xref: /openbmc/linux/fs/zonefs/super.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 				   enum req_opf op)
32 {
33 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 	int ret;
35 
36 	lockdep_assert_held(&zi->i_truncate_mutex);
37 
38 	trace_zonefs_zone_mgmt(inode, op);
39 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
40 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
41 	if (ret) {
42 		zonefs_err(inode->i_sb,
43 			   "Zone management operation %s at %llu failed %d\n",
44 			   blk_op_str(op), zi->i_zsector, ret);
45 		return ret;
46 	}
47 
48 	return 0;
49 }
50 
51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
52 {
53 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
54 
55 	i_size_write(inode, isize);
56 	/*
57 	 * A full zone is no longer open/active and does not need
58 	 * explicit closing.
59 	 */
60 	if (isize >= zi->i_max_size)
61 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
62 }
63 
64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
65 			      unsigned int flags, struct iomap *iomap,
66 			      struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct super_block *sb = inode->i_sb;
70 	loff_t isize;
71 
72 	/* All I/Os should always be within the file maximum size */
73 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
74 		return -EIO;
75 
76 	/*
77 	 * Sequential zones can only accept direct writes. This is already
78 	 * checked when writes are issued, so warn if we see a page writeback
79 	 * operation.
80 	 */
81 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
82 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	isize = i_size_read(inode);
92 	if (offset >= isize)
93 		iomap->type = IOMAP_UNWRITTEN;
94 	else
95 		iomap->type = IOMAP_MAPPED;
96 	if (flags & IOMAP_WRITE)
97 		length = zi->i_max_size - offset;
98 	else
99 		length = min(length, isize - offset);
100 	mutex_unlock(&zi->i_truncate_mutex);
101 
102 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
103 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
104 	iomap->bdev = inode->i_sb->s_bdev;
105 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
106 
107 	trace_zonefs_iomap_begin(inode, iomap);
108 
109 	return 0;
110 }
111 
112 static const struct iomap_ops zonefs_iomap_ops = {
113 	.iomap_begin	= zonefs_iomap_begin,
114 };
115 
116 static int zonefs_readpage(struct file *unused, struct page *page)
117 {
118 	return iomap_readpage(page, &zonefs_iomap_ops);
119 }
120 
121 static void zonefs_readahead(struct readahead_control *rac)
122 {
123 	iomap_readahead(rac, &zonefs_iomap_ops);
124 }
125 
126 /*
127  * Map blocks for page writeback. This is used only on conventional zone files,
128  * which implies that the page range can only be within the fixed inode size.
129  */
130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
131 			     struct inode *inode, loff_t offset)
132 {
133 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
134 
135 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
136 		return -EIO;
137 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
138 		return -EIO;
139 
140 	/* If the mapping is already OK, nothing needs to be done */
141 	if (offset >= wpc->iomap.offset &&
142 	    offset < wpc->iomap.offset + wpc->iomap.length)
143 		return 0;
144 
145 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
146 				  IOMAP_WRITE, &wpc->iomap, NULL);
147 }
148 
149 static const struct iomap_writeback_ops zonefs_writeback_ops = {
150 	.map_blocks		= zonefs_map_blocks,
151 };
152 
153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 	struct iomap_writepage_ctx wpc = { };
156 
157 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
158 }
159 
160 static int zonefs_writepages(struct address_space *mapping,
161 			     struct writeback_control *wbc)
162 {
163 	struct iomap_writepage_ctx wpc = { };
164 
165 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
166 }
167 
168 static int zonefs_swap_activate(struct swap_info_struct *sis,
169 				struct file *swap_file, sector_t *span)
170 {
171 	struct inode *inode = file_inode(swap_file);
172 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
173 
174 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
175 		zonefs_err(inode->i_sb,
176 			   "swap file: not a conventional zone file\n");
177 		return -EINVAL;
178 	}
179 
180 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
181 }
182 
183 static const struct address_space_operations zonefs_file_aops = {
184 	.readpage		= zonefs_readpage,
185 	.readahead		= zonefs_readahead,
186 	.writepage		= zonefs_writepage,
187 	.writepages		= zonefs_writepages,
188 	.dirty_folio		= filemap_dirty_folio,
189 	.releasepage		= iomap_releasepage,
190 	.invalidate_folio	= iomap_invalidate_folio,
191 	.migratepage		= iomap_migrate_page,
192 	.is_partially_uptodate	= iomap_is_partially_uptodate,
193 	.error_remove_page	= generic_error_remove_page,
194 	.direct_IO		= noop_direct_IO,
195 	.swap_activate		= zonefs_swap_activate,
196 };
197 
198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
199 {
200 	struct super_block *sb = inode->i_sb;
201 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
202 	loff_t old_isize = i_size_read(inode);
203 	loff_t nr_blocks;
204 
205 	if (new_isize == old_isize)
206 		return;
207 
208 	spin_lock(&sbi->s_lock);
209 
210 	/*
211 	 * This may be called for an update after an IO error.
