1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 trace_zonefs_zone_mgmt(inode, op); 39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 41 if (ret) { 42 zonefs_err(inode->i_sb, 43 "Zone management operation %s at %llu failed %d\n", 44 blk_op_str(op), zi->i_zsector, ret); 45 return ret; 46 } 47 48 return 0; 49 } 50 51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 52 { 53 struct zonefs_inode_info *zi = ZONEFS_I(inode); 54 55 i_size_write(inode, isize); 56 /* 57 * A full zone is no longer open/active and does not need 58 * explicit closing. 59 */ 60 if (isize >= zi->i_max_size) 61 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 62 } 63 64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 65 unsigned int flags, struct iomap *iomap, 66 struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct super_block *sb = inode->i_sb; 70 loff_t isize; 71 72 /* All I/Os should always be within the file maximum size */ 73 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 74 return -EIO; 75 76 /* 77 * Sequential zones can only accept direct writes. This is already 78 * checked when writes are issued, so warn if we see a page writeback 79 * operation. 80 */ 81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 isize = i_size_read(inode); 92 if (offset >= isize) 93 iomap->type = IOMAP_UNWRITTEN; 94 else 95 iomap->type = IOMAP_MAPPED; 96 if (flags & IOMAP_WRITE) 97 length = zi->i_max_size - offset; 98 else 99 length = min(length, isize - offset); 100 mutex_unlock(&zi->i_truncate_mutex); 101 102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 104 iomap->bdev = inode->i_sb->s_bdev; 105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 106 107 trace_zonefs_iomap_begin(inode, iomap); 108 109 return 0; 110 } 111 112 static const struct iomap_ops zonefs_iomap_ops = { 113 .iomap_begin = zonefs_iomap_begin, 114 }; 115 116 static int zonefs_readpage(struct file *unused, struct page *page) 117 { 118 return iomap_readpage(page, &zonefs_iomap_ops); 119 } 120 121 static void zonefs_readahead(struct readahead_control *rac) 122 { 123 iomap_readahead(rac, &zonefs_iomap_ops); 124 } 125 126 /* 127 * Map blocks for page writeback. This is used only on conventional zone files, 128 * which implies that the page range can only be within the fixed inode size. 129 */ 130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 131 struct inode *inode, loff_t offset) 132 { 133 struct zonefs_inode_info *zi = ZONEFS_I(inode); 134 135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 136 return -EIO; 137 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 138 return -EIO; 139 140 /* If the mapping is already OK, nothing needs to be done */ 141 if (offset >= wpc->iomap.offset && 142 offset < wpc->iomap.offset + wpc->iomap.length) 143 return 0; 144 145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 146 IOMAP_WRITE, &wpc->iomap, NULL); 147 } 148 149 static const struct iomap_writeback_ops zonefs_writeback_ops = { 150 .map_blocks = zonefs_map_blocks, 151 }; 152 153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_writepages(struct address_space *mapping, 161 struct writeback_control *wbc) 162 { 163 struct iomap_writepage_ctx wpc = { }; 164 165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 166 } 167 168 static int zonefs_swap_activate(struct swap_info_struct *sis, 169 struct file *swap_file, sector_t *span) 170 { 171 struct inode *inode = file_inode(swap_file); 172 struct zonefs_inode_info *zi = ZONEFS_I(inode); 173 174 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 175 zonefs_err(inode->i_sb, 176 "swap file: not a conventional zone file\n"); 177 return -EINVAL; 178 } 179 180 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops); 181 } 182 183 static const struct address_space_operations zonefs_file_aops = { 184 .readpage = zonefs_readpage, 185 .readahead = zonefs_readahead, 186 .writepage = zonefs_writepage, 187 .writepages = zonefs_writepages, 188 .dirty_folio = filemap_dirty_folio, 189 .releasepage = iomap_releasepage, 190 .invalidate_folio = iomap_invalidate_folio, 191 .migratepage = iomap_migrate_page, 192 .is_partially_uptodate = iomap_is_partially_uptodate, 193 .error_remove_page = generic_error_remove_page, 194 .direct_IO = noop_direct_IO, 195 .swap_activate = zonefs_swap_activate, 196 }; 197 198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 199 { 200 struct super_block *sb = inode->i_sb; 201 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 202 loff_t old_isize = i_size_read(inode); 203 loff_t nr_blocks; 204 205 if (new_isize == old_isize) 206 return; 207 208 spin_lock(&sbi->s_lock); 209 210 /* 211 * This may be called for an update after an IO error. 212 * So beware of the values seen. 213 */ 214 if (new_isize < old_isize) { 215 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 216 if (sbi->s_used_blocks > nr_blocks) 217 sbi->s_used_blocks -= nr_blocks; 218 else 219 sbi->s_used_blocks = 0; 220 } else { 221 sbi->s_used_blocks += 222 (new_isize - old_isize) >> sb->s_blocksize_bits; 223 if (sbi->s_used_blocks > sbi->s_blocks) 224 sbi->s_used_blocks = sbi->s_blocks; 225 } 226 227 spin_unlock(&sbi->s_lock); 228 } 229 230 /* 231 * Check a zone condition and adjust its file inode access permissions for 232 * offline and readonly zones. Return the inode size corresponding to the 233 * amount of readable data in the zone. 234 */ 235 static loff_t zonefs_check_zone_condition(struct inode *inode, 236 struct blk_zone *zone, bool warn, 237 bool mount) 238 { 239 struct zonefs_inode_info *zi = ZONEFS_I(inode); 240 241 switch (zone->cond) { 242 case BLK_ZONE_COND_OFFLINE: 243 /* 244 * Dead zone: make the inode immutable, disable all accesses 245 * and set the file size to 0 (zone wp set to zone start). 246 */ 247 if (warn) 248 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 249 inode->i_ino); 250 inode->i_flags |= S_IMMUTABLE; 251 inode->i_mode &= ~0777; 252 zone->wp = zone->start; 253 return 0; 254 case BLK_ZONE_COND_READONLY: 255 /* 256 * The write pointer of read-only zones is invalid. If such a 257 * zone is found during mount, the file size cannot be retrieved 258 * so we treat the zone as offline (mount == true case). 