xref: /openbmc/linux/fs/zonefs/super.c (revision bfa87ac8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Manage the active zone count. Called with zi->i_truncate_mutex held.
32  */
33 static void zonefs_account_active(struct inode *inode)
34 {
35 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
36 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
37 
38 	lockdep_assert_held(&zi->i_truncate_mutex);
39 
40 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
41 		return;
42 
43 	/*
44 	 * If the zone is active, that is, if it is explicitly open or
45 	 * partially written, check if it was already accounted as active.
46 	 */
47 	if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
48 	    (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
49 		if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
50 			zi->i_flags |= ZONEFS_ZONE_ACTIVE;
51 			atomic_inc(&sbi->s_active_seq_files);
52 		}
53 		return;
54 	}
55 
56 	/* The zone is not active. If it was, update the active count */
57 	if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
58 		zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
59 		atomic_dec(&sbi->s_active_seq_files);
60 	}
61 }
62 
63 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op)
64 {
65 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
66 	int ret;
67 
68 	lockdep_assert_held(&zi->i_truncate_mutex);
69 
70 	/*
71 	 * With ZNS drives, closing an explicitly open zone that has not been
72 	 * written will change the zone state to "closed", that is, the zone
73 	 * will remain active. Since this can then cause failure of explicit
74 	 * open operation on other zones if the drive active zone resources
75 	 * are exceeded, make sure that the zone does not remain active by
76 	 * resetting it.
77 	 */
78 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
79 		op = REQ_OP_ZONE_RESET;
80 
81 	trace_zonefs_zone_mgmt(inode, op);
82 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
83 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
84 	if (ret) {
85 		zonefs_err(inode->i_sb,
86 			   "Zone management operation %s at %llu failed %d\n",
87 			   blk_op_str(op), zi->i_zsector, ret);
88 		return ret;
89 	}
90 
91 	return 0;
92 }
93 
94 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
95 {
96 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
97 
98 	i_size_write(inode, isize);
99 	/*
100 	 * A full zone is no longer open/active and does not need
101 	 * explicit closing.
102 	 */
103 	if (isize >= zi->i_max_size) {
104 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
105 
106 		if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
107 			atomic_dec(&sbi->s_active_seq_files);
108 		zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
109 	}
110 }
111 
112 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
113 				   loff_t length, unsigned int flags,
114 				   struct iomap *iomap, struct iomap *srcmap)
115 {
116 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
117 	struct super_block *sb = inode->i_sb;
118 	loff_t isize;
119 
120 	/*
121 	 * All blocks are always mapped below EOF. If reading past EOF,
122 	 * act as if there is a hole up to the file maximum size.
123 	 */
124 	mutex_lock(&zi->i_truncate_mutex);
125 	iomap->bdev = inode->i_sb->s_bdev;
126 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
127 	isize = i_size_read(inode);
128 	if (iomap->offset >= isize) {
129 		iomap->type = IOMAP_HOLE;
130 		iomap->addr = IOMAP_NULL_ADDR;
131 		iomap->length = length;
132 	} else {
133 		iomap->type = IOMAP_MAPPED;
134 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 		iomap->length = isize - iomap->offset;
136 	}
137 	mutex_unlock(&zi->i_truncate_mutex);
138 
139 	trace_zonefs_iomap_begin(inode, iomap);
140 
141 	return 0;
142 }
143 
144 static const struct iomap_ops zonefs_read_iomap_ops = {
145 	.iomap_begin	= zonefs_read_iomap_begin,
146 };
147 
148 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
149 				    loff_t length, unsigned int flags,
150 				    struct iomap *iomap, struct iomap *srcmap)
151 {
152 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
153 	struct super_block *sb = inode->i_sb;
154 	loff_t isize;
155 
156 	/* All write I/Os should always be within the file maximum size */
157 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
158 		return -EIO;
159 
160 	/*
161 	 * Sequential zones can only accept direct writes. This is already
162 	 * checked when writes are issued, so warn if we see a page writeback
163 	 * operation.
164 	 */
165 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
166 			 !(flags & IOMAP_DIRECT)))
167 		return -EIO;
168 
169 	/*
170 	 * For conventional zones, all blocks are always mapped. For sequential
171 	 * zones, all blocks after always mapped below the inode size (zone
172 	 * write pointer) and unwriten beyond.
173 	 */
174 	mutex_lock(&zi->i_truncate_mutex);
175 	iomap->bdev = inode->i_sb->s_bdev;
176 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
177 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
178 	isize = i_size_read(inode);
179 	if (iomap->offset >= isize) {
180 		iomap->type = IOMAP_UNWRITTEN;
181 		iomap->length = zi->i_max_size - iomap->offset;
182 	} else {
183 		iomap->type = IOMAP_MAPPED;
184 		iomap->length = isize - iomap->offset;
185 	}
186 	mutex_unlock(&zi->i_truncate_mutex);
187 
188 	trace_zonefs_iomap_begin(inode, iomap);
189 
190 	return 0;
191 }
192 
193 static const struct iomap_ops zonefs_write_iomap_ops = {
194 	.iomap_begin	= zonefs_write_iomap_begin,
195 };
196 
197 static int zonefs_read_folio(struct file *unused, struct folio *folio)
198 {
199 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
200 }
201 
202 static void zonefs_readahead(struct readahead_control *rac)
203 {
204 	iomap_readahead(rac, &zonefs_read_iomap_ops);
205 }
206 
207 /*
208  * Map blocks for page writeback. This is used only on conventional zone files,
209  * which implies that the page range can only be within the fixed inode size.
210  */
211 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
212 				   struct inode *inode, loff_t offset)
213 {
214 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
215 
216 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
217 		return -EIO;
218 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
219 		return -EIO;
220 
221 	/* If the mapping is already OK, nothing needs to be done */
222 	if (offset >= wpc->iomap.offset &&
223 	    offset < wpc->iomap.offset + wpc->iomap.length)
224 		return 0;
225 
226 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
227 					IOMAP_WRITE, &wpc->iomap, NULL);
228 }
229 
230 static const struct iomap_writeback_ops zonefs_writeback_ops = {
231 	.map_blocks		= zonefs_write_map_blocks,
232 };
233 
234 static int zonefs_writepages(struct address_space *mapping,
235 			     struct writeback_control *wbc)
236 {
237 	struct iomap_writepage_ctx wpc = { };
238 
239 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
240 }
241 
242 static int zonefs_swap_activate(struct swap_info_struct *sis,
243 				struct file *swap_file, sector_t *span)
244 {
245 	struct inode *inode = file_inode(swap_file);
246 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
247 
248 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
249 		zonefs_err(inode->i_sb,
250 			   "swap file: not a conventional zone file\n");
251 		return -EINVAL;
252 	}
253 
254 	return iomap_swapfile_activate(sis, swap_file, span,
255 				       &zonefs_read_iomap_ops);
256 }
257 
258 static const struct address_space_operations zonefs_file_aops = {
259 	.read_folio		= zonefs_read_folio,
260 	.readahead		= zonefs_readahead,
261 	.writepages		= zonefs_writepages,
262 	.dirty_folio		= filemap_dirty_folio,
263 	.release_folio		= iomap_release_folio,
264 	.invalidate_folio	= iomap_invalidate_folio,
265 	.migrate_folio		= filemap_migrate_folio,
266 	.is_partially_uptodate	= iomap_is_partially_uptodate,
267 	.error_remove_page	= generic_error_remove_page,
268 	.direct_IO		= noop_direct_IO,
269 	.swap_activate		= zonefs_swap_activate,
270 };
271 
272 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
273 {
274 	struct super_block *sb = inode->i_sb;
275 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
276 	loff_t old_isize = i_size_read(inode);
277 	loff_t nr_blocks;
278 
279 	if (new_isize == old_isize)
280 		return;
281 
282 	spin_lock(&sbi->s_lock);
283 
284 	/*
285 	 * This may be called for an update after an IO error.