212 	 * So beware of the values seen.
213 	 */
214 	if (new_isize < old_isize) {
215 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
216 		if (sbi->s_used_blocks > nr_blocks)
217 			sbi->s_used_blocks -= nr_blocks;
218 		else
219 			sbi->s_used_blocks = 0;
220 	} else {
221 		sbi->s_used_blocks +=
222 			(new_isize - old_isize) >> sb->s_blocksize_bits;
223 		if (sbi->s_used_blocks > sbi->s_blocks)
224 			sbi->s_used_blocks = sbi->s_blocks;
225 	}
226 
227 	spin_unlock(&sbi->s_lock);
228 }
229 
230 /*
231  * Check a zone condition and adjust its file inode access permissions for
232  * offline and readonly zones. Return the inode size corresponding to the
233  * amount of readable data in the zone.
234  */
235 static loff_t zonefs_check_zone_condition(struct inode *inode,
236 					  struct blk_zone *zone, bool warn,
237 					  bool mount)
238 {
239 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
240 
241 	switch (zone->cond) {
242 	case BLK_ZONE_COND_OFFLINE:
243 		/*
244 		 * Dead zone: make the inode immutable, disable all accesses
245 		 * and set the file size to 0 (zone wp set to zone start).
246 		 */
247 		if (warn)
248 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
249 				    inode->i_ino);
250 		inode->i_flags |= S_IMMUTABLE;
251 		inode->i_mode &= ~0777;
252 		zone->wp = zone->start;
253 		return 0;
254 	case BLK_ZONE_COND_READONLY:
255 		/*
256 		 * The write pointer of read-only zones is invalid. If such a
257 		 * zone is found during mount, the file size cannot be retrieved
258 		 * so we treat the zone as offline (mount == true case).
259 		 * Otherwise, keep the file size as it was when last updated
260 		 * so that the user can recover data. In both cases, writes are
261 		 * always disabled for the zone.
262 		 */
263 		if (warn)
264 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
265 				    inode->i_ino);
266 		inode->i_flags |= S_IMMUTABLE;
267 		if (mount) {
268 			zone->cond = BLK_ZONE_COND_OFFLINE;
269 			inode->i_mode &= ~0777;
270 			zone->wp = zone->start;
271 			return 0;
272 		}
273 		inode->i_mode &= ~0222;
274 		return i_size_read(inode);
275 	case BLK_ZONE_COND_FULL:
276 		/* The write pointer of full zones is invalid. */
277 		return zi->i_max_size;
278 	default:
279 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
280 			return zi->i_max_size;
281 		return (zone->wp - zone->start) << SECTOR_SHIFT;
282 	}
283 }
284 
285 struct zonefs_ioerr_data {
286 	struct inode	*inode;
287 	bool		write;
288 };
289 
290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
291 			      void *data)
292 {
293 	struct zonefs_ioerr_data *err = data;
294 	struct inode *inode = err->inode;
295 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
296 	struct super_block *sb = inode->i_sb;
297 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
298 	loff_t isize, data_size;
299 
300 	/*
301 	 * Check the zone condition: if the zone is not "bad" (offline or
302 	 * read-only), read errors are simply signaled to the IO issuer as long
303 	 * as there is no inconsistency between the inode size and the amount of
304 	 * data writen in the zone (data_size).