259 * Otherwise, keep the file size as it was when last updated 260 * so that the user can recover data. In both cases, writes are 261 * always disabled for the zone. 262 */ 263 if (warn) 264 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 265 inode->i_ino); 266 inode->i_flags |= S_IMMUTABLE; 267 if (mount) { 268 zone->cond = BLK_ZONE_COND_OFFLINE; 269 inode->i_mode &= ~0777; 270 zone->wp = zone->start; 271 return 0; 272 } 273 inode->i_mode &= ~0222; 274 return i_size_read(inode); 275 case BLK_ZONE_COND_FULL: 276 /* The write pointer of full zones is invalid. */ 277 return zi->i_max_size; 278 default: 279 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 280 return zi->i_max_size; 281 return (zone->wp - zone->start) << SECTOR_SHIFT; 282 } 283 } 284 285 struct zonefs_ioerr_data { 286 struct inode *inode; 287 bool write; 288 }; 289 290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 291 void *data) 292 { 293 struct zonefs_ioerr_data *err = data; 294 struct inode *inode = err->inode; 295 struct zonefs_inode_info *zi = ZONEFS_I(inode); 296 struct super_block *sb = inode->i_sb; 297 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 298 loff_t isize, data_size; 299 300 /* 301 * Check the zone condition: if the zone is not "bad" (offline or 302 * read-only), read errors are simply signaled to the IO issuer as long 303 * as there is no inconsistency between the inode size and the amount of 304 * data writen in the zone (data_size). 305 */ 306 data_size = zonefs_check_zone_condition(inode, zone, true, false); 307 isize = i_size_read(inode); 308 if (zone->cond != BLK_ZONE_COND_OFFLINE && 309 zone->cond != BLK_ZONE_COND_READONLY && 310 !err->write && isize == data_size) 311 return 0; 312 313 /* 314 * At this point, we detected either a bad zone or an inconsistency 315 * between the inode size and the amount of data written in the zone. 316 * For the latter case, the cause may be a write IO error or an external 317 * action on the device. Two error patterns exist: 318 * 1) The inode size is lower than the amount of data in the zone: 319 * a write operation partially failed and data was writen at the end 320 * of the file. This can happen in the case of a large direct IO 321 * needing several BIOs and/or write requests to be processed. 322 * 2) The inode size is larger than the amount of data in the zone: 323 * this can happen with a deferred write error with the use of the 324 * device side write cache after getting successful write IO 325 * completions. Other possibilities are (a) an external corruption, 326 * e.g. an application reset the zone directly, or (b) the device 327 * has a serious problem (e.g. firmware bug). 328 * 329 * In all cases, warn about inode size inconsistency and handle the 330 * IO error according to the zone condition and to the mount options. 331 */ 332 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 333 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 334 inode->i_ino, isize, data_size); 335 336 /* 337 * First handle bad zones signaled by hardware. The mount options 338 * errors=zone-ro and errors=zone-offline result in changing the 339 * zone condition to read-only and offline respectively, as if the 340 * condition was signaled by the hardware. 341 */ 342 if (zone->cond == BLK_ZONE_COND_OFFLINE || 343 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 344 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 345 inode->i_ino); 346 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 347 zone->cond = BLK_ZONE_COND_OFFLINE; 348 data_size = zonefs_check_zone_condition(inode, zone, 349 false, false); 350 } 351 } else if (zone->cond == BLK_ZONE_COND_READONLY || 352 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 353 zonefs_warn(sb, "inode %lu: write access disabled\n", 354 inode->i_ino); 355 if (zone->cond != BLK_ZONE_COND_READONLY) { 356 zone->cond = BLK_ZONE_COND_READONLY; 357 data_size = zonefs_check_zone_condition(inode, zone, 358 false, false); 359 } 360 } 361 362 /* 363 * If the filesystem is mounted with the explicit-open mount option, we 364 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 365 * the read-only or offline condition, to avoid attempting an explicit 366 * close of the zone when the inode file is closed. 367 */ 368 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 369 (zone->cond == BLK_ZONE_COND_OFFLINE || 370 zone->cond == BLK_ZONE_COND_READONLY)) 371 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 372 373 /* 374 * If error=remount-ro was specified, any error result in remounting 375 * the volume as read-only. 376 */ 377 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 378 zonefs_warn(sb, "remounting filesystem read-only\n"); 379 sb->s_flags |= SB_RDONLY; 380 } 381 382 /* 383 * Update block usage stats and the inode size to prevent access to 384 * invalid data. 385 */ 386 zonefs_update_stats(inode, data_size); 387 zonefs_i_size_write(inode, data_size); 388 zi->i_wpoffset = data_size; 389 390 return 0; 391 } 392 393 /* 394 * When an file IO error occurs, check the file zone to see if there is a change 395 * in the zone condition (e.g. offline or read-only). For a failed write to a 396 * sequential zone, the zone write pointer position must also be checked to 397 * eventually correct the file size and zonefs inode write pointer offset 398 * (which can be out of sync with the drive due to partial write failures). 399 */ 400 static void __zonefs_io_error(struct inode *inode, bool write) 401 { 402 struct zonefs_inode_info *zi = ZONEFS_I(inode); 403 struct super_block *sb = inode->i_sb; 404 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 405 unsigned int noio_flag; 406 unsigned int nr_zones = 407 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 408 struct zonefs_ioerr_data err = { 409 .inode = inode, 410 .write = write, 411 }; 412 int ret; 413 414 /* 415 * Memory allocations in blkdev_report_zones() can trigger a memory 416 * reclaim which may in turn cause a recursion into zonefs as well as 417 * struct request allocations for the same device. The former case may 418 * end up in a deadlock on the inode truncate mutex, while the latter 419 * may prevent IO forward progress. Executing the report zones under 420 * the GFP_NOIO context avoids both problems. 