
887 			return -EAGAIN;
888 	} else {
889 		inode_lock(inode);
890 	}
891 
892 	ret = zonefs_write_checks(iocb, from);
893 	if (ret <= 0)
894 		goto inode_unlock;
895 
896 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
897 	if (ret > 0)
898 		iocb->ki_pos += ret;
899 	else if (ret == -EIO)
900 		zonefs_io_error(inode, true);
901 
902 inode_unlock:
903 	inode_unlock(inode);
904 	if (ret > 0)
905 		ret = generic_write_sync(iocb, ret);
906 
907 	return ret;
908 }
909 
910 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
911 {
912 	struct inode *inode = file_inode(iocb->ki_filp);
913 
914 	if (unlikely(IS_IMMUTABLE(inode)))
915 		return -EPERM;
916 
917 	if (sb_rdonly(inode->i_sb))
918 		return -EROFS;
919 
920 	/* Write operations beyond the zone size are not allowed */
921 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
922 		return -EFBIG;
923 
924 	if (iocb->ki_flags & IOCB_DIRECT) {
925 		ssize_t ret = zonefs_file_dio_write(iocb, from);
926 		if (ret != -ENOTBLK)
927 			return ret;
928 	}
929 
930 	return zonefs_file_buffered_write(iocb, from);
931 }
932 
933 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
934 				       int error, unsigned int flags)
935 {
936 	if (error) {
937 		zonefs_io_error(file_inode(iocb->ki_filp), false);
938 		return error;
939 	}
940 
941 	return 0;
942 }
943 
944 static const struct iomap_dio_ops zonefs_read_dio_ops = {
945 	.end_io			= zonefs_file_read_dio_end_io,
946 };
947 
948 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
949 {
950 	struct inode *inode = file_inode(iocb->ki_filp);
951 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
952 	struct super_block *sb = inode->i_sb;
953 	loff_t isize;
954 	ssize_t ret;
955 
956 	/* Offline zones cannot be read */
957 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
958 		return -EPERM;
959 
960 	if (iocb->ki_pos >= zi->i_max_size)
961 		return 0;
962 
963 	if (iocb->ki_flags & IOCB_NOWAIT) {
964 		if (!inode_trylock_shared(inode))
965 			return -EAGAIN;
966 	} else {
967 		inode_lock_shared(inode);
968 	}
969 
970 	/* Limit read operations to written data */
971 	mutex_lock(&zi->i_truncate_mutex);
972 	isize = i_size_read(inode);
973 	if (iocb->ki_pos >= isize) {
974 		mutex_unlock(&zi->i_truncate_mutex);
975 		ret = 0;
976 		goto inode_unlock;
977 	}
978 	iov_iter_truncate(to, isize - iocb->ki_pos);
979 	mutex_unlock(&zi->i_truncate_mutex);
980 
981 	if (iocb->ki_flags & IOCB_DIRECT) {
982 		size_t count = iov_iter_count(to);
983 
984 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
985 			ret = -EINVAL;
986 			goto inode_unlock;
987 		}
988 		file_accessed(iocb->ki_filp);
989 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
990 				   &zonefs_read_dio_ops, 0, 0);
991 	} else {
992 		ret = generic_file_read_iter(iocb, to);
993 		if (ret == -EIO)
994 			zonefs_io_error(inode, false);
995 	}
996 
997 inode_unlock:
998 	inode_unlock_shared(inode);
999 
1000 	return ret;
1001 }
1002 
1003 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1004 {
1005 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1006 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1007 
1008 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1009 		return false;
1010 
1011 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1012 		return false;
1013 
1014 	if (!(file->f_mode & FMODE_WRITE))
1015 		return false;
1016 
1017 	return true;
1018 }
1019 
1020 static int zonefs_open_zone(struct inode *inode)
1021 {
1022 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1023 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1024 	int ret = 0;
1025 
1026 	mutex_lock(&zi->i_truncate_mutex);
1027 
1028 	if (!zi->i_wr_refcnt) {
1029 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1030 			atomic_dec(&sbi->s_open_zones);
1031 			ret = -EBUSY;
1032 			goto unlock;
1033 		}
1034 
1035 		if (i_size_read(inode) < zi->i_max_size) {
1036 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1037 			if (ret) {
1038 				atomic_dec(&sbi->s_open_zones);
1039 				goto unlock;
1040 			}
1041 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1042 		}
1043 	}
1044 
1045 	zi->i_wr_refcnt++;
1046 
1047 unlock:
1048 	mutex_unlock(&zi->i_truncate_mutex);
1049 
1050 	return ret;
1051 }
1052 
1053 static int zonefs_file_open(struct inode *inode, struct file *file)
1054 {
1055 	int ret;
1056 
1057 	ret = generic_file_open(inode, file);
1058 	if (ret)
1059 		return ret;
1060 
1061 	if (zonefs_file_use_exp_open(inode, file))
1062 		return zonefs_open_zone(inode);
1063 
1064 	return 0;
1065 }
1066 
1067 static void zonefs_close_zone(struct inode *inode)
1068 {
1069 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1070 	int ret = 0;
1071 
1072 	mutex_lock(&zi->i_truncate_mutex);
1073 	zi->i_wr_refcnt--;
1074 	if (!zi->i_wr_refcnt) {
1075 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1076 		struct super_block *sb = inode->i_sb;
1077 
1078 		/*
1079 		 * If the file zone is full, it is not open anymore and we only
1080 		 * need to decrement the open count.