305 	 */
306 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
307 	isize = i_size_read(inode);
308 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
309 	    zone->cond != BLK_ZONE_COND_READONLY &&
310 	    !err->write && isize == data_size)
311 		return 0;
312 
313 	/*
314 	 * At this point, we detected either a bad zone or an inconsistency
315 	 * between the inode size and the amount of data written in the zone.
316 	 * For the latter case, the cause may be a write IO error or an external
317 	 * action on the device. Two error patterns exist:
318 	 * 1) The inode size is lower than the amount of data in the zone:
319 	 *    a write operation partially failed and data was writen at the end
320 	 *    of the file. This can happen in the case of a large direct IO
321 	 *    needing several BIOs and/or write requests to be processed.
322 	 * 2) The inode size is larger than the amount of data in the zone:
323 	 *    this can happen with a deferred write error with the use of the
324 	 *    device side write cache after getting successful write IO
325 	 *    completions. Other possibilities are (a) an external corruption,
326 	 *    e.g. an application reset the zone directly, or (b) the device
327 	 *    has a serious problem (e.g. firmware bug).
328 	 *
329 	 * In all cases, warn about inode size inconsistency and handle the
330 	 * IO error according to the zone condition and to the mount options.
331 	 */
332 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
333 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
334 			    inode->i_ino, isize, data_size);
335 
336 	/*
337 	 * First handle bad zones signaled by hardware. The mount options
338 	 * errors=zone-ro and errors=zone-offline result in changing the
339 	 * zone condition to read-only and offline respectively, as if the
340 	 * condition was signaled by the hardware.
341 	 */
342 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
343 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
344 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
345 			    inode->i_ino);
346 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
347 			zone->cond = BLK_ZONE_COND_OFFLINE;
348 			data_size = zonefs_check_zone_condition(inode, zone,
349 								false, false);
350 		}
351 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
352 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
353 		zonefs_warn(sb, "inode %lu: write access disabled\n",
354 			    inode->i_ino);
355 		if (zone->cond != BLK_ZONE_COND_READONLY) {
356 			zone->cond = BLK_ZONE_COND_READONLY;
357 			data_size = zonefs_check_zone_condition(inode, zone,
358 								false, false);
359 		}
360 	}
361 
362 	/*
363 	 * If the filesystem is mounted with the explicit-open mount option, we
364 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
365 	 * the read-only or offline condition, to avoid attempting an explicit
366 	 * close of the zone when the inode file is closed.
367 	 */
368 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
369 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
370 	     zone->cond == BLK_ZONE_COND_READONLY))
371 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
372 
373 	/*
374 	 * If error=remount-ro was specified, any error result in remounting
375 	 * the volume as read-only.
376 	 */
377 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
378 		zonefs_warn(sb, "remounting filesystem read-only\n");
379 		sb->s_flags |= SB_RDONLY;
380 	}
381 
382 	/*
383 	 * Update block usage stats and the inode size  to prevent access to
384 	 * invalid data.
385 	 */
386 	zonefs_update_stats(inode, data_size);
387 	zonefs_i_size_write(inode, data_size);
388 	zi->i_wpoffset = data_size;
389 
390 	return 0;
391 }
392 
393 /*
394  * When an file IO error occurs, check the file zone to see if there is a change
395  * in the zone condition (e.g. offline or read-only). For a failed write to a
396  * sequential zone, the zone write pointer position must also be checked to
397  * eventually correct the file size and zonefs inode write pointer offset
398  * (which can be out of sync with the drive due to partial write failures).
399  */
400 static void __zonefs_io_error(struct inode *inode, bool write)
401 {
402 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
403 	struct super_block *sb = inode->i_sb;
404 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
405 	unsigned int noio_flag;
406 	unsigned int nr_zones =
407 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
408 	struct zonefs_ioerr_data err = {
409 		.inode = inode,
410 		.write = write,
411 	};
412 	int ret;
413 
414 	/*
415 	 * Memory allocations in blkdev_report_zones() can trigger a memory
416 	 * reclaim which may in turn cause a recursion into zonefs as well as
417 	 * struct request allocations for the same device. The former case may
418 	 * end up in a deadlock on the inode truncate mutex, while the latter
419 	 * may prevent IO forward progress. Executing the report zones under
420 	 * the GFP_NOIO context avoids both problems.