421 */ 422 noio_flag = memalloc_noio_save(); 423 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 424 zonefs_io_error_cb, &err); 425 if (ret != nr_zones) 426 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 427 inode->i_ino, ret); 428 memalloc_noio_restore(noio_flag); 429 } 430 431 static void zonefs_io_error(struct inode *inode, bool write) 432 { 433 struct zonefs_inode_info *zi = ZONEFS_I(inode); 434 435 mutex_lock(&zi->i_truncate_mutex); 436 __zonefs_io_error(inode, write); 437 mutex_unlock(&zi->i_truncate_mutex); 438 } 439 440 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 441 { 442 struct zonefs_inode_info *zi = ZONEFS_I(inode); 443 loff_t old_isize; 444 enum req_opf op; 445 int ret = 0; 446 447 /* 448 * Only sequential zone files can be truncated and truncation is allowed 449 * only down to a 0 size, which is equivalent to a zone reset, and to 450 * the maximum file size, which is equivalent to a zone finish. 451 */ 452 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 453 return -EPERM; 454 455 if (!isize) 456 op = REQ_OP_ZONE_RESET; 457 else if (isize == zi->i_max_size) 458 op = REQ_OP_ZONE_FINISH; 459 else 460 return -EPERM; 461 462 inode_dio_wait(inode); 463 464 /* Serialize against page faults */ 465 filemap_invalidate_lock(inode->i_mapping); 466 467 /* Serialize against zonefs_iomap_begin() */ 468 mutex_lock(&zi->i_truncate_mutex); 469 470 old_isize = i_size_read(inode); 471 if (isize == old_isize) 472 goto unlock; 473 474 ret = zonefs_zone_mgmt(inode, op); 475 if (ret) 476 goto unlock; 477 478 /* 479 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 480 * take care of open zones. 481 */ 482 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 483 /* 484 * Truncating a zone to EMPTY or FULL is the equivalent of 485 * closing the zone. For a truncation to 0, we need to 486 * re-open the zone to ensure new writes can be processed. 487 * For a truncation to the maximum file size, the zone is 488 * closed and writes cannot be accepted anymore, so clear 489 * the open flag. 490 */ 491 if (!isize) 492 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 493 else 494 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 495 } 496 497 zonefs_update_stats(inode, isize); 498 truncate_setsize(inode, isize); 499 zi->i_wpoffset = isize; 500 501 unlock: 502 mutex_unlock(&zi->i_truncate_mutex); 503 filemap_invalidate_unlock(inode->i_mapping); 504 505 return ret; 506 } 507 508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 509 struct dentry *dentry, struct iattr *iattr) 510 { 511 struct inode *inode = d_inode(dentry); 512 int ret; 513 514 if (unlikely(IS_IMMUTABLE(inode))) 515 return -EPERM; 516 517 ret = setattr_prepare(&init_user_ns, dentry, iattr); 518 if (ret) 519 return ret; 520 521 /* 522 * Since files and directories cannot be created nor deleted, do not 523 * allow setting any write attributes on the sub-directories grouping 524 * files by zone type. 525 */ 526 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 527 (iattr->ia_mode & 0222)) 528 return -EPERM; 529 530 if (((iattr->ia_valid & ATTR_UID) && 531 !uid_eq(iattr->ia_uid, inode->i_uid)) || 532 ((iattr->ia_valid & ATTR_GID) && 533 !gid_eq(iattr->ia_gid, inode->i_gid))) { 534 ret = dquot_transfer(inode, iattr); 535 if (ret) 536 return ret; 537 } 538 539 if (iattr->ia_valid & ATTR_SIZE) { 540 ret = zonefs_file_truncate(inode, iattr->ia_size); 541 if (ret) 542 return ret; 543 } 544 545 setattr_copy(&init_user_ns, inode, iattr); 546 547 return 0; 548 } 549 550 static const struct inode_operations zonefs_file_inode_operations = { 551 .setattr = zonefs_inode_setattr, 552 }; 553 554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 555 int datasync) 556 { 557 struct inode *inode = file_inode(file); 558 int ret = 0; 559 560 if (unlikely(IS_IMMUTABLE(inode))) 561 return -EPERM; 562 563 /* 564 * Since only direct writes are allowed in sequential files, page cache 565 * flush is needed only for conventional zone files. 566 */ 567 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 568 ret = file_write_and_wait_range(file, start, end); 569 if (!ret) 570 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 571 572 if (ret) 573 zonefs_io_error(inode, true); 574 575 return ret; 576 } 577 578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 579 { 580 struct inode *inode = file_inode(vmf->vma->vm_file); 581 struct zonefs_inode_info *zi = ZONEFS_I(inode); 582 vm_fault_t ret; 583 584 if (unlikely(IS_IMMUTABLE(inode))) 585 return VM_FAULT_SIGBUS; 586 587 /* 588 * Sanity check: only conventional zone files can have shared 589 * writeable mappings. 590 */ 591 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 592 return VM_FAULT_NOPAGE; 593 594 sb_start_pagefault(inode->i_sb); 595 file_update_time(vmf->vma->vm_file); 596 597 /* Serialize against truncates */ 598 filemap_invalidate_lock_shared(inode->i_mapping); 599 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 600 filemap_invalidate_unlock_shared(inode->i_mapping); 601 602 sb_end_pagefault(inode->i_sb); 603 return ret; 604 } 605 606 static const struct vm_operations_struct zonefs_file_vm_ops = { 607 .fault = filemap_fault, 608 .map_pages = filemap_map_pages, 609 .page_mkwrite = zonefs_filemap_page_mkwrite, 610 }; 611 612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 613 { 614 /* 615 * Conventional zones accept random writes, so their files can support 616 * shared writable mappings. For sequential zone files, only read 617 * mappings are possible since there are no guarantees for write 618 * ordering between msync() and page cache writeback. 619 */ 620 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 621 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 622 return -EINVAL; 623 624 file_accessed(file); 625 vma->vm_ops = &zonefs_file_vm_ops; 626 627 return 0; 628 } 629 630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 631 { 632 loff_t isize = i_size_read(file_inode(file)); 633 634 /* 635 * Seeks are limited to below the zone size for conventional zones 636 * and below the zone write pointer for sequential zones. In both 637 * cases, this limit is the inode size. 638 */ 639 return generic_file_llseek_size(file, offset, whence, isize, isize); 640 } 641 642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 643 int error, unsigned int flags) 644 { 645 struct inode *inode = file_inode(iocb->ki_filp); 646 struct zonefs_inode_info *zi = ZONEFS_I(inode); 647 648 if (error) { 649 zonefs_io_error(inode, true); 650 return error; 651 } 652 653 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 654 /* 655 * Note that we may be seeing completions out of order, 656 * but that is not a problem since a write completed 657 * successfully necessarily means that all preceding writes 658 * were also successful. So we can safely increase the inode 659 * size to the write end location. 