286 	 * So beware of the values seen.
287 	 */
288 	if (new_isize < old_isize) {
289 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
290 		if (sbi->s_used_blocks > nr_blocks)
291 			sbi->s_used_blocks -= nr_blocks;
292 		else
293 			sbi->s_used_blocks = 0;
294 	} else {
295 		sbi->s_used_blocks +=
296 			(new_isize - old_isize) >> sb->s_blocksize_bits;
297 		if (sbi->s_used_blocks > sbi->s_blocks)
298 			sbi->s_used_blocks = sbi->s_blocks;
299 	}
300 
301 	spin_unlock(&sbi->s_lock);
302 }
303 
304 /*
305  * Check a zone condition and adjust its file inode access permissions for
306  * offline and readonly zones. Return the inode size corresponding to the
307  * amount of readable data in the zone.
308  */
309 static loff_t zonefs_check_zone_condition(struct inode *inode,
310 					  struct blk_zone *zone, bool warn,
311 					  bool mount)
312 {
313 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
314 
315 	switch (zone->cond) {
316 	case BLK_ZONE_COND_OFFLINE:
317 		/*
318 		 * Dead zone: make the inode immutable, disable all accesses
319 		 * and set the file size to 0 (zone wp set to zone start).
320 		 */
321 		if (warn)
322 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
323 				    inode->i_ino);
324 		inode->i_flags |= S_IMMUTABLE;
325 		inode->i_mode &= ~0777;
326 		zone->wp = zone->start;
327 		return 0;
328 	case BLK_ZONE_COND_READONLY:
329 		/*
330 		 * The write pointer of read-only zones is invalid. If such a
331 		 * zone is found during mount, the file size cannot be retrieved
332 		 * so we treat the zone as offline (mount == true case).
333 		 * Otherwise, keep the file size as it was when last updated
334 		 * so that the user can recover data. In both cases, writes are
335 		 * always disabled for the zone.
336 		 */
337 		if (warn)
338 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
339 				    inode->i_ino);
340 		inode->i_flags |= S_IMMUTABLE;
341 		if (mount) {
342 			zone->cond = BLK_ZONE_COND_OFFLINE;
343 			inode->i_mode &= ~0777;
344 			zone->wp = zone->start;
345 			return 0;
346 		}
347 		inode->i_mode &= ~0222;
348 		return i_size_read(inode);
349 	case BLK_ZONE_COND_FULL:
350 		/* The write pointer of full zones is invalid. */
351 		return zi->i_max_size;
352 	default:
353 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
354 			return zi->i_max_size;
355 		return (zone->wp - zone->start) << SECTOR_SHIFT;
356 	}
357 }
358 
359 struct zonefs_ioerr_data {
360 	struct inode	*inode;
361 	bool		write;
362 };
363 
364 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
365 			      void *data)
366 {
367 	struct zonefs_ioerr_data *err = data;
368 	struct inode *inode = err->inode;
369 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
370 	struct super_block *sb = inode->i_sb;
371 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
372 	loff_t isize, data_size;
373 
374 	/*
375 	 * Check the zone condition: if the zone is not "bad" (offline or
376 	 * read-only), read errors are simply signaled to the IO issuer as long
377 	 * as there is no inconsistency between the inode size and the amount of
378 	 * data writen in the zone (data_size).
379 	 */
380 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
381 	isize = i_size_read(inode);
382 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
383 	    zone->cond != BLK_ZONE_COND_READONLY &&
384 	    !err->write && isize == data_size)
385 		return 0;
386 
387 	/*
388 	 * At this point, we detected either a bad zone or an inconsistency
389 	 * between the inode size and the amount of data written in the zone.
390 	 * For the latter case, the cause may be a write IO error or an external
391 	 * action on the device. Two error patterns exist:
392 	 * 1) The inode size is lower than the amount of data in the zone:
393 	 *    a write operation partially failed and data was writen at the end
394 	 *    of the file. This can happen in the case of a large direct IO
395 	 *    needing several BIOs and/or write requests to be processed.
396 	 * 2) The inode size is larger than the amount of data in the zone:
397 	 *    this can happen with a deferred write error with the use of the
398 	 *    device side write cache after getting successful write IO
399 	 *    completions. Other possibilities are (a) an external corruption,
400 	 *    e.g. an application reset the zone directly, or (b) the device
401 	 *    has a serious problem (e.g. firmware bug).
402 	 *
403 	 * In all cases, warn about inode size inconsistency and handle the
404 	 * IO error according to the zone condition and to the mount options.
405 	 */
406 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
407 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
408 			    inode->i_ino, isize, data_size);
409 
410 	/*
411 	 * First handle bad zones signaled by hardware. The mount options
412 	 * errors=zone-ro and errors=zone-offline result in changing the
413 	 * zone condition to read-only and offline respectively, as if the
414 	 * condition was signaled by the hardware.
415 	 */
416 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
417 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
418 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
419 			    inode->i_ino);
420 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
421 			zone->cond = BLK_ZONE_COND_OFFLINE;
422 			data_size = zonefs_check_zone_condition(inode, zone,
423 								false, false);
424 		}
425 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
426 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
427 		zonefs_warn(sb, "inode %lu: write access disabled\n",
428 			    inode->i_ino);
429 		if (zone->cond != BLK_ZONE_COND_READONLY) {
430 			zone->cond = BLK_ZONE_COND_READONLY;
431 			data_size = zonefs_check_zone_condition(inode, zone,
432 								false, false);
433 		}
434 	}
435 
436 	/*
437 	 * If the filesystem is mounted with the explicit-open mount option, we
438 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
439 	 * the read-only or offline condition, to avoid attempting an explicit
440 	 * close of the zone when the inode file is closed.
441 	 */
442 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
443 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
444 	     zone->cond == BLK_ZONE_COND_READONLY))
445 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
446 
447 	/*
448 	 * If error=remount-ro was specified, any error result in remounting
449 	 * the volume as read-only.
450 	 */
451 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
452 		zonefs_warn(sb, "remounting filesystem read-only\n");
453 		sb->s_flags |= SB_RDONLY;
454 	}
455 
456 	/*
457 	 * Update block usage stats and the inode size  to prevent access to
458 	 * invalid data.
459 	 */
460 	zonefs_update_stats(inode, data_size);
461 	zonefs_i_size_write(inode, data_size);
462 	zi->i_wpoffset = data_size;
463 	zonefs_account_active(inode);
464 
465 	return 0;
466 }
467 
468 /*
469  * When an file IO error occurs, check the file zone to see if there is a change
470  * in the zone condition (e.g. offline or read-only). For a failed write to a
471  * sequential zone, the zone write pointer position must also be checked to
472  * eventually correct the file size and zonefs inode write pointer offset
473  * (which can be out of sync with the drive due to partial write failures).