1081 		 */
1082 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1083 			goto dec;
1084 
1085 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1086 		if (ret) {
1087 			__zonefs_io_error(inode, false);
1088 			/*
1089 			 * Leaving zones explicitly open may lead to a state
1090 			 * where most zones cannot be written (zone resources
1091 			 * exhausted). So take preventive action by remounting
1092 			 * read-only.
1093 			 */
1094 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1095 			    !(sb->s_flags & SB_RDONLY)) {
1096 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1097 				sb->s_flags |= SB_RDONLY;
1098 			}
1099 		}
1100 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1101 dec:
1102 		atomic_dec(&sbi->s_open_zones);
1103 	}
1104 	mutex_unlock(&zi->i_truncate_mutex);
1105 }
1106 
1107 static int zonefs_file_release(struct inode *inode, struct file *file)
1108 {
1109 	/*
1110 	 * If we explicitly open a zone we must close it again as well, but the
1111 	 * zone management operation can fail (either due to an IO error or as
1112 	 * the zone has gone offline or read-only). Make sure we don't fail the
1113 	 * close(2) for user-space.
1114 	 */
1115 	if (zonefs_file_use_exp_open(inode, file))
1116 		zonefs_close_zone(inode);
1117 
1118 	return 0;
1119 }
1120 
1121 static const struct file_operations zonefs_file_operations = {
1122 	.open		= zonefs_file_open,
1123 	.release	= zonefs_file_release,
1124 	.fsync		= zonefs_file_fsync,
1125 	.mmap		= zonefs_file_mmap,
1126 	.llseek		= zonefs_file_llseek,
1127 	.read_iter	= zonefs_file_read_iter,
1128 	.write_iter	= zonefs_file_write_iter,
1129 	.splice_read	= generic_file_splice_read,
1130 	.splice_write	= iter_file_splice_write,
1131 	.iopoll		= iocb_bio_iopoll,
1132 };
1133 
1134 static struct kmem_cache *zonefs_inode_cachep;
1135 
1136 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1137 {
1138 	struct zonefs_inode_info *zi;
1139 
1140 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1141 	if (!zi)
1142 		return NULL;
1143 
1144 	inode_init_once(&zi->i_vnode);
1145 	mutex_init(&zi->i_truncate_mutex);
1146 	zi->i_wr_refcnt = 0;
1147 
1148 	return &zi->i_vnode;
1149 }
1150 
1151 static void zonefs_free_inode(struct inode *inode)
1152 {
1153 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1154 }
1155 
1156 /*
1157  * File system stat.