660 */ 661 mutex_lock(&zi->i_truncate_mutex); 662 if (i_size_read(inode) < iocb->ki_pos + size) { 663 zonefs_update_stats(inode, iocb->ki_pos + size); 664 zonefs_i_size_write(inode, iocb->ki_pos + size); 665 } 666 mutex_unlock(&zi->i_truncate_mutex); 667 } 668 669 return 0; 670 } 671 672 static const struct iomap_dio_ops zonefs_write_dio_ops = { 673 .end_io = zonefs_file_write_dio_end_io, 674 }; 675 676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 677 { 678 struct inode *inode = file_inode(iocb->ki_filp); 679 struct zonefs_inode_info *zi = ZONEFS_I(inode); 680 struct block_device *bdev = inode->i_sb->s_bdev; 681 unsigned int max; 682 struct bio *bio; 683 ssize_t size; 684 int nr_pages; 685 ssize_t ret; 686 687 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 688 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 689 iov_iter_truncate(from, max); 690 691 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 692 if (!nr_pages) 693 return 0; 694 695 bio = bio_alloc(bdev, nr_pages, 696 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 697 bio->bi_iter.bi_sector = zi->i_zsector; 698 bio->bi_write_hint = iocb->ki_hint; 699 bio->bi_ioprio = iocb->ki_ioprio; 700 if (iocb->ki_flags & IOCB_DSYNC) 701 bio->bi_opf |= REQ_FUA; 702 703 ret = bio_iov_iter_get_pages(bio, from); 704 if (unlikely(ret)) 705 goto out_release; 706 707 size = bio->bi_iter.bi_size; 708 task_io_account_write(size); 709 710 if (iocb->ki_flags & IOCB_HIPRI) 711 bio_set_polled(bio, iocb); 712 713 ret = submit_bio_wait(bio); 714 715 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 716 trace_zonefs_file_dio_append(inode, size, ret); 717 718 out_release: 719 bio_release_pages(bio, false); 720 bio_put(bio); 721 722 if (ret >= 0) { 723 iocb->ki_pos += size; 724 return size; 725 } 726 727 return ret; 728 } 729 730 /* 731 * Do not exceed the LFS limits nor the file zone size. If pos is under the 732 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 733 */ 734 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 735 loff_t count) 736 { 737 struct inode *inode = file_inode(file); 738 struct zonefs_inode_info *zi = ZONEFS_I(inode); 739 loff_t limit = rlimit(RLIMIT_FSIZE); 740 loff_t max_size = zi->i_max_size; 741 742 if (limit != RLIM_INFINITY) { 743 if (pos >= limit) { 744 send_sig(SIGXFSZ, current, 0); 745 return -EFBIG; 746 } 747 count = min(count, limit - pos); 748 } 749 750 if (!(file->f_flags & O_LARGEFILE)) 751 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 752 753 if (unlikely(pos >= max_size)) 754 return -EFBIG; 755 756 return min(count, max_size - pos); 757 } 758 759 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 760 { 761 struct file *file = iocb->ki_filp; 762 struct inode *inode = file_inode(file); 763 struct zonefs_inode_info *zi = ZONEFS_I(inode); 764 loff_t count; 765 766 if (IS_SWAPFILE(inode)) 767 return -ETXTBSY; 768 769 if (!iov_iter_count(from)) 770 return 0; 771 772 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 773 return -EINVAL; 774 775 if (iocb->ki_flags & IOCB_APPEND) { 776 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 777 return -EINVAL; 778 mutex_lock(&zi->i_truncate_mutex); 779 iocb->ki_pos = zi->i_wpoffset; 780 mutex_unlock(&zi->i_truncate_mutex); 781 } 782 783 count = zonefs_write_check_limits(file, iocb->ki_pos, 784 iov_iter_count(from)); 785 if (count < 0) 786 return count; 787 788 iov_iter_truncate(from, count); 789 return iov_iter_count(from); 790 } 791 792 /* 793 * Handle direct writes. For sequential zone files, this is the only possible 794 * write path. For these files, check that the user is issuing writes 795 * sequentially from the end of the file. This code assumes that the block layer 796 * delivers write requests to the device in sequential order. This is always the 797 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 798 * elevator feature is being used (e.g. mq-deadline). The block layer always 799 * automatically select such an elevator for zoned block devices during the 800 * device initialization. 801 */ 802 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 803 { 804 struct inode *inode = file_inode(iocb->ki_filp); 805 struct zonefs_inode_info *zi = ZONEFS_I(inode); 806 struct super_block *sb = inode->i_sb; 807 bool sync = is_sync_kiocb(iocb); 808 bool append = false; 809 ssize_t ret, count; 810 811 /* 812 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 813 * as this can cause write reordering (e.g. the first aio gets EAGAIN 814 * on the inode lock but the second goes through but is now unaligned). 815 */ 816 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 817 (iocb->ki_flags & IOCB_NOWAIT)) 818 return -EOPNOTSUPP; 819 820 if (iocb->ki_flags & IOCB_NOWAIT) { 821 if (!inode_trylock(inode)) 822 return -EAGAIN; 823 } else { 824 inode_lock(inode); 825 } 826 827 count = zonefs_write_checks(iocb, from); 828 if (count <= 0) { 829 ret = count; 830 goto inode_unlock; 831 } 832 833 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 834 ret = -EINVAL; 835 goto inode_unlock; 836 } 837 838 /* Enforce sequential writes (append only) in sequential zones */ 839 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 840 mutex_lock(&zi->i_truncate_mutex); 841 if (iocb->ki_pos != zi->i_wpoffset) { 842 mutex_unlock(&zi->i_truncate_mutex); 843 ret = -EINVAL; 844 goto inode_unlock; 845 } 846 mutex_unlock(&zi->i_truncate_mutex); 847 append = sync; 848 } 849 850 if (append) 851 ret = zonefs_file_dio_append(iocb, from); 852 else 853 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 854 &zonefs_write_dio_ops, 0, 0); 855 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 856 (ret > 0 || ret == -EIOCBQUEUED)) { 857 if (ret > 0) 858 count = ret; 859 mutex_lock(&zi->i_truncate_mutex); 860 zi->i_wpoffset += count; 861 mutex_unlock(&zi->i_truncate_mutex); 862 } 863 864 inode_unlock: 865 inode_unlock(inode); 866 867 return ret; 868 } 869 870 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 871 struct iov_iter *from) 872 { 873 struct inode *inode = file_inode(iocb->ki_filp); 874 struct zonefs_inode_info *zi = ZONEFS_I(inode); 875 ssize_t ret; 876 877 /* 878 * Direct IO writes are mandatory for sequential zone files so that the 879 * write IO issuing order is preserved. 