474  */
475 static void __zonefs_io_error(struct inode *inode, bool write)
476 {
477 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
478 	struct super_block *sb = inode->i_sb;
479 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
480 	unsigned int noio_flag;
481 	unsigned int nr_zones = 1;
482 	struct zonefs_ioerr_data err = {
483 		.inode = inode,
484 		.write = write,
485 	};
486 	int ret;
487 
488 	/*
489 	 * The only files that have more than one zone are conventional zone
490 	 * files with aggregated conventional zones, for which the inode zone
491 	 * size is always larger than the device zone size.
492 	 */
493 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
494 		nr_zones = zi->i_zone_size >>
495 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
496 
497 	/*
498 	 * Memory allocations in blkdev_report_zones() can trigger a memory
499 	 * reclaim which may in turn cause a recursion into zonefs as well as
500 	 * struct request allocations for the same device. The former case may
501 	 * end up in a deadlock on the inode truncate mutex, while the latter
502 	 * may prevent IO forward progress. Executing the report zones under
503 	 * the GFP_NOIO context avoids both problems.
504 	 */
505 	noio_flag = memalloc_noio_save();
506 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
507 				  zonefs_io_error_cb, &err);
508 	if (ret != nr_zones)
509 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
510 			   inode->i_ino, ret);
511 	memalloc_noio_restore(noio_flag);
512 }
513 
514 static void zonefs_io_error(struct inode *inode, bool write)
515 {
516 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
517 
518 	mutex_lock(&zi->i_truncate_mutex);
519 	__zonefs_io_error(inode, write);
520 	mutex_unlock(&zi->i_truncate_mutex);
521 }
522 
523 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
524 {
525 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
526 	loff_t old_isize;
527 	enum req_op op;
528 	int ret = 0;
529 
530 	/*
531 	 * Only sequential zone files can be truncated and truncation is allowed
532 	 * only down to a 0 size, which is equivalent to a zone reset, and to
533 	 * the maximum file size, which is equivalent to a zone finish.
534 	 */
535 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
536 		return -EPERM;
537 
538 	if (!isize)
539 		op = REQ_OP_ZONE_RESET;
540 	else if (isize == zi->i_max_size)
541 		op = REQ_OP_ZONE_FINISH;
542 	else
543 		return -EPERM;
544 
545 	inode_dio_wait(inode);
546 
547 	/* Serialize against page faults */
548 	filemap_invalidate_lock(inode->i_mapping);
549 
550 	/* Serialize against zonefs_iomap_begin() */
551 	mutex_lock(&zi->i_truncate_mutex);
552 
553 	old_isize = i_size_read(inode);
554 	if (isize == old_isize)
555 		goto unlock;
556 
557 	ret = zonefs_zone_mgmt(inode, op);
558 	if (ret)
559 		goto unlock;
560 
561 	/*
562 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
563 	 * take care of open zones.
564 	 */
565 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
566 		/*
567 		 * Truncating a zone to EMPTY or FULL is the equivalent of
568 		 * closing the zone. For a truncation to 0, we need to
569 		 * re-open the zone to ensure new writes can be processed.
570 		 * For a truncation to the maximum file size, the zone is
571 		 * closed and writes cannot be accepted anymore, so clear
572 		 * the open flag.
573 		 */
574 		if (!isize)
575 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
576 		else
577 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
578 	}
579 
580 	zonefs_update_stats(inode, isize);
581 	truncate_setsize(inode, isize);
582 	zi->i_wpoffset = isize;
583 	zonefs_account_active(inode);
584 
585 unlock:
586 	mutex_unlock(&zi->i_truncate_mutex);
587 	filemap_invalidate_unlock(inode->i_mapping);
588 
589 	return ret;
590 }
591 
592 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
593 				struct dentry *dentry, struct iattr *iattr)
594 {
595 	struct inode *inode = d_inode(dentry);
596 	int ret;
597 
598 	if (unlikely(IS_IMMUTABLE(inode)))
599 		return -EPERM;
600 
601 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
602 	if (ret)
603 		return ret;
604 
605 	/*
606 	 * Since files and directories cannot be created nor deleted, do not
607 	 * allow setting any write attributes on the sub-directories grouping
608 	 * files by zone type.
609 	 */
610 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
611 	    (iattr->ia_mode & 0222))
612 		return -EPERM;
613 
614 	if (((iattr->ia_valid & ATTR_UID) &&
615 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
616 	    ((iattr->ia_valid & ATTR_GID) &&
617 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
618 		ret = dquot_transfer(mnt_userns, inode, iattr);
619 		if (ret)
620 			return ret;
621 	}
622 
623 	if (iattr->ia_valid & ATTR_SIZE) {
624 		ret = zonefs_file_truncate(inode, iattr->ia_size);
625 		if (ret)
626 			return ret;
627 	}
628 
629 	setattr_copy(&init_user_ns, inode, iattr);
630 
631 	return 0;
632 }
633 
634 static const struct inode_operations zonefs_file_inode_operations = {
635 	.setattr	= zonefs_inode_setattr,
636 };
637 
638 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
639 			     int datasync)
640 {
641 	struct inode *inode = file_inode(file);
642 	int ret = 0;
643 
644 	if (unlikely(IS_IMMUTABLE(inode)))
645 		return -EPERM;
646 
647 	/*
648 	 * Since only direct writes are allowed in sequential files, page cache
649 	 * flush is needed only for conventional zone files.
650 	 */
651 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
652 		ret = file_write_and_wait_range(file, start, end);
653 	if (!ret)
654 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655 
656 	if (ret)
657 		zonefs_io_error(inode, true);
658 
659 	return ret;
660 }
661 
662 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
663 {
664 	struct inode *inode = file_inode(vmf->vma->vm_file);
665 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
666 	vm_fault_t ret;
667 
668 	if (unlikely(IS_IMMUTABLE(inode)))
669 		return VM_FAULT_SIGBUS;
670 
671 	/*
672 	 * Sanity check: only conventional zone files can have shared
673 	 * writeable mappings.
674 	 */
675 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
676 		return VM_FAULT_NOPAGE;
677 
678 	sb_start_pagefault(inode->i_sb);
679 	file_update_time(vmf->vma->vm_file);
680 
681 	/* Serialize against truncates */
682 	filemap_invalidate_lock_shared(inode->i_mapping);
683 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
684 	filemap_invalidate_unlock_shared(inode->i_mapping);
685 
686 	sb_end_pagefault(inode->i_sb);
687 	return ret;
688 }
689 
690 static const struct vm_operations_struct zonefs_file_vm_ops = {
691 	.fault		= filemap_fault,
692 	.map_pages	= filemap_map_pages,
693 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
694 };
695 
696 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
697 {
698 	/*
699 	 * Conventional zones accept random writes, so their files can support
700 	 * shared writable mappings. For sequential zone files, only read
701 	 * mappings are possible since there are no guarantees for write
702 	 * ordering between msync() and page cache writeback.