1158  */
1159 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1160 {
1161 	struct super_block *sb = dentry->d_sb;
1162 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1163 	enum zonefs_ztype t;
1164 
1165 	buf->f_type = ZONEFS_MAGIC;
1166 	buf->f_bsize = sb->s_blocksize;
1167 	buf->f_namelen = ZONEFS_NAME_MAX;
1168 
1169 	spin_lock(&sbi->s_lock);
1170 
1171 	buf->f_blocks = sbi->s_blocks;
1172 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1173 		buf->f_bfree = 0;
1174 	else
1175 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1176 	buf->f_bavail = buf->f_bfree;
1177 
1178 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1179 		if (sbi->s_nr_files[t])
1180 			buf->f_files += sbi->s_nr_files[t] + 1;
1181 	}
1182 	buf->f_ffree = 0;
1183 
1184 	spin_unlock(&sbi->s_lock);
1185 
1186 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1187 
1188 	return 0;
1189 }
1190 
1191 enum {
1192 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1193 	Opt_explicit_open, Opt_err,
1194 };
1195 
1196 static const match_table_t tokens = {
1197 	{ Opt_errors_ro,	"errors=remount-ro"},
1198 	{ Opt_errors_zro,	"errors=zone-ro"},
1199 	{ Opt_errors_zol,	"errors=zone-offline"},
1200 	{ Opt_errors_repair,	"errors=repair"},
1201 	{ Opt_explicit_open,	"explicit-open" },
1202 	{ Opt_err,		NULL}
1203 };
1204 
1205 static int zonefs_parse_options(struct super_block *sb, char *options)
1206 {
1207 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1208 	substring_t args[MAX_OPT_ARGS];
1209 	char *p;
1210 
1211 	if (!options)
1212 		return 0;
1213 
1214 	while ((p = strsep(&options, ",")) != NULL) {
1215 		int token;
1216 
1217 		if (!*p)
1218 			continue;
1219 
1220 		token = match_token(p, tokens, args);
1221 		switch (token) {
1222 		case Opt_errors_ro:
1223 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1224 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1225 			break;
1226 		case Opt_errors_zro:
1227 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1228 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1229 			break;
1230 		case Opt_errors_zol:
1231 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1232 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1233 			break;
1234 		case Opt_errors_repair:
1235 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1236 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1237 			break;
1238 		case Opt_explicit_open:
1239 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1240 			break;
1241 		default:
1242 			return -EINVAL;
1243 		}
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1250 {
1251 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1252 
1253 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1254 		seq_puts(seq, ",errors=remount-ro");
1255 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1256 		seq_puts(seq, ",errors=zone-ro");
1257 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1258 		seq_puts(seq, ",errors=zone-offline");
1259 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1260 		seq_puts(seq, ",errors=repair");
1261 
1262 	return 0;
1263 }
1264 
1265 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1266 {
1267 	sync_filesystem(sb);
1268 
1269 	return zonefs_parse_options(sb, data);
1270 }
1271 
1272 static const struct super_operations zonefs_sops = {
1273 	.alloc_inode	= zonefs_alloc_inode,
1274 	.free_inode	= zonefs_free_inode,
1275 	.statfs		= zonefs_statfs,
1276 	.remount_fs	= zonefs_remount,
1277 	.show_options	= zonefs_show_options,
1278 };
1279 
1280 static const struct inode_operations zonefs_dir_inode_operations = {
1281 	.lookup		= simple_lookup,
1282 	.setattr	= zonefs_inode_setattr,
1283 };
1284 
1285 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1286 				  enum zonefs_ztype type)
1287 {
1288 	struct super_block *sb = parent->i_sb;
1289 
1290 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1291 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1292 	inode->i_op = &zonefs_dir_inode_operations;
1293 	inode->i_fop = &simple_dir_operations;
1294 	set_nlink(inode, 2);
1295 	inc_nlink(parent);
1296 }
1297 
1298 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1299 				   enum zonefs_ztype type)
1300 {
1301 	struct super_block *sb = inode->i_sb;
1302 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1303 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1304 
1305 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1306 	inode->i_mode = S_IFREG | sbi->s_perm;
1307 
1308 	zi->i_ztype = type;
1309 	zi->i_zsector = zone->start;
1310 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1311 
1312 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1313 			       zone->capacity << SECTOR_SHIFT);
1314 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1315 
1316 	inode->i_uid = sbi->s_uid;
1317 	inode->i_gid = sbi->s_gid;
1318 	inode->i_size = zi->i_wpoffset;
1319 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1320 
1321 	inode->i_op = &zonefs_file_inode_operations;
1322 	inode->i_fop = &zonefs_file_operations;
1323 	inode->i_mapping->a_ops = &zonefs_file_aops;
1324 
1325 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1326 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1327 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1328 }
1329 
1330 static struct dentry *zonefs_create_inode(struct dentry *parent,
1331 					const char *name, struct blk_zone *zone,
1332 					enum zonefs_ztype type)
1333 {
1334 	struct inode *dir = d_inode(parent);
1335 	struct dentry *dentry;
1336 	struct inode *inode;
1337 
1338 	dentry = d_alloc_name(parent, name);
1339 	if (!dentry)
1340 		return NULL;
1341 
1342 	inode = new_inode(parent->d_sb);
1343 	if (!inode)
1344 		goto dput;
1345 
1346 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1347 	if (zone)
1348 		zonefs_init_file_inode(inode, zone, type);
1349 	else
1350 		zonefs_init_dir_inode(dir, inode, type);
1351 	d_add(dentry, inode);
1352 	dir->i_size++;
1353 
1354 	return dentry;
1355 
1356 dput:
1357 	dput(dentry);
1358 
1359 	return NULL;
1360 }
1361 
1362 struct zonefs_zone_data {
1363 	struct super_block	*sb;
1364 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1365 	struct blk_zone		*zones;
1366 };
1367 
1368 /*
1369  * Create a zone group and populate it with zone files.