421 	 */
422 	noio_flag = memalloc_noio_save();
423 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
424 				  zonefs_io_error_cb, &err);
425 	if (ret != nr_zones)
426 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
427 			   inode->i_ino, ret);
428 	memalloc_noio_restore(noio_flag);
429 }
430 
431 static void zonefs_io_error(struct inode *inode, bool write)
432 {
433 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
434 
435 	mutex_lock(&zi->i_truncate_mutex);
436 	__zonefs_io_error(inode, write);
437 	mutex_unlock(&zi->i_truncate_mutex);
438 }
439 
440 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
441 {
442 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
443 	loff_t old_isize;
444 	enum req_opf op;
445 	int ret = 0;
446 
447 	/*
448 	 * Only sequential zone files can be truncated and truncation is allowed
449 	 * only down to a 0 size, which is equivalent to a zone reset, and to
450 	 * the maximum file size, which is equivalent to a zone finish.
451 	 */
452 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
453 		return -EPERM;
454 
455 	if (!isize)
456 		op = REQ_OP_ZONE_RESET;
457 	else if (isize == zi->i_max_size)
458 		op = REQ_OP_ZONE_FINISH;
459 	else
460 		return -EPERM;
461 
462 	inode_dio_wait(inode);
463 
464 	/* Serialize against page faults */
465 	filemap_invalidate_lock(inode->i_mapping);
466 
467 	/* Serialize against zonefs_iomap_begin() */
468 	mutex_lock(&zi->i_truncate_mutex);
469 
470 	old_isize = i_size_read(inode);
471 	if (isize == old_isize)
472 		goto unlock;
473 
474 	ret = zonefs_zone_mgmt(inode, op);
475 	if (ret)
476 		goto unlock;
477 
478 	/*
479 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
480 	 * take care of open zones.
481 	 */
482 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
483 		/*
484 		 * Truncating a zone to EMPTY or FULL is the equivalent of
485 		 * closing the zone. For a truncation to 0, we need to
486 		 * re-open the zone to ensure new writes can be processed.
487 		 * For a truncation to the maximum file size, the zone is
488 		 * closed and writes cannot be accepted anymore, so clear
489 		 * the open flag.
490 		 */
491 		if (!isize)
492 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
493 		else
494 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
495 	}
496 
497 	zonefs_update_stats(inode, isize);
498 	truncate_setsize(inode, isize);
499 	zi->i_wpoffset = isize;
500 
501 unlock:
502 	mutex_unlock(&zi->i_truncate_mutex);
503 	filemap_invalidate_unlock(inode->i_mapping);
504 
505 	return ret;
506 }
507 
508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
509 				struct dentry *dentry, struct iattr *iattr)
510 {
511 	struct inode *inode = d_inode(dentry);
512 	int ret;
513 
514 	if (unlikely(IS_IMMUTABLE(inode)))
515 		return -EPERM;
516 
517 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
518 	if (ret)
519 		return ret;
520 
521 	/*
522 	 * Since files and directories cannot be created nor deleted, do not
523 	 * allow setting any write attributes on the sub-directories grouping
524 	 * files by zone type.
525 	 */
526 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
527 	    (iattr->ia_mode & 0222))
528 		return -EPERM;
529 
530 	if (((iattr->ia_valid & ATTR_UID) &&
531 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
532 	    ((iattr->ia_valid & ATTR_GID) &&
533 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
534 		ret = dquot_transfer(inode, iattr);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	if (iattr->ia_valid & ATTR_SIZE) {
540 		ret = zonefs_file_truncate(inode, iattr->ia_size);
541 		if (ret)
542 			return ret;
543 	}
544 
545 	setattr_copy(&init_user_ns, inode, iattr);
546 
547 	return 0;
548 }
549 
550 static const struct inode_operations zonefs_file_inode_operations = {
551 	.setattr	= zonefs_inode_setattr,
552 };
553 
554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
555 			     int datasync)
556 {
557 	struct inode *inode = file_inode(file);
558 	int ret = 0;
559 
560 	if (unlikely(IS_IMMUTABLE(inode)))
561 		return -EPERM;
562 
563 	/*
564 	 * Since only direct writes are allowed in sequential files, page cache
565 	 * flush is needed only for conventional zone files.