703 	 */
704 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
705 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
706 		return -EINVAL;
707 
708 	file_accessed(file);
709 	vma->vm_ops = &zonefs_file_vm_ops;
710 
711 	return 0;
712 }
713 
714 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
715 {
716 	loff_t isize = i_size_read(file_inode(file));
717 
718 	/*
719 	 * Seeks are limited to below the zone size for conventional zones
720 	 * and below the zone write pointer for sequential zones. In both
721 	 * cases, this limit is the inode size.
722 	 */
723 	return generic_file_llseek_size(file, offset, whence, isize, isize);
724 }
725 
726 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
727 					int error, unsigned int flags)
728 {
729 	struct inode *inode = file_inode(iocb->ki_filp);
730 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
731 
732 	if (error) {
733 		zonefs_io_error(inode, true);
734 		return error;
735 	}
736 
737 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
738 		/*
739 		 * Note that we may be seeing completions out of order,
740 		 * but that is not a problem since a write completed
741 		 * successfully necessarily means that all preceding writes
742 		 * were also successful. So we can safely increase the inode
743 		 * size to the write end location.
744 		 */
745 		mutex_lock(&zi->i_truncate_mutex);
746 		if (i_size_read(inode) < iocb->ki_pos + size) {
747 			zonefs_update_stats(inode, iocb->ki_pos + size);
748 			zonefs_i_size_write(inode, iocb->ki_pos + size);
749 		}
750 		mutex_unlock(&zi->i_truncate_mutex);
751 	}
752 
753 	return 0;
754 }
755 
756 static const struct iomap_dio_ops zonefs_write_dio_ops = {
757 	.end_io			= zonefs_file_write_dio_end_io,
758 };
759 
760 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
761 {
762 	struct inode *inode = file_inode(iocb->ki_filp);
763 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
764 	struct block_device *bdev = inode->i_sb->s_bdev;
765 	unsigned int max = bdev_max_zone_append_sectors(bdev);
766 	struct bio *bio;
767 	ssize_t size;
768 	int nr_pages;
769 	ssize_t ret;
770 
771 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
772 	iov_iter_truncate(from, max);
773 
774 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
775 	if (!nr_pages)
776 		return 0;
777 
778 	bio = bio_alloc(bdev, nr_pages,
779 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
780 	bio->bi_iter.bi_sector = zi->i_zsector;
781 	bio->bi_ioprio = iocb->ki_ioprio;
782 	if (iocb_is_dsync(iocb))
783 		bio->bi_opf |= REQ_FUA;
784 
785 	ret = bio_iov_iter_get_pages(bio, from);
786 	if (unlikely(ret))
787 		goto out_release;
788 
789 	size = bio->bi_iter.bi_size;
790 	task_io_account_write(size);
791 
792 	if (iocb->ki_flags & IOCB_HIPRI)
793 		bio_set_polled(bio, iocb);
794 
795 	ret = submit_bio_wait(bio);
796 
797 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
798 	trace_zonefs_file_dio_append(inode, size, ret);
799 
800 out_release:
801 	bio_release_pages(bio, false);
802 	bio_put(bio);
803 
804 	if (ret >= 0) {
805 		iocb->ki_pos += size;
806 		return size;
807 	}
808 
809 	return ret;
810 }
811 
812 /*
813  * Do not exceed the LFS limits nor the file zone size. If pos is under the
814  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
815  */
816 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
817 					loff_t count)
818 {
819 	struct inode *inode = file_inode(file);
820 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
821 	loff_t limit = rlimit(RLIMIT_FSIZE);
822 	loff_t max_size = zi->i_max_size;
823 
824 	if (limit != RLIM_INFINITY) {
825 		if (pos >= limit) {
826 			send_sig(SIGXFSZ, current, 0);
827 			return -EFBIG;
828 		}
829 		count = min(count, limit - pos);
830 	}
831 
832 	if (!(file->f_flags & O_LARGEFILE))
833 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
834 
835 	if (unlikely(pos >= max_size))
836 		return -EFBIG;
837 
838 	return min(count, max_size - pos);
839 }
840 
841 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
842 {
843 	struct file *file = iocb->ki_filp;
844 	struct inode *inode = file_inode(file);
845 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
846 	loff_t count;
847 
848 	if (IS_SWAPFILE(inode))
849 		return -ETXTBSY;
850 
851 	if (!iov_iter_count(from))
852 		return 0;
853 
854 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
855 		return -EINVAL;
856 
857 	if (iocb->ki_flags & IOCB_APPEND) {
858 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
859 			return -EINVAL;
860 		mutex_lock(&zi->i_truncate_mutex);
861 		iocb->ki_pos = zi->i_wpoffset;
862 		mutex_unlock(&zi->i_truncate_mutex);
863 	}
864 
865 	count = zonefs_write_check_limits(file, iocb->ki_pos,
866 					  iov_iter_count(from));
867 	if (count < 0)
868 		return count;
869 
870 	iov_iter_truncate(from, count);
871 	return iov_iter_count(from);
872 }
873 
874 /*
875  * Handle direct writes. For sequential zone files, this is the only possible
876  * write path. For these files, check that the user is issuing writes
877  * sequentially from the end of the file. This code assumes that the block layer
878  * delivers write requests to the device in sequential order. This is always the
879  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
880  * elevator feature is being used (e.g. mq-deadline). The block layer always
881  * automatically select such an elevator for zoned block devices during the
882  * device initialization.
883  */
884 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
885 {
886 	struct inode *inode = file_inode(iocb->ki_filp);
887 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
888 	struct super_block *sb = inode->i_sb;
889 	bool sync = is_sync_kiocb(iocb);
890 	bool append = false;
891 	ssize_t ret, count;
892 
893 	/*
894 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
895 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
896 	 * on the inode lock but the second goes through but is now unaligned).
897 	 */
898 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
899 	    (iocb->ki_flags & IOCB_NOWAIT))
900 		return -EOPNOTSUPP;
901 
902 	if (iocb->ki_flags & IOCB_NOWAIT) {
903 		if (!inode_trylock(inode))
904 			return -EAGAIN;
905 	} else {
906 		inode_lock(inode);
907 	}
908 
909 	count = zonefs_write_checks(iocb, from);
910 	if (count <= 0) {
911 		ret = count;
912 		goto inode_unlock;
913 	}
914 
915 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
916 		ret = -EINVAL;
917 		goto inode_unlock;
918 	}
919 
920 	/* Enforce sequential writes (append only) in sequential zones */
921 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
922 		mutex_lock(&zi->i_truncate_mutex);
923 		if (iocb->ki_pos != zi->i_wpoffset) {
924 			mutex_unlock(&zi->i_truncate_mutex);
925 			ret = -EINVAL;
926 			goto inode_unlock;
927 		}
928 		mutex_unlock(&zi->i_truncate_mutex);
929 		append = sync;
930 	}
931 
932 	if (append)
933 		ret = zonefs_file_dio_append(iocb, from);
934 	else
935 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
936 				   &zonefs_write_dio_ops, 0, NULL, 0);
937 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
938 	    (ret > 0 || ret == -EIOCBQUEUED)) {
939 		if (ret > 0)
940 			count = ret;
941 
942 		/*
943 		 * Update the zone write pointer offset assuming the write
944 		 * operation succeeded. If it did not, the error recovery path
945 		 * will correct it. Also do active seq file accounting.