1370  */
1371 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1372 				enum zonefs_ztype type)
1373 {
1374 	struct super_block *sb = zd->sb;
1375 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1376 	struct blk_zone *zone, *next, *end;
1377 	const char *zgroup_name;
1378 	char *file_name;
1379 	struct dentry *dir;
1380 	unsigned int n = 0;
1381 	int ret;
1382 
1383 	/* If the group is empty, there is nothing to do */
1384 	if (!zd->nr_zones[type])
1385 		return 0;
1386 
1387 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1388 	if (!file_name)
1389 		return -ENOMEM;
1390 
1391 	if (type == ZONEFS_ZTYPE_CNV)
1392 		zgroup_name = "cnv";
1393 	else
1394 		zgroup_name = "seq";
1395 
1396 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1397 	if (!dir) {
1398 		ret = -ENOMEM;
1399 		goto free;
1400 	}
1401 
1402 	/*
1403 	 * The first zone contains the super block: skip it.
1404 	 */
1405 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1406 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1407 
1408 		next = zone + 1;
1409 		if (zonefs_zone_type(zone) != type)
1410 			continue;
1411 
1412 		/*
1413 		 * For conventional zones, contiguous zones can be aggregated
1414 		 * together to form larger files. Note that this overwrites the
1415 		 * length of the first zone of the set of contiguous zones
1416 		 * aggregated together. If one offline or read-only zone is
1417 		 * found, assume that all zones aggregated have the same
1418 		 * condition.
1419 		 */
1420 		if (type == ZONEFS_ZTYPE_CNV &&
1421 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1422 			for (; next < end; next++) {
1423 				if (zonefs_zone_type(next) != type)
1424 					break;
1425 				zone->len += next->len;
1426 				zone->capacity += next->capacity;
1427 				if (next->cond == BLK_ZONE_COND_READONLY &&
1428 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1429 					zone->cond = BLK_ZONE_COND_READONLY;
1430 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1431 					zone->cond = BLK_ZONE_COND_OFFLINE;
1432 			}
1433 			if (zone->capacity != zone->len) {
1434 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1435 				ret = -EINVAL;
1436 				goto free;
1437 			}
1438 		}
1439 
1440 		/*
1441 		 * Use the file number within its group as file name.
1442 		 */
1443 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1444 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1445 			ret = -ENOMEM;
1446 			goto free;
1447 		}
1448 
1449 		n++;
1450 	}
1451 
1452 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1453 		    zgroup_name, n, n > 1 ? "s" : "");
1454 
1455 	sbi->s_nr_files[type] = n;
1456 	ret = 0;
1457 
1458 free:
1459 	kfree(file_name);
1460 
1461 	return ret;
1462 }
1463 
1464 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1465 				   void *data)
1466 {
1467 	struct zonefs_zone_data *zd = data;
1468 
1469 	/*
1470 	 * Count the number of usable zones: the first zone at index 0 contains
1471 	 * the super block and is ignored.