566 	 */
567 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
568 		ret = file_write_and_wait_range(file, start, end);
569 	if (!ret)
570 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
571 
572 	if (ret)
573 		zonefs_io_error(inode, true);
574 
575 	return ret;
576 }
577 
578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
579 {
580 	struct inode *inode = file_inode(vmf->vma->vm_file);
581 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
582 	vm_fault_t ret;
583 
584 	if (unlikely(IS_IMMUTABLE(inode)))
585 		return VM_FAULT_SIGBUS;
586 
587 	/*
588 	 * Sanity check: only conventional zone files can have shared
589 	 * writeable mappings.
590 	 */
591 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
592 		return VM_FAULT_NOPAGE;
593 
594 	sb_start_pagefault(inode->i_sb);
595 	file_update_time(vmf->vma->vm_file);
596 
597 	/* Serialize against truncates */
598 	filemap_invalidate_lock_shared(inode->i_mapping);
599 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
600 	filemap_invalidate_unlock_shared(inode->i_mapping);
601 
602 	sb_end_pagefault(inode->i_sb);
603 	return ret;
604 }
605 
606 static const struct vm_operations_struct zonefs_file_vm_ops = {
607 	.fault		= filemap_fault,
608 	.map_pages	= filemap_map_pages,
609 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
610 };
611 
612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
613 {
614 	/*
615 	 * Conventional zones accept random writes, so their files can support
616 	 * shared writable mappings. For sequential zone files, only read
617 	 * mappings are possible since there are no guarantees for write
618 	 * ordering between msync() and page cache writeback.
619 	 */
620 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
621 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
622 		return -EINVAL;
623 
624 	file_accessed(file);
625 	vma->vm_ops = &zonefs_file_vm_ops;
626 
627 	return 0;
628 }
629 
630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
631 {
632 	loff_t isize = i_size_read(file_inode(file));
633 
634 	/*
635 	 * Seeks are limited to below the zone size for conventional zones
636 	 * and below the zone write pointer for sequential zones. In both
637 	 * cases, this limit is the inode size.
638 	 */
639 	return generic_file_llseek_size(file, offset, whence, isize, isize);
640 }
641 
642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
643 					int error, unsigned int flags)
644 {
645 	struct inode *inode = file_inode(iocb->ki_filp);
646 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
647 
648 	if (error) {
649 		zonefs_io_error(inode, true);
650 		return error;
651 	}
652 
653 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
654 		/*
655 		 * Note that we may be seeing completions out of order,
656 		 * but that is not a problem since a write completed
657 		 * successfully necessarily means that all preceding writes
658 		 * were also successful. So we can safely increase the inode
659 		 * size to the write end location.