946 		 */
947 		mutex_lock(&zi->i_truncate_mutex);
948 		zi->i_wpoffset += count;
949 		zonefs_account_active(inode);
950 		mutex_unlock(&zi->i_truncate_mutex);
951 	}
952 
953 inode_unlock:
954 	inode_unlock(inode);
955 
956 	return ret;
957 }
958 
959 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
960 					  struct iov_iter *from)
961 {
962 	struct inode *inode = file_inode(iocb->ki_filp);
963 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
964 	ssize_t ret;
965 
966 	/*
967 	 * Direct IO writes are mandatory for sequential zone files so that the
968 	 * write IO issuing order is preserved.
969 	 */
970 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
971 		return -EIO;
972 
973 	if (iocb->ki_flags & IOCB_NOWAIT) {
974 		if (!inode_trylock(inode))
975 			return -EAGAIN;
976 	} else {
977 		inode_lock(inode);
978 	}
979 
980 	ret = zonefs_write_checks(iocb, from);
981 	if (ret <= 0)
982 		goto inode_unlock;
983 
984 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
985 	if (ret > 0)
986 		iocb->ki_pos += ret;
987 	else if (ret == -EIO)
988 		zonefs_io_error(inode, true);
989 
990 inode_unlock:
991 	inode_unlock(inode);
992 	if (ret > 0)
993 		ret = generic_write_sync(iocb, ret);
994 
995 	return ret;
996 }
997 
998 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
999 {
1000 	struct inode *inode = file_inode(iocb->ki_filp);
1001 
1002 	if (unlikely(IS_IMMUTABLE(inode)))
1003 		return -EPERM;
1004 
1005 	if (sb_rdonly(inode->i_sb))
1006 		return -EROFS;
1007 
1008 	/* Write operations beyond the zone size are not allowed */
1009 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1010 		return -EFBIG;
1011 
1012 	if (iocb->ki_flags & IOCB_DIRECT) {
1013 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1014 		if (ret != -ENOTBLK)
1015 			return ret;
1016 	}
1017 
1018 	return zonefs_file_buffered_write(iocb, from);
1019 }
1020 
1021 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1022 				       int error, unsigned int flags)
1023 {
1024 	if (error) {
1025 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1026 		return error;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1033 	.end_io			= zonefs_file_read_dio_end_io,
1034 };
1035 
1036 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1037 {
1038 	struct inode *inode = file_inode(iocb->ki_filp);
1039 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1040 	struct super_block *sb = inode->i_sb;
1041 	loff_t isize;
1042 	ssize_t ret;
1043 
1044 	/* Offline zones cannot be read */
1045 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1046 		return -EPERM;
1047 
1048 	if (iocb->ki_pos >= zi->i_max_size)
1049 		return 0;
1050 
1051 	if (iocb->ki_flags & IOCB_NOWAIT) {
1052 		if (!inode_trylock_shared(inode))
1053 			return -EAGAIN;
1054 	} else {
1055 		inode_lock_shared(inode);
1056 	}
1057 
1058 	/* Limit read operations to written data */
1059 	mutex_lock(&zi->i_truncate_mutex);
1060 	isize = i_size_read(inode);
1061 	if (iocb->ki_pos >= isize) {
1062 		mutex_unlock(&zi->i_truncate_mutex);
1063 		ret = 0;
1064 		goto inode_unlock;
1065 	}
1066 	iov_iter_truncate(to, isize - iocb->ki_pos);
1067 	mutex_unlock(&zi->i_truncate_mutex);
1068 
1069 	if (iocb->ki_flags & IOCB_DIRECT) {
1070 		size_t count = iov_iter_count(to);
1071 
1072 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1073 			ret = -EINVAL;
1074 			goto inode_unlock;
1075 		}
1076 		file_accessed(iocb->ki_filp);
1077 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1078 				   &zonefs_read_dio_ops, 0, NULL, 0);
1079 	} else {
1080 		ret = generic_file_read_iter(iocb, to);
1081 		if (ret == -EIO)
1082 			zonefs_io_error(inode, false);
1083 	}
1084 
1085 inode_unlock:
1086 	inode_unlock_shared(inode);
1087 
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Write open accounting is done only for sequential files.
1093  */
1094 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1095 					    struct file *file)
1096 {
1097 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1098 
1099 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1100 		return false;
1101 
1102 	if (!(file->f_mode & FMODE_WRITE))
1103 		return false;
1104 
1105 	return true;
1106 }
1107 
1108 static int zonefs_seq_file_write_open(struct inode *inode)
1109 {
1110 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1111 	int ret = 0;
1112 
1113 	mutex_lock(&zi->i_truncate_mutex);
1114 
1115 	if (!zi->i_wr_refcnt) {
1116 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1117 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1118 
1119 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1120 
1121 			if (sbi->s_max_wro_seq_files
1122 			    && wro > sbi->s_max_wro_seq_files) {
1123 				atomic_dec(&sbi->s_wro_seq_files);
1124 				ret = -EBUSY;
1125 				goto unlock;
1126 			}
1127 
1128 			if (i_size_read(inode) < zi->i_max_size) {
1129 				ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1130 				if (ret) {
1131 					atomic_dec(&sbi->s_wro_seq_files);
1132 					goto unlock;
1133 				}
1134 				zi->i_flags |= ZONEFS_ZONE_OPEN;
1135 				zonefs_account_active(inode);
1136 			}
1137 		}
1138 	}
1139 
1140 	zi->i_wr_refcnt++;
1141 
1142 unlock:
1143 	mutex_unlock(&zi->i_truncate_mutex);
1144 
1145 	return ret;
1146 }
1147 
1148 static int zonefs_file_open(struct inode *inode, struct file *file)
1149 {
1150 	int ret;
1151 
1152 	ret = generic_file_open(inode, file);
1153 	if (ret)
1154 		return ret;
1155 
1156 	if (zonefs_seq_file_need_wro(inode, file))
1157 		return zonefs_seq_file_write_open(inode);
1158 
1159 	return 0;
1160 }
1161 
1162 static void zonefs_seq_file_write_close(struct inode *inode)
1163 {
1164 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1165 	struct super_block *sb = inode->i_sb;
1166 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1167 	int ret = 0;
1168 
1169 	mutex_lock(&zi->i_truncate_mutex);
1170 
1171 	zi->i_wr_refcnt--;
1172 	if (zi->i_wr_refcnt)
1173 		goto unlock;
1174 
1175 	/*
1176 	 * The file zone may not be open anymore (e.g. the file was truncated to
1177 	 * its maximum size or it was fully written). For this case, we only
1178 	 * need to decrement the write open count.
1179 	 */
1180 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1181 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1182 		if (ret) {
1183 			__zonefs_io_error(inode, false);
1184 			/*
1185 			 * Leaving zones explicitly open may lead to a state
1186 			 * where most zones cannot be written (zone resources
1187 			 * exhausted). So take preventive action by remounting
1188 			 * read-only.
1189 			 */
1190 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1191 			    !(sb->s_flags & SB_RDONLY)) {
1192 				zonefs_warn(sb,
1193 					"closing zone at %llu failed %d\n",
1194 					zi->i_zsector, ret);
1195 				zonefs_warn(sb,
1196 					"remounting filesystem read-only\n");
1197 				sb->s_flags |= SB_RDONLY;
1198 			}
1199 			goto unlock;
1200 		}
1201 
1202 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1203 		zonefs_account_active(inode);
1204 	}
1205 
1206 	atomic_dec(&sbi->s_wro_seq_files);
1207 
1208 unlock:
1209 	mutex_unlock(&zi->i_truncate_mutex);
1210 }
1211 
1212 static int zonefs_file_release(struct inode *inode, struct file *file)
1213 {
1214 	/*
1215 	 * If we explicitly open a zone we must close it again as well, but the
1216 	 * zone management operation can fail (either due to an IO error or as
1217 	 * the zone has gone offline or read-only). Make sure we don't fail the
1218 	 * close(2) for user-space.