880 */ 881 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 882 return -EIO; 883 884 if (iocb->ki_flags & IOCB_NOWAIT) { 885 if (!inode_trylock(inode)) 886 return -EAGAIN; 887 } else { 888 inode_lock(inode); 889 } 890 891 ret = zonefs_write_checks(iocb, from); 892 if (ret <= 0) 893 goto inode_unlock; 894 895 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 896 if (ret > 0) 897 iocb->ki_pos += ret; 898 else if (ret == -EIO) 899 zonefs_io_error(inode, true); 900 901 inode_unlock: 902 inode_unlock(inode); 903 if (ret > 0) 904 ret = generic_write_sync(iocb, ret); 905 906 return ret; 907 } 908 909 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 910 { 911 struct inode *inode = file_inode(iocb->ki_filp); 912 913 if (unlikely(IS_IMMUTABLE(inode))) 914 return -EPERM; 915 916 if (sb_rdonly(inode->i_sb)) 917 return -EROFS; 918 919 /* Write operations beyond the zone size are not allowed */ 920 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 921 return -EFBIG; 922 923 if (iocb->ki_flags & IOCB_DIRECT) { 924 ssize_t ret = zonefs_file_dio_write(iocb, from); 925 if (ret != -ENOTBLK) 926 return ret; 927 } 928 929 return zonefs_file_buffered_write(iocb, from); 930 } 931 932 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 933 int error, unsigned int flags) 934 { 935 if (error) { 936 zonefs_io_error(file_inode(iocb->ki_filp), false); 937 return error; 938 } 939 940 return 0; 941 } 942 943 static const struct iomap_dio_ops zonefs_read_dio_ops = { 944 .end_io = zonefs_file_read_dio_end_io, 945 }; 946 947 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 948 { 949 struct inode *inode = file_inode(iocb->ki_filp); 950 struct zonefs_inode_info *zi = ZONEFS_I(inode); 951 struct super_block *sb = inode->i_sb; 952 loff_t isize; 953 ssize_t ret; 954 955 /* Offline zones cannot be read */ 956 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 957 return -EPERM; 958 959 if (iocb->ki_pos >= zi->i_max_size) 960 return 0; 961 962 if (iocb->ki_flags & IOCB_NOWAIT) { 963 if (!inode_trylock_shared(inode)) 964 return -EAGAIN; 965 } else { 966 inode_lock_shared(inode); 967 } 968 969 /* Limit read operations to written data */ 970 mutex_lock(&zi->i_truncate_mutex); 971 isize = i_size_read(inode); 972 if (iocb->ki_pos >= isize) { 973 mutex_unlock(&zi->i_truncate_mutex); 974 ret = 0; 975 goto inode_unlock; 976 } 977 iov_iter_truncate(to, isize - iocb->ki_pos); 978 mutex_unlock(&zi->i_truncate_mutex); 979 980 if (iocb->ki_flags & IOCB_DIRECT) { 981 size_t count = iov_iter_count(to); 982 983 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 984 ret = -EINVAL; 985 goto inode_unlock; 986 } 987 file_accessed(iocb->ki_filp); 988 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 989 &zonefs_read_dio_ops, 0, 0); 990 } else { 991 ret = generic_file_read_iter(iocb, to); 992 if (ret == -EIO) 993 zonefs_io_error(inode, false); 994 } 995 996 inode_unlock: 997 inode_unlock_shared(inode); 998 999 return ret; 1000 } 1001 1002 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 1003 { 1004 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1005 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1006 1007 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 1008 return false; 1009 1010 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1011 return false; 1012 1013 if (!(file->f_mode & FMODE_WRITE)) 1014 return false; 1015 1016 return true; 1017 } 1018 1019 static int zonefs_open_zone(struct inode *inode) 1020 { 1021 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1022 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1023 int ret = 0; 1024 1025 mutex_lock(&zi->i_truncate_mutex); 1026 1027 if (!zi->i_wr_refcnt) { 1028 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 1029 atomic_dec(&sbi->s_open_zones); 1030 ret = -EBUSY; 1031 goto unlock; 1032 } 1033 1034 if (i_size_read(inode) < zi->i_max_size) { 1035 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1036 if (ret) { 1037 atomic_dec(&sbi->s_open_zones); 1038 goto unlock; 1039 } 1040 zi->i_flags |= ZONEFS_ZONE_OPEN; 1041 } 1042 } 1043 1044 zi->i_wr_refcnt++; 1045 1046 unlock: 1047 mutex_unlock(&zi->i_truncate_mutex); 1048 1049 return ret; 1050 } 1051 1052 static int zonefs_file_open(struct inode *inode, struct file *file) 1053 { 1054 int ret; 1055 1056 ret = generic_file_open(inode, file); 1057 if (ret) 1058 return ret; 1059 1060 if (zonefs_file_use_exp_open(inode, file)) 1061 return zonefs_open_zone(inode); 1062 1063 return 0; 1064 } 1065 1066 static void zonefs_close_zone(struct inode *inode) 1067 { 1068 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1069 int ret = 0; 1070 1071 mutex_lock(&zi->i_truncate_mutex); 1072 zi->i_wr_refcnt--; 1073 if (!zi->i_wr_refcnt) { 1074 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1075 struct super_block *sb = inode->i_sb; 1076 1077 /* 1078 * If the file zone is full, it is not open anymore and we only 1079 * need to decrement the open count. 1080 */ 1081 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1082 goto dec; 1083 1084 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1085 if (ret) { 1086 __zonefs_io_error(inode, false); 1087 /* 1088 * Leaving zones explicitly open may lead to a state 1089 * where most zones cannot be written (zone resources 1090 * exhausted). So take preventive action by remounting 1091 * read-only. 1092 */ 1093 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1094 !(sb->s_flags & SB_RDONLY)) { 1095 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1096 sb->s_flags |= SB_RDONLY; 1097 } 1098 } 1099 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1100 dec: 1101 atomic_dec(&sbi->s_open_zones); 1102 } 1103 mutex_unlock(&zi->i_truncate_mutex); 1104 } 1105 1106 static int zonefs_file_release(struct inode *inode, struct file *file) 1107 { 1108 /* 1109 * If we explicitly open a zone we must close it again as well, but the 1110 * zone management operation can fail (either due to an IO error or as 1111 * the zone has gone offline or read-only). Make sure we don't fail the 1112 * close(2) for user-space. 