660 		 */
661 		mutex_lock(&zi->i_truncate_mutex);
662 		if (i_size_read(inode) < iocb->ki_pos + size) {
663 			zonefs_update_stats(inode, iocb->ki_pos + size);
664 			zonefs_i_size_write(inode, iocb->ki_pos + size);
665 		}
666 		mutex_unlock(&zi->i_truncate_mutex);
667 	}
668 
669 	return 0;
670 }
671 
672 static const struct iomap_dio_ops zonefs_write_dio_ops = {
673 	.end_io			= zonefs_file_write_dio_end_io,
674 };
675 
676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
677 {
678 	struct inode *inode = file_inode(iocb->ki_filp);
679 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
680 	struct block_device *bdev = inode->i_sb->s_bdev;
681 	unsigned int max;
682 	struct bio *bio;
683 	ssize_t size;
684 	int nr_pages;
685 	ssize_t ret;
686 
687 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
688 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
689 	iov_iter_truncate(from, max);
690 
691 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
692 	if (!nr_pages)
693 		return 0;
694 
695 	bio = bio_alloc(bdev, nr_pages,
696 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
697 	bio->bi_iter.bi_sector = zi->i_zsector;
698 	bio->bi_write_hint = iocb->ki_hint;
699 	bio->bi_ioprio = iocb->ki_ioprio;
700 	if (iocb->ki_flags & IOCB_DSYNC)
701 		bio->bi_opf |= REQ_FUA;
702 
703 	ret = bio_iov_iter_get_pages(bio, from);
704 	if (unlikely(ret))
705 		goto out_release;
706 
707 	size = bio->bi_iter.bi_size;
708 	task_io_account_write(size);
709 
710 	if (iocb->ki_flags & IOCB_HIPRI)
711 		bio_set_polled(bio, iocb);
712 
713 	ret = submit_bio_wait(bio);
714 
715 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
716 	trace_zonefs_file_dio_append(inode, size, ret);
717 
718 out_release:
719 	bio_release_pages(bio, false);
720 	bio_put(bio);
721 
722 	if (ret >= 0) {
723 		iocb->ki_pos += size;
724 		return size;
725 	}
726 
727 	return ret;
728 }
729 
730 /*
731  * Do not exceed the LFS limits nor the file zone size. If pos is under the
732  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
733  */
734 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
735 					loff_t count)
736 {
737 	struct inode *inode = file_inode(file);
738 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
739 	loff_t limit = rlimit(RLIMIT_FSIZE);
740 	loff_t max_size = zi->i_max_size;
741 
742 	if (limit != RLIM_INFINITY) {
743 		if (pos >= limit) {
744 			send_sig(SIGXFSZ, current, 0);
745 			return -EFBIG;
746 		}
747 		count = min(count, limit - pos);
748 	}
749 
750 	if (!(file->f_flags & O_LARGEFILE))
751 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
752 
753 	if (unlikely(pos >= max_size))
754 		return -EFBIG;
755 
756 	return min(count, max_size - pos);
757 }
758 
759 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
760 {
761 	struct file *file = iocb->ki_filp;
762 	struct inode *inode = file_inode(file);
763 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
764 	loff_t count;
765 
766 	if (IS_SWAPFILE(inode))
767 		return -ETXTBSY;
768 
769 	if (!iov_iter_count(from))
770 		return 0;
771 
772 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
773 		return -EINVAL;
774 
775 	if (iocb->ki_flags & IOCB_APPEND) {
776 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
777 			return -EINVAL;
778 		mutex_lock(&zi->i_truncate_mutex);
779 		iocb->ki_pos = zi->i_wpoffset;
780 		mutex_unlock(&zi->i_truncate_mutex);
781 	}
782 
783 	count = zonefs_write_check_limits(file, iocb->ki_pos,
784 					  iov_iter_count(from));
785 	if (count < 0)
786 		return count;
787 
788 	iov_iter_truncate(from, count);
789 	return iov_iter_count(from);
790 }
791 
792 /*
793  * Handle direct writes. For sequential zone files, this is the only possible
794  * write path. For these files, check that the user is issuing writes
795  * sequentially from the end of the file. This code assumes that the block layer
796  * delivers write requests to the device in sequential order. This is always the
797  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
798  * elevator feature is being used (e.g. mq-deadline). The block layer always
799  * automatically select such an elevator for zoned block devices during the
800  * device initialization.
801  */
802 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
803 {
804 	struct inode *inode = file_inode(iocb->ki_filp);
805 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
806 	struct super_block *sb = inode->i_sb;
807 	bool sync = is_sync_kiocb(iocb);
808 	bool append = false;
809 	ssize_t ret, count;
810 
811 	/*
812 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
813 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
814 	 * on the inode lock but the second goes through but is now unaligned).