1219 	 */
1220 	if (zonefs_seq_file_need_wro(inode, file))
1221 		zonefs_seq_file_write_close(inode);
1222 
1223 	return 0;
1224 }
1225 
1226 static const struct file_operations zonefs_file_operations = {
1227 	.open		= zonefs_file_open,
1228 	.release	= zonefs_file_release,
1229 	.fsync		= zonefs_file_fsync,
1230 	.mmap		= zonefs_file_mmap,
1231 	.llseek		= zonefs_file_llseek,
1232 	.read_iter	= zonefs_file_read_iter,
1233 	.write_iter	= zonefs_file_write_iter,
1234 	.splice_read	= generic_file_splice_read,
1235 	.splice_write	= iter_file_splice_write,
1236 	.iopoll		= iocb_bio_iopoll,
1237 };
1238 
1239 static struct kmem_cache *zonefs_inode_cachep;
1240 
1241 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1242 {
1243 	struct zonefs_inode_info *zi;
1244 
1245 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1246 	if (!zi)
1247 		return NULL;
1248 
1249 	inode_init_once(&zi->i_vnode);
1250 	mutex_init(&zi->i_truncate_mutex);
1251 	zi->i_wr_refcnt = 0;
1252 	zi->i_flags = 0;
1253 
1254 	return &zi->i_vnode;
1255 }
1256 
1257 static void zonefs_free_inode(struct inode *inode)
1258 {
1259 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1260 }
1261 
1262 /*
1263  * File system stat.
1264  */
1265 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1266 {
1267 	struct super_block *sb = dentry->d_sb;
1268 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1269 	enum zonefs_ztype t;
1270 
1271 	buf->f_type = ZONEFS_MAGIC;
1272 	buf->f_bsize = sb->s_blocksize;
1273 	buf->f_namelen = ZONEFS_NAME_MAX;
1274 
1275 	spin_lock(&sbi->s_lock);
1276 
1277 	buf->f_blocks = sbi->s_blocks;
1278 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1279 		buf->f_bfree = 0;
1280 	else
1281 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1282 	buf->f_bavail = buf->f_bfree;
1283 
1284 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1285 		if (sbi->s_nr_files[t])
1286 			buf->f_files += sbi->s_nr_files[t] + 1;
1287 	}
1288 	buf->f_ffree = 0;
1289 
1290 	spin_unlock(&sbi->s_lock);
1291 
1292 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1293 
1294 	return 0;
1295 }
1296 
1297 enum {
1298 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1299 	Opt_explicit_open, Opt_err,
1300 };
1301 
1302 static const match_table_t tokens = {
1303 	{ Opt_errors_ro,	"errors=remount-ro"},
1304 	{ Opt_errors_zro,	"errors=zone-ro"},
1305 	{ Opt_errors_zol,	"errors=zone-offline"},
1306 	{ Opt_errors_repair,	"errors=repair"},
1307 	{ Opt_explicit_open,	"explicit-open" },
1308 	{ Opt_err,		NULL}
1309 };
1310 
1311 static int zonefs_parse_options(struct super_block *sb, char *options)
1312 {
1313 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1314 	substring_t args[MAX_OPT_ARGS];
1315 	char *p;
1316 
1317 	if (!options)
1318 		return 0;
1319 
1320 	while ((p = strsep(&options, ",")) != NULL) {
1321 		int token;
1322 
1323 		if (!*p)
1324 			continue;
1325 
1326 		token = match_token(p, tokens, args);
1327 		switch (token) {
1328 		case Opt_errors_ro:
1329 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1330 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1331 			break;
1332 		case Opt_errors_zro:
1333 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1334 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1335 			break;
1336 		case Opt_errors_zol:
1337 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1338 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1339 			break;
1340 		case Opt_errors_repair:
1341 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1342 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1343 			break;
1344 		case Opt_explicit_open:
1345 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1346 			break;
1347 		default:
1348 			return -EINVAL;
1349 		}
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1356 {
1357 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1358 
1359 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1360 		seq_puts(seq, ",errors=remount-ro");
1361 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1362 		seq_puts(seq, ",errors=zone-ro");
1363 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1364 		seq_puts(seq, ",errors=zone-offline");
1365 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1366 		seq_puts(seq, ",errors=repair");
1367 
1368 	return 0;
1369 }
1370 
1371 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1372 {
1373 	sync_filesystem(sb);
1374 
1375 	return zonefs_parse_options(sb, data);
1376 }
1377 
1378 static const struct super_operations zonefs_sops = {
1379 	.alloc_inode	= zonefs_alloc_inode,
1380 	.free_inode	= zonefs_free_inode,
1381 	.statfs		= zonefs_statfs,
1382 	.remount_fs	= zonefs_remount,
1383 	.show_options	= zonefs_show_options,
1384 };
1385 
1386 static const struct inode_operations zonefs_dir_inode_operations = {
1387 	.lookup		= simple_lookup,
1388 	.setattr	= zonefs_inode_setattr,
1389 };
1390 
1391 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1392 				  enum zonefs_ztype type)
1393 {
1394 	struct super_block *sb = parent->i_sb;
1395 
1396 	inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1;
1397 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1398 	inode->i_op = &zonefs_dir_inode_operations;
1399 	inode->i_fop = &simple_dir_operations;
1400 	set_nlink(inode, 2);
1401 	inc_nlink(parent);
1402 }
1403 
1404 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1405 				  enum zonefs_ztype type)
1406 {
1407 	struct super_block *sb = inode->i_sb;
1408 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1409 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1410 	int ret = 0;
1411 
1412 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1413 	inode->i_mode = S_IFREG | sbi->s_perm;
1414 
1415 	zi->i_ztype = type;
1416 	zi->i_zsector = zone->start;
1417 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1418 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1419 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1420 		zonefs_err(sb,
1421 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1422 			   zi->i_zone_size,
1423 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1424 		return -EINVAL;
1425 	}
1426 
1427 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1428 			       zone->capacity << SECTOR_SHIFT);
1429 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1430 
1431 	inode->i_uid = sbi->s_uid;
1432 	inode->i_gid = sbi->s_gid;
1433 	inode->i_size = zi->i_wpoffset;
1434 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1435 
1436 	inode->i_op = &zonefs_file_inode_operations;
1437 	inode->i_fop = &zonefs_file_operations;
1438 	inode->i_mapping->a_ops = &zonefs_file_aops;
1439 
1440 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1441 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1442 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1443 
1444 	mutex_lock(&zi->i_truncate_mutex);
1445 
1446 	/*
1447 	 * For sequential zones, make sure that any open zone is closed first
1448 	 * to ensure that the initial number of open zones is 0, in sync with
1449 	 * the open zone accounting done when the mount option
1450 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1451 	 */
1452 	if (type == ZONEFS_ZTYPE_SEQ &&
1453 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1454 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1455 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1456 		if (ret)
1457 			goto unlock;
1458 	}
1459 
1460 	zonefs_account_active(inode);
1461 
1462 unlock:
1463 	mutex_unlock(&zi->i_truncate_mutex);
1464 
1465 	return ret;
1466 }
1467 
1468 static struct dentry *zonefs_create_inode(struct dentry *parent,
1469 					const char *name, struct blk_zone *zone,
1470 					enum zonefs_ztype type)
1471 {
1472 	struct inode *dir = d_inode(parent);
1473 	struct dentry *dentry;
1474 	struct inode *inode;
1475 	int ret = -ENOMEM;
1476 
1477 	dentry = d_alloc_name(parent, name);
1478 	if (!dentry)
1479 		return ERR_PTR(ret);
1480 
1481 	inode = new_inode(parent->d_sb);
1482 	if (!inode)
1483 		goto dput;
1484 
1485 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1486 	if (zone) {
1487 		ret = zonefs_init_file_inode(inode, zone, type);
1488 		if (ret) {
1489 			iput(inode);
1490 			goto dput;
1491 		}
1492 	} else {
1493 		zonefs_init_dir_inode(dir, inode, type);
1494 	}
1495 
1496 	d_add(dentry, inode);
1497 	dir->i_size++;
1498 
1499 	return dentry;
1500 
1501 dput:
1502 	dput(dentry);
1503 
1504 	return ERR_PTR(ret);
1505 }
1506 
1507 struct zonefs_zone_data {
1508 	struct super_block	*sb;
1509 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1510 	struct blk_zone		*zones;
1511 };
1512 
1513 /*
1514  * Create a zone group and populate it with zone files.