1113 */ 1114 if (zonefs_file_use_exp_open(inode, file)) 1115 zonefs_close_zone(inode); 1116 1117 return 0; 1118 } 1119 1120 static const struct file_operations zonefs_file_operations = { 1121 .open = zonefs_file_open, 1122 .release = zonefs_file_release, 1123 .fsync = zonefs_file_fsync, 1124 .mmap = zonefs_file_mmap, 1125 .llseek = zonefs_file_llseek, 1126 .read_iter = zonefs_file_read_iter, 1127 .write_iter = zonefs_file_write_iter, 1128 .splice_read = generic_file_splice_read, 1129 .splice_write = iter_file_splice_write, 1130 .iopoll = iocb_bio_iopoll, 1131 }; 1132 1133 static struct kmem_cache *zonefs_inode_cachep; 1134 1135 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1136 { 1137 struct zonefs_inode_info *zi; 1138 1139 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1140 if (!zi) 1141 return NULL; 1142 1143 inode_init_once(&zi->i_vnode); 1144 mutex_init(&zi->i_truncate_mutex); 1145 zi->i_wr_refcnt = 0; 1146 1147 return &zi->i_vnode; 1148 } 1149 1150 static void zonefs_free_inode(struct inode *inode) 1151 { 1152 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1153 } 1154 1155 /* 1156 * File system stat. 1157 */ 1158 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1159 { 1160 struct super_block *sb = dentry->d_sb; 1161 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1162 enum zonefs_ztype t; 1163 1164 buf->f_type = ZONEFS_MAGIC; 1165 buf->f_bsize = sb->s_blocksize; 1166 buf->f_namelen = ZONEFS_NAME_MAX; 1167 1168 spin_lock(&sbi->s_lock); 1169 1170 buf->f_blocks = sbi->s_blocks; 1171 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1172 buf->f_bfree = 0; 1173 else 1174 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1175 buf->f_bavail = buf->f_bfree; 1176 1177 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1178 if (sbi->s_nr_files[t]) 1179 buf->f_files += sbi->s_nr_files[t] + 1; 1180 } 1181 buf->f_ffree = 0; 1182 1183 spin_unlock(&sbi->s_lock); 1184 1185 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1186 1187 return 0; 1188 } 1189 1190 enum { 1191 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1192 Opt_explicit_open, Opt_err, 1193 }; 1194 1195 static const match_table_t tokens = { 1196 { Opt_errors_ro, "errors=remount-ro"}, 1197 { Opt_errors_zro, "errors=zone-ro"}, 1198 { Opt_errors_zol, "errors=zone-offline"}, 1199 { Opt_errors_repair, "errors=repair"}, 1200 { Opt_explicit_open, "explicit-open" }, 1201 { Opt_err, NULL} 1202 }; 1203 1204 static int zonefs_parse_options(struct super_block *sb, char *options) 1205 { 1206 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1207 substring_t args[MAX_OPT_ARGS]; 1208 char *p; 1209 1210 if (!options) 1211 return 0; 1212 1213 while ((p = strsep(&options, ",")) != NULL) { 1214 int token; 1215 1216 if (!*p) 1217 continue; 1218 1219 token = match_token(p, tokens, args); 1220 switch (token) { 1221 case Opt_errors_ro: 1222 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1223 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1224 break; 1225 case Opt_errors_zro: 1226 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1227 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1228 break; 1229 case Opt_errors_zol: 1230 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1231 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1232 break; 1233 case Opt_errors_repair: 1234 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1235 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1236 break; 1237 case Opt_explicit_open: 1238 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1239 break; 1240 default: 1241 return -EINVAL; 1242 } 1243 } 1244 1245 return 0; 1246 } 1247 1248 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1249 { 1250 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1251 1252 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1253 seq_puts(seq, ",errors=remount-ro"); 1254 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1255 seq_puts(seq, ",errors=zone-ro"); 1256 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1257 seq_puts(seq, ",errors=zone-offline"); 1258 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1259 seq_puts(seq, ",errors=repair"); 1260 1261 return 0; 1262 } 1263 1264 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1265 { 1266 sync_filesystem(sb); 1267 1268 return zonefs_parse_options(sb, data); 1269 } 1270 1271 static const struct super_operations zonefs_sops = { 1272 .alloc_inode = zonefs_alloc_inode, 1273 .free_inode = zonefs_free_inode, 1274 .statfs = zonefs_statfs, 1275 .remount_fs = zonefs_remount, 1276 .show_options = zonefs_show_options, 1277 }; 1278 1279 static const struct inode_operations zonefs_dir_inode_operations = { 1280 .lookup = simple_lookup, 1281 .setattr = zonefs_inode_setattr, 1282 }; 1283 1284 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1285 enum zonefs_ztype type) 1286 { 1287 struct super_block *sb = parent->i_sb; 1288 1289 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1290 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1291 inode->i_op = &zonefs_dir_inode_operations; 1292 inode->i_fop = &simple_dir_operations; 1293 set_nlink(inode, 2); 1294 inc_nlink(parent); 1295 } 1296 1297 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1298 enum zonefs_ztype type) 1299 { 1300 struct super_block *sb = inode->i_sb; 1301 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1302 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1303 1304 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1305 inode->i_mode = S_IFREG | sbi->s_perm; 1306 1307 zi->i_ztype = type; 1308 zi->i_zsector = zone->start; 1309 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1310 1311 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1312 zone->capacity << SECTOR_SHIFT); 1313 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1314 1315 inode->i_uid = sbi->s_uid; 1316 inode->i_gid = sbi->s_gid; 1317 inode->i_size = zi->i_wpoffset; 1318 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1319 1320 inode->i_op = &zonefs_file_inode_operations; 1321 inode->i_fop = &zonefs_file_operations; 1322 inode->i_mapping->a_ops = &zonefs_file_aops; 1323 1324 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1325 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1326 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1327 } 1328 1329 static struct dentry *zonefs_create_inode(struct dentry *parent, 1330 const char *name, struct blk_zone *zone, 1331 enum zonefs_ztype type) 1332 { 1333 struct inode *dir = d_inode(parent); 1334 struct dentry *dentry; 1335 struct inode *inode; 1336 1337 dentry = d_alloc_name(parent, name); 1338 if (!dentry) 1339 return NULL; 1340 1341 inode = new_inode(parent->d_sb); 1342 if (!inode) 1343 goto dput; 1344 1345 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1346 if (zone) 1347 zonefs_init_file_inode(inode, zone, type); 1348 else 1349 zonefs_init_dir_inode(dir, inode, type); 1350 d_add(dentry, inode); 1351 dir->i_size++; 1352 1353 return dentry; 1354 1355 dput: 1356 dput(dentry); 1357 1358 return NULL; 1359 } 1360 1361 struct zonefs_zone_data { 1362 struct super_block *sb; 1363 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1364 struct blk_zone *zones; 1365 }; 1366 1367 /* 1368 * Create a zone group and populate it with zone files. 1369 */ 1370 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1371 enum zonefs_ztype type) 1372 { 1373 struct super_block *sb = zd->sb; 1374 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1375 struct blk_zone *zone, *next, *end; 1376 const char *zgroup_name; 1377 char *file_name; 1378 struct dentry *dir; 1379 unsigned int n = 0; 1380 int ret; 1381 1382 /* If the group is empty, there is nothing to do */ 1383 if (!zd->nr_zones[type]) 1384 return 0; 1385 1386 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1387 if (!file_name) 1388 return -ENOMEM; 1389 1390 if (type == ZONEFS_ZTYPE_CNV) 1391 zgroup_name = "cnv"; 1392 else 1393 zgroup_name = "seq"; 1394 1395 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1396 if (!dir) { 1397 ret = -ENOMEM; 1398 goto free; 1399 } 1400 1401 /* 1402 * The first zone contains the super block: skip it. 1403 */ 1404 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1405 for (zone = &zd->zones[1]; zone < end; zone = next) { 1406 1407 next = zone + 1; 1408 if (zonefs_zone_type(zone) != type) 1409 continue; 1410 1411 /* 1412 * For conventional zones, contiguous zones can be aggregated 1413 * together to form larger files. Note that this overwrites the 1414 * length of the first zone of the set of contiguous zones 1415 * aggregated together. If one offline or read-only zone is 1416 * found, assume that all zones aggregated have the same 1417 * condition. 1418 */ 1419 if (type == ZONEFS_ZTYPE_CNV && 1420 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1421 for (; next < end; next++) { 1422 if (zonefs_zone_type(next) != type) 1423 break; 1424 zone->len += next->len; 1425 zone->capacity += next->capacity; 1426 if (next->cond == BLK_ZONE_COND_READONLY && 1427 zone->cond != BLK_ZONE_COND_OFFLINE) 1428 zone->cond = BLK_ZONE_COND_READONLY; 1429 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1430 zone->cond = BLK_ZONE_COND_OFFLINE; 1431 } 1432 if (zone->capacity != zone->len) { 1433 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1434 ret = -EINVAL; 1435 goto free; 1436 } 1437 } 1438 1439 /* 1440 * Use the file number within its group as file name. 1441 */ 1442 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1443 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1444 ret = -ENOMEM; 1445 goto free; 1446 } 1447 1448 n++; 1449 } 1450 1451 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1452 zgroup_name, n, n > 1 ? "s" : ""); 1453 1454 sbi->s_nr_files[type] = n; 1455 ret = 0; 1456 1457 free: 1458 kfree(file_name); 1459 1460 return ret; 1461 } 1462 1463 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1464 void *data) 1465 { 1466 struct zonefs_zone_data *zd = data; 1467 1468 /* 1469 * Count the number of usable zones: the first zone at index 0 contains 1470 * the super block and is ignored. 1471 */ 1472 switch (zone->type) { 1473 case BLK_ZONE_TYPE_CONVENTIONAL: 1474 zone->wp = zone->start + zone->len; 1475 if (idx) 1476 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1477 break; 1478 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1479 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1480 if (idx) 1481 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1482 break; 1483 default: 1484 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1485 zone->type); 1486 return -EIO; 1487 } 1488 1489 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1490 1491 return 0; 1492 } 1493 1494 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1495 { 1496 struct block_device *bdev = zd->sb->s_bdev; 1497 int ret; 1498 1499 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1500 sizeof(struct blk_zone), GFP_KERNEL); 1501 if (!zd->zones) 1502 return -ENOMEM; 1503 1504 /* Get zones information from the device */ 1505 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1506 zonefs_get_zone_info_cb, zd); 1507 if (ret < 0) { 1508 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1509 return ret; 1510 } 1511 1512 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1513 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1514 ret, blkdev_nr_zones(bdev->bd_disk)); 1515 return -EIO; 1516 } 1517 1518 return 0; 1519 } 1520 1521 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1522 { 1523 kvfree(zd->zones); 1524 } 1525 1526 /* 1527 * Read super block information from the device. 