1472 	 */
1473 	switch (zone->type) {
1474 	case BLK_ZONE_TYPE_CONVENTIONAL:
1475 		zone->wp = zone->start + zone->len;
1476 		if (idx)
1477 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1478 		break;
1479 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1480 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1481 		if (idx)
1482 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1483 		break;
1484 	default:
1485 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1486 			   zone->type);
1487 		return -EIO;
1488 	}
1489 
1490 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1491 
1492 	return 0;
1493 }
1494 
1495 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1496 {
1497 	struct block_device *bdev = zd->sb->s_bdev;
1498 	int ret;
1499 
1500 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1501 			     sizeof(struct blk_zone), GFP_KERNEL);
1502 	if (!zd->zones)
1503 		return -ENOMEM;
1504 
1505 	/* Get zones information from the device */
1506 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1507 				  zonefs_get_zone_info_cb, zd);
1508 	if (ret < 0) {
1509 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1510 		return ret;
1511 	}
1512 
1513 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1514 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1515 			   ret, blkdev_nr_zones(bdev->bd_disk));
1516 		return -EIO;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1523 {
1524 	kvfree(zd->zones);
1525 }
1526 
1527 /*
1528  * Read super block information from the device.
1529  */
1530 static int zonefs_read_super(struct super_block *sb)
1531 {
1532 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1533 	struct zonefs_super *super;
1534 	u32 crc, stored_crc;
1535 	struct page *page;
1536 	struct bio_vec bio_vec;
1537 	struct bio bio;
1538 	int ret;
1539 
1540 	page = alloc_page(GFP_KERNEL);
1541 	if (!page)
1542 		return -ENOMEM;
1543 
1544 	bio_init(&bio, &bio_vec, 1);
1545 	bio.bi_iter.bi_sector = 0;
1546 	bio.bi_opf = REQ_OP_READ;
1547 	bio_set_dev(&bio, sb->s_bdev);
1548 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1549 
1550 	ret = submit_bio_wait(&bio);
1551 	if (ret)
1552 		goto free_page;
1553 
1554 	super = kmap(page);
1555 
1556 	ret = -EINVAL;
1557 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1558 		goto unmap;
1559 
1560 	stored_crc = le32_to_cpu(super->s_crc);
1561 	super->s_crc = 0;
1562 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1563 	if (crc != stored_crc) {
1564 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1565 			   crc, stored_crc);
1566 		goto unmap;
1567 	}
1568 
1569 	sbi->s_features = le64_to_cpu(super->s_features);
1570 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1571 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1572 			   sbi->s_features);
1573 		goto unmap;
1574 	}
1575 
1576 	if (sbi->s_features & ZONEFS_F_UID) {
1577 		sbi->s_uid = make_kuid(current_user_ns(),
1578 				       le32_to_cpu(super->s_uid));
1579 		if (!uid_valid(sbi->s_uid)) {
1580 			zonefs_err(sb, "Invalid UID feature\n");
1581 			goto unmap;
1582 		}
1583 	}
1584 
1585 	if (sbi->s_features & ZONEFS_F_GID) {
1586 		sbi->s_gid = make_kgid(current_user_ns(),
1587 				       le32_to_cpu(super->s_gid));
1588 		if (!gid_valid(sbi->s_gid)) {
1589 			zonefs_err(sb, "Invalid GID feature\n");
1590 			goto unmap;
1591 		}
1592 	}
1593 
1594 	if (sbi->s_features & ZONEFS_F_PERM)
1595 		sbi->s_perm = le32_to_cpu(super->s_perm);
1596 
1597 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1598 		zonefs_err(sb, "Reserved area is being used\n");
1599 		goto unmap;
1600 	}
1601 
1602 	import_uuid(&sbi->s_uuid, super->s_uuid);
1603 	ret = 0;
1604 
1605 unmap:
1606 	kunmap(page);
1607 free_page:
1608 	__free_page(page);
1609 
1610 	return ret;
1611 }
1612 
1613 /*
1614  * Check that the device is zoned. If it is, get the list of zones and create
1615  * sub-directories and files according to the device zone configuration and
1616  * format options.
1617  */
1618 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1619 {
1620 	struct zonefs_zone_data zd;
1621 	struct zonefs_sb_info *sbi;
1622 	struct inode *inode;
1623 	enum zonefs_ztype t;
1624 	int ret;
1625 
1626 	if (!bdev_is_zoned(sb->s_bdev)) {
1627 		zonefs_err(sb, "Not a zoned block device\n");
1628 		return -EINVAL;
1629 	}
1630 
1631 	/*
1632 	 * Initialize super block information: the maximum file size is updated
1633 	 * when the zone files are created so that the format option
1634 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1635 	 * beyond the zone size is taken into account.