1515  */
1516 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1517 				enum zonefs_ztype type)
1518 {
1519 	struct super_block *sb = zd->sb;
1520 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1521 	struct blk_zone *zone, *next, *end;
1522 	const char *zgroup_name;
1523 	char *file_name;
1524 	struct dentry *dir, *dent;
1525 	unsigned int n = 0;
1526 	int ret;
1527 
1528 	/* If the group is empty, there is nothing to do */
1529 	if (!zd->nr_zones[type])
1530 		return 0;
1531 
1532 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1533 	if (!file_name)
1534 		return -ENOMEM;
1535 
1536 	if (type == ZONEFS_ZTYPE_CNV)
1537 		zgroup_name = "cnv";
1538 	else
1539 		zgroup_name = "seq";
1540 
1541 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1542 	if (IS_ERR(dir)) {
1543 		ret = PTR_ERR(dir);
1544 		goto free;
1545 	}
1546 
1547 	/*
1548 	 * The first zone contains the super block: skip it.
1549 	 */
1550 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
1551 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1552 
1553 		next = zone + 1;
1554 		if (zonefs_zone_type(zone) != type)
1555 			continue;
1556 
1557 		/*
1558 		 * For conventional zones, contiguous zones can be aggregated
1559 		 * together to form larger files. Note that this overwrites the
1560 		 * length of the first zone of the set of contiguous zones
1561 		 * aggregated together. If one offline or read-only zone is
1562 		 * found, assume that all zones aggregated have the same
1563 		 * condition.
1564 		 */
1565 		if (type == ZONEFS_ZTYPE_CNV &&
1566 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1567 			for (; next < end; next++) {
1568 				if (zonefs_zone_type(next) != type)
1569 					break;
1570 				zone->len += next->len;
1571 				zone->capacity += next->capacity;
1572 				if (next->cond == BLK_ZONE_COND_READONLY &&
1573 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1574 					zone->cond = BLK_ZONE_COND_READONLY;
1575 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1576 					zone->cond = BLK_ZONE_COND_OFFLINE;
1577 			}
1578 			if (zone->capacity != zone->len) {
1579 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1580 				ret = -EINVAL;
1581 				goto free;
1582 			}
1583 		}
1584 
1585 		/*
1586 		 * Use the file number within its group as file name.
1587 		 */
1588 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1589 		dent = zonefs_create_inode(dir, file_name, zone, type);
1590 		if (IS_ERR(dent)) {
1591 			ret = PTR_ERR(dent);
1592 			goto free;
1593 		}
1594 
1595 		n++;
1596 	}
1597 
1598 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1599 		    zgroup_name, n, n > 1 ? "s" : "");
1600 
1601 	sbi->s_nr_files[type] = n;
1602 	ret = 0;
1603 
1604 free:
1605 	kfree(file_name);
1606 
1607 	return ret;
1608 }
1609 
1610 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1611 				   void *data)
1612 {
1613 	struct zonefs_zone_data *zd = data;
1614 
1615 	/*
1616 	 * Count the number of usable zones: the first zone at index 0 contains
1617 	 * the super block and is ignored.
1618 	 */
1619 	switch (zone->type) {
1620 	case BLK_ZONE_TYPE_CONVENTIONAL:
1621 		zone->wp = zone->start + zone->len;
1622 		if (idx)
1623 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1624 		break;
1625 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1626 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1627 		if (idx)
1628 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1629 		break;
1630 	default:
1631 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1632 			   zone->type);
1633 		return -EIO;
1634 	}
1635 
1636 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1637 
1638 	return 0;
1639 }
1640 
1641 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1642 {
1643 	struct block_device *bdev = zd->sb->s_bdev;
1644 	int ret;
1645 
1646 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
1647 			     GFP_KERNEL);
1648 	if (!zd->zones)
1649 		return -ENOMEM;
1650 
1651 	/* Get zones information from the device */
1652 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1653 				  zonefs_get_zone_info_cb, zd);
1654 	if (ret < 0) {
1655 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1656 		return ret;
1657 	}
1658 
1659 	if (ret != bdev_nr_zones(bdev)) {
1660 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1661 			   ret, bdev_nr_zones(bdev));
1662 		return -EIO;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1669 {
1670 	kvfree(zd->zones);
1671 }
1672 
1673 /*
1674  * Read super block information from the device.