815 	 */
816 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
817 	    (iocb->ki_flags & IOCB_NOWAIT))
818 		return -EOPNOTSUPP;
819 
820 	if (iocb->ki_flags & IOCB_NOWAIT) {
821 		if (!inode_trylock(inode))
822 			return -EAGAIN;
823 	} else {
824 		inode_lock(inode);
825 	}
826 
827 	count = zonefs_write_checks(iocb, from);
828 	if (count <= 0) {
829 		ret = count;
830 		goto inode_unlock;
831 	}
832 
833 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
834 		ret = -EINVAL;
835 		goto inode_unlock;
836 	}
837 
838 	/* Enforce sequential writes (append only) in sequential zones */
839 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
840 		mutex_lock(&zi->i_truncate_mutex);
841 		if (iocb->ki_pos != zi->i_wpoffset) {
842 			mutex_unlock(&zi->i_truncate_mutex);
843 			ret = -EINVAL;
844 			goto inode_unlock;
845 		}
846 		mutex_unlock(&zi->i_truncate_mutex);
847 		append = sync;
848 	}
849 
850 	if (append)
851 		ret = zonefs_file_dio_append(iocb, from);
852 	else
853 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
854 				   &zonefs_write_dio_ops, 0, 0);
855 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
856 	    (ret > 0 || ret == -EIOCBQUEUED)) {
857 		if (ret > 0)
858 			count = ret;
859 		mutex_lock(&zi->i_truncate_mutex);
860 		zi->i_wpoffset += count;
861 		mutex_unlock(&zi->i_truncate_mutex);
862 	}
863 
864 inode_unlock:
865 	inode_unlock(inode);
866 
867 	return ret;
868 }
869 
870 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
871 					  struct iov_iter *from)
872 {
873 	struct inode *inode = file_inode(iocb->ki_filp);
874 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
875 	ssize_t ret;
876 
877 	/*
878 	 * Direct IO writes are mandatory for sequential zone files so that the
879 	 * write IO issuing order is preserved.
880 	 */
881 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
882 		return -EIO;
883 
884 	if (iocb->ki_flags & IOCB_NOWAIT) {
885 		if (!inode_trylock(inode))
886 			return -EAGAIN;
887 	} else {
888 		inode_lock(inode);
889 	}
890 
891 	ret = zonefs_write_checks(iocb, from);
892 	if (ret <= 0)
893 		goto inode_unlock;
894 
895 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
896 	if (ret > 0)
897 		iocb->ki_pos += ret;
898 	else if (ret == -EIO)
899 		zonefs_io_error(inode, true);
900 
901 inode_unlock:
902 	inode_unlock(inode);
903 	if (ret > 0)
904 		ret = generic_write_sync(iocb, ret);
905 
906 	return ret;
907 }
908 
909 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
910 {
911 	struct inode *inode = file_inode(iocb->ki_filp);
912 
913 	if (unlikely(IS_IMMUTABLE(inode)))
914 		return -EPERM;
915 
916 	if (sb_rdonly(inode->i_sb))
917 		return -EROFS;
918 
919 	/* Write operations beyond the zone size are not allowed */
920 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
921 		return -EFBIG;
922 
923 	if (iocb->ki_flags & IOCB_DIRECT) {
924 		ssize_t ret = zonefs_file_dio_write(iocb, from);
925 		if (ret != -ENOTBLK)
926 			return ret;
927 	}
928 
929 	return zonefs_file_buffered_write(iocb, from);
930 }
931 
932 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
933 				       int error, unsigned int flags)
934 {
935 	if (error) {
936 		zonefs_io_error(file_inode(iocb->ki_filp), false);
937 		return error;
938 	}
939 
940 	return 0;
941 }
942 
943 static const struct iomap_dio_ops zonefs_read_dio_ops = {
944 	.end_io			= zonefs_file_read_dio_end_io,
945 };
946 
947 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
948 {
949 	struct inode *inode = file_inode(iocb->ki_filp);
950 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
951 	struct super_block *sb = inode->i_sb;
952 	loff_t isize;
953 	ssize_t ret;
954 
955 	/* Offline zones cannot be read */
956 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
957 		return -EPERM;
958 
959 	if (iocb->ki_pos >= zi->i_max_size)
960 		return 0;
961 
962 	if (iocb->ki_flags & IOCB_NOWAIT) {
963 		if (!inode_trylock_shared(inode))
964 			return -EAGAIN;
965 	} else {
966 		inode_lock_shared(inode);
967 	}
968 
969 	/* Limit read operations to written