1636 	 */
1637 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1638 	if (!sbi)
1639 		return -ENOMEM;
1640 
1641 	spin_lock_init(&sbi->s_lock);
1642 	sb->s_fs_info = sbi;
1643 	sb->s_magic = ZONEFS_MAGIC;
1644 	sb->s_maxbytes = 0;
1645 	sb->s_op = &zonefs_sops;
1646 	sb->s_time_gran	= 1;
1647 
1648 	/*
1649 	 * The block size is set to the device zone write granularity to ensure
1650 	 * that write operations are always aligned according to the device
1651 	 * interface constraints.
1652 	 */
1653 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1654 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1655 	sbi->s_uid = GLOBAL_ROOT_UID;
1656 	sbi->s_gid = GLOBAL_ROOT_GID;
1657 	sbi->s_perm = 0640;
1658 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1659 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1660 	atomic_set(&sbi->s_open_zones, 0);
1661 	if (!sbi->s_max_open_zones &&
1662 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1663 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1664 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1665 	}
1666 
1667 	ret = zonefs_read_super(sb);
1668 	if (ret)
1669 		return ret;
1670 
1671 	ret = zonefs_parse_options(sb, data);
1672 	if (ret)
1673 		return ret;
1674 
1675 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1676 	zd.sb = sb;
1677 	ret = zonefs_get_zone_info(&zd);
1678 	if (ret)
1679 		goto cleanup;
1680 
1681 	zonefs_info(sb, "Mounting %u zones",
1682 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1683 
1684 	/* Create root directory inode */
1685 	ret = -ENOMEM;
1686 	inode = new_inode(sb);
1687 	if (!inode)
1688 		goto cleanup;
1689 
1690 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1691 	inode->i_mode = S_IFDIR | 0555;
1692 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1693 	inode->i_op = &zonefs_dir_inode_operations;
1694 	inode->i_fop = &simple_dir_operations;
1695 	set_nlink(inode, 2);
1696 
1697 	sb->s_root = d_make_root(inode);
1698 	if (!sb->s_root)
1699 		goto cleanup;
1700 
1701 	/* Create and populate files in zone groups directories */
1702 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1703 		ret = zonefs_create_zgroup(&zd, t);
1704 		if (ret)
1705 			break;
1706 	}
1707 
1708 cleanup:
1709 	zonefs_cleanup_zone_info(&zd);
1710 
1711 	return ret;
1712 }
1713 
1714 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1715 				   int flags, const char *dev_name, void *data)
1716 {
1717 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1718 }
1719 
1720 static void zonefs_kill_super(struct super_block *sb)
1721 {
1722 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1723 
1724 	if (sb->s_root)
1725 		d_genocide(sb->s_root);
1726 	kill_block_super(sb);
1727 	kfree(sbi);
1728 }
1729 
1730 /*
1731  * File system definition and registration.
1732  */
1733 static struct file_system_type zonefs_type = {
1734 	.owner		= THIS_MODULE,
1735 	.name		= "zonefs",
1736 	.mount		= zonefs_mount,
1737 	.kill_sb	= zonefs_kill_super,
1738 	.fs_flags	= FS_REQUIRES_DEV,
1739 };
1740 
1741 static int __init zonefs_init_inodecache(void)
1742 {
1743 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1744 			sizeof(struct zonefs_inode_info), 0,
1745 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1746 			NULL);
1747 	if (zonefs_inode_cachep == NULL)
1748 		return -ENOMEM;
1749 	return 0;
1750 }
1751 
1752 static void zonefs_destroy_inodecache(void)
1753 {
1754 	/*
1755 	 * Make sure all delayed rcu free inodes are flushed before we
1756 	 * destroy the inode cache.
1757 	 */
1758 	rcu_barrier();
1759 	kmem_cache_destroy(zonefs_inode_cachep);
1760 }
1761 
1762 static int __init zonefs_init(void)
1763 {
1764 	int ret;
1765 
1766 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1767 
1768 	ret = zonefs_init_inodecache();
1769 	if (ret)
1770 		return ret;
1771 
1772 	ret = register_filesystem(&zonefs_type);
1773 	if (ret) {
1774 		zonefs_destroy_inodecache();
1775 		return ret;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static void __exit zonefs_exit(void)
1782 {
1783 	zonefs_destroy_inodecache();
1784 	unregister_filesystem(&zonefs_type);
1785 }
1786 
1787 MODULE_AUTHOR("Damien Le Moal");
1788 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1789 MODULE_LICENSE("GPL");
1790 module_init(zonefs_init);
1791 module_exit(zonefs_exit);
1792