1675  */
1676 static int zonefs_read_super(struct super_block *sb)
1677 {
1678 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1679 	struct zonefs_super *super;
1680 	u32 crc, stored_crc;
1681 	struct page *page;
1682 	struct bio_vec bio_vec;
1683 	struct bio bio;
1684 	int ret;
1685 
1686 	page = alloc_page(GFP_KERNEL);
1687 	if (!page)
1688 		return -ENOMEM;
1689 
1690 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1691 	bio.bi_iter.bi_sector = 0;
1692 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1693 
1694 	ret = submit_bio_wait(&bio);
1695 	if (ret)
1696 		goto free_page;
1697 
1698 	super = page_address(page);
1699 
1700 	ret = -EINVAL;
1701 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1702 		goto free_page;
1703 
1704 	stored_crc = le32_to_cpu(super->s_crc);
1705 	super->s_crc = 0;
1706 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1707 	if (crc != stored_crc) {
1708 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1709 			   crc, stored_crc);
1710 		goto free_page;
1711 	}
1712 
1713 	sbi->s_features = le64_to_cpu(super->s_features);
1714 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1715 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1716 			   sbi->s_features);
1717 		goto free_page;
1718 	}
1719 
1720 	if (sbi->s_features & ZONEFS_F_UID) {
1721 		sbi->s_uid = make_kuid(current_user_ns(),
1722 				       le32_to_cpu(super->s_uid));
1723 		if (!uid_valid(sbi->s_uid)) {
1724 			zonefs_err(sb, "Invalid UID feature\n");
1725 			goto free_page;
1726 		}
1727 	}
1728 
1729 	if (sbi->s_features & ZONEFS_F_GID) {
1730 		sbi->s_gid = make_kgid(current_user_ns(),
1731 				       le32_to_cpu(super->s_gid));
1732 		if (!gid_valid(sbi->s_gid)) {
1733 			zonefs_err(sb, "Invalid GID feature\n");
1734 			goto free_page;
1735 		}
1736 	}
1737 
1738 	if (sbi->s_features & ZONEFS_F_PERM)
1739 		sbi->s_perm = le32_to_cpu(super->s_perm);
1740 
1741 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1742 		zonefs_err(sb, "Reserved area is being used\n");
1743 		goto free_page;
1744 	}
1745 
1746 	import_uuid(&sbi->s_uuid, super->s_uuid);
1747 	ret = 0;
1748 
1749 free_page:
1750 	__free_page(page);
1751 
1752 	return ret;
1753 }
1754 
1755 /*
1756  * Check that the device is zoned. If it is, get the list of zones and create
1757  * sub-directories and files according to the device zone configuration and
1758  * format options.
1759  */
1760 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1761 {
1762 	struct zonefs_zone_data zd;
1763 	struct zonefs_sb_info *sbi;
1764 	struct inode *inode;
1765 	enum zonefs_ztype t;
1766 	int ret;
1767 
1768 	if (!bdev_is_zoned(sb->s_bdev)) {
1769 		zonefs_err(sb, "Not a zoned block device\n");
1770 		return -EINVAL;
1771 	}
1772 
1773 	/*
1774 	 * Initialize super block information: the maximum file size is updated
1775 	 * when the zone files are created so that the format option
1776 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1777 	 * beyond the zone size is taken into account.
1778 	 */
1779 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1780 	if (!sbi)
1781 		return -ENOMEM;
1782 
1783 	spin_lock_init(&sbi->s_lock);
1784 	sb->s_fs_info = sbi;
1785 	sb->s_magic = ZONEFS_MAGIC;
1786 	sb->s_maxbytes = 0;
1787 	sb->s_op = &zonefs_sops;
1788 	sb->s_time_gran	= 1;
1789 
1790 	/*
1791 	 * The block size is set to the device zone write granularity to ensure
1792 	 * that write operations are always aligned according to the device
1793 	 * interface constraints.
1794 	 */
1795 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1796 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1797 	sbi->s_uid = GLOBAL_ROOT_UID;
1798 	sbi->s_gid = GLOBAL_ROOT_GID;
1799 	sbi->s_perm = 0640;
1800 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1801 
1802 	atomic_set(&sbi->s_wro_seq_files, 0);
1803 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1804 	atomic_set(&sbi->s_active_seq_files, 0);
1805 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1806 
1807 	ret = zonefs_read_super(sb);
1808 	if (ret)
1809 		return ret;
1810 
1811 	ret = zonefs_parse_options(sb, data);
1812 	if (ret)
1813 		return ret;
1814 
1815 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1816 	zd.sb = sb;
1817 	ret = zonefs_get_zone_info(&zd);
1818 	if (ret)
1819 		goto cleanup;
1820 
1821 	ret = zonefs_sysfs_register(sb);
1822 	if (ret)
1823 		goto cleanup;
1824 
1825 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1826 
1827 	if (!sbi->s_max_wro_seq_files &&
1828 	    !sbi->s_max_active_seq_files &&
1829 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1830 		zonefs_info(sb,
1831 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1832 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1833 	}
1834 
1835 	/* Create root directory inode */
1836 	ret = -ENOMEM;
1837 	inode = new_inode(sb);
1838 	if (!inode)
1839 		goto cleanup;
1840 
1841 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1842 	inode->i_mode = S_IFDIR | 0555;
1843 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1844 	inode->i_op = &zonefs_dir_inode_operations;
1845 	inode->i_fop = &simple_dir_operations;
1846 	set_nlink(inode, 2);
1847 
1848 	sb->s_root = d_make_root(inode);
1849 	if (!sb->s_root)
1850 		goto cleanup;
1851 
1852 	/* Create and populate files in zone groups directories */
1853 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1854 		ret = zonefs_create_zgroup(&zd, t);
1855 		if (ret)
1856 			break;
1857 	}
1858 
1859 cleanup:
1860 	zonefs_cleanup_zone_info(&zd);
1861 
1862 	return ret;
1863 }
1864 
1865 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1866 				   int flags, const char *dev_name, void *data)
1867 {
1868 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1869 }
1870 
1871 static void zonefs_kill_super(struct super_block *sb)
1872 {
1873 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1874 
1875 	if (sb->s_root)
1876 		d_genocide(sb->s_root);
1877 
1878 	zonefs_sysfs_unregister(sb);
1879 	kill_block_super(sb);
1880 	kfree(sbi);
1881 }
1882 
1883 /*
1884  * File system definition and registration.
1885  */
1886 static struct file_system_type zonefs_type = {
1887 	.owner		= THIS_MODULE,
1888 	.name		= "zonefs",
1889 	.mount		= zonefs_mount,
1890 	.kill_sb	= zonefs_kill_super,
1891 	.fs_flags	= FS_REQUIRES_DEV,
1892 };
1893 
1894 static int __init zonefs_init_inodecache(void)
1895 {
1896 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1897 			sizeof(struct zonefs_inode_info), 0,
1898 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1899 			NULL);
1900 	if (zonefs_inode_cachep == NULL)
1901 		return -ENOMEM;
1902 	return 0;
1903 }
1904 
1905 static void zonefs_destroy_inodecache(void)
1906 {
1907 	/*
1908 	 * Make sure all delayed rcu free inodes are flushed before we
1909 	 * destroy the inode cache.
1910 	 */
1911 	rcu_barrier();
1912 	kmem_cache_destroy(zonefs_inode_cachep);
1913 }
1914 
1915 static int __init zonefs_init(void)
1916 {
1917 	int ret;
1918 
1919 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1920 
1921 	ret = zonefs_init_inodecache();
1922 	if (ret)
1923 		return ret;
1924 
1925 	ret = register_filesystem(&zonefs_type);
1926 	if (ret)
1927 		goto destroy_inodecache;
1928 
1929 	ret = zonefs_sysfs_init();
1930 	if (ret)
1931 		goto unregister_fs;
1932 
1933 	return 0;
1934 
1935 unregister_fs:
1936 	unregister_filesystem(&zonefs_type);
1937 destroy_inodecache:
1938 	zonefs_destroy_inodecache();
1939 
1940 	return ret;
1941 }
1942 
1943 static void __exit zonefs_exit(void)
1944 {
1945 	zonefs_sysfs_exit();
1946 	zonefs_destroy_inodecache();
1947 	unregister_filesystem(&zonefs_type);
1948 }
1949 
1950 MODULE_AUTHOR("Damien Le Moal");
1951 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1952 MODULE_LICENSE("GPL");
1953 MODULE_ALIAS_FS("zonefs");
1954 module_init(zonefs_init);
1955 module_exit(zonefs_exit);
1956