1528 */ 1529 static int zonefs_read_super(struct super_block *sb) 1530 { 1531 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1532 struct zonefs_super *super; 1533 u32 crc, stored_crc; 1534 struct page *page; 1535 struct bio_vec bio_vec; 1536 struct bio bio; 1537 int ret; 1538 1539 page = alloc_page(GFP_KERNEL); 1540 if (!page) 1541 return -ENOMEM; 1542 1543 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1544 bio.bi_iter.bi_sector = 0; 1545 bio_add_page(&bio, page, PAGE_SIZE, 0); 1546 1547 ret = submit_bio_wait(&bio); 1548 if (ret) 1549 goto free_page; 1550 1551 super = kmap(page); 1552 1553 ret = -EINVAL; 1554 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1555 goto unmap; 1556 1557 stored_crc = le32_to_cpu(super->s_crc); 1558 super->s_crc = 0; 1559 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1560 if (crc != stored_crc) { 1561 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1562 crc, stored_crc); 1563 goto unmap; 1564 } 1565 1566 sbi->s_features = le64_to_cpu(super->s_features); 1567 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1568 zonefs_err(sb, "Unknown features set 0x%llx\n", 1569 sbi->s_features); 1570 goto unmap; 1571 } 1572 1573 if (sbi->s_features & ZONEFS_F_UID) { 1574 sbi->s_uid = make_kuid(current_user_ns(), 1575 le32_to_cpu(super->s_uid)); 1576 if (!uid_valid(sbi->s_uid)) { 1577 zonefs_err(sb, "Invalid UID feature\n"); 1578 goto unmap; 1579 } 1580 } 1581 1582 if (sbi->s_features & ZONEFS_F_GID) { 1583 sbi->s_gid = make_kgid(current_user_ns(), 1584 le32_to_cpu(super->s_gid)); 1585 if (!gid_valid(sbi->s_gid)) { 1586 zonefs_err(sb, "Invalid GID feature\n"); 1587 goto unmap; 1588 } 1589 } 1590 1591 if (sbi->s_features & ZONEFS_F_PERM) 1592 sbi->s_perm = le32_to_cpu(super->s_perm); 1593 1594 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1595 zonefs_err(sb, "Reserved area is being used\n"); 1596 goto unmap; 1597 } 1598 1599 import_uuid(&sbi->s_uuid, super->s_uuid); 1600 ret = 0; 1601 1602 unmap: 1603 kunmap(page); 1604 free_page: 1605 __free_page(page); 1606 1607 return ret; 1608 } 1609 1610 /* 1611 * Check that the device is zoned. If it is, get the list of zones and create 1612 * sub-directories and files according to the device zone configuration and 1613 * format options. 1614 */ 1615 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1616 { 1617 struct zonefs_zone_data zd; 1618 struct zonefs_sb_info *sbi; 1619 struct inode *inode; 1620 enum zonefs_ztype t; 1621 int ret; 1622 1623 if (!bdev_is_zoned(sb->s_bdev)) { 1624 zonefs_err(sb, "Not a zoned block device\n"); 1625 return -EINVAL; 1626 } 1627 1628 /* 1629 * Initialize super block information: the maximum file size is updated 1630 * when the zone files are created so that the format option 1631 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1632 * beyond the zone size is taken into account. 1633 */ 1634 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1635 if (!sbi) 1636 return -ENOMEM; 1637 1638 spin_lock_init(&sbi->s_lock); 1639 sb->s_fs_info = sbi; 1640 sb->s_magic = ZONEFS_MAGIC; 1641 sb->s_maxbytes = 0; 1642 sb->s_op = &zonefs_sops; 1643 sb->s_time_gran = 1; 1644 1645 /* 1646 * The block size is set to the device zone write granularity to ensure 1647 * that write operations are always aligned according to the device 1648 * interface constraints. 1649 */ 1650 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1651 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1652 sbi->s_uid = GLOBAL_ROOT_UID; 1653 sbi->s_gid = GLOBAL_ROOT_GID; 1654 sbi->s_perm = 0640; 1655 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1656 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1657 atomic_set(&sbi->s_open_zones, 0); 1658 if (!sbi->s_max_open_zones && 1659 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1660 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1661 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1662 } 1663 1664 ret = zonefs_read_super(sb); 1665 if (ret) 1666 return ret; 1667 1668 ret = zonefs_parse_options(sb, data); 1669 if (ret) 1670 return ret; 1671 1672 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1673 zd.sb = sb; 1674 ret = zonefs_get_zone_info(&zd); 1675 if (ret) 1676 goto cleanup; 1677 1678 zonefs_info(sb, "Mounting %u zones", 1679 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1680 1681 /* Create root directory inode */ 1682 ret = -ENOMEM; 1683 inode = new_inode(sb); 1684 if (!inode) 1685 goto cleanup; 1686 1687 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1688 inode->i_mode = S_IFDIR | 0555; 1689 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1690 inode->i_op = &zonefs_dir_inode_operations; 1691 inode->i_fop = &simple_dir_operations; 1692 set_nlink(inode, 2); 1693 1694 sb->s_root = d_make_root(inode); 1695 if (!sb->s_root) 1696 goto cleanup; 1697 1698 /* Create and populate files in zone groups directories */ 1699 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1700 ret = zonefs_create_zgroup(&zd, t); 1701 if (ret) 1702 break; 1703 } 1704 1705 cleanup: 1706 zonefs_cleanup_zone_info(&zd); 1707 1708 return ret; 1709 } 1710 1711 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1712 int flags, const char *dev_name, void *data) 1713 { 1714 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1715 } 1716 1717 static void zonefs_kill_super(struct super_block *sb) 1718 { 1719 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1720 1721 if (sb->s_root) 1722 d_genocide(sb->s_root); 1723 kill_block_super(sb); 1724 kfree(sbi); 1725 } 1726 1727 /* 1728 * File system definition and registration. 1729 */ 1730 static struct file_system_type zonefs_type = { 1731 .owner = THIS_MODULE, 1732 .name = "zonefs", 1733 .mount = zonefs_mount, 1734 .kill_sb = zonefs_kill_super, 1735 .fs_flags = FS_REQUIRES_DEV, 1736 }; 1737 1738 static int __init zonefs_init_inodecache(void) 1739 { 1740 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1741 sizeof(struct zonefs_inode_info), 0, 1742 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1743 NULL); 1744 if (zonefs_inode_cachep == NULL) 1745 return -ENOMEM; 1746 return 0; 1747 } 1748 1749 static void zonefs_destroy_inodecache(void) 1750 { 1751 /* 1752 * Make sure all delayed rcu free inodes are flushed before we 1753 * destroy the inode cache. 1754 */ 1755 rcu_barrier(); 1756 kmem_cache_destroy(zonefs_inode_cachep); 1757 } 1758 1759 static int __init zonefs_init(void) 1760 { 1761 int ret; 1762 1763 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1764 1765 ret = zonefs_init_inodecache(); 1766 if (ret) 1767 return ret; 1768 1769 ret = register_filesystem(&zonefs_type); 1770 if (ret) { 1771 zonefs_destroy_inodecache(); 1772 return ret; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void __exit zonefs_exit(void) 1779 { 1780 zonefs_destroy_inodecache(); 1781 unregister_filesystem(&zonefs_type); 1782 } 1783 1784 MODULE_AUTHOR("Damien Le Moal"); 1785 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1786 MODULE_LICENSE("GPL"); 1787 MODULE_ALIAS_FS("zonefs"); 1788 module_init(zonefs_init); 1789 module_exit(zonefs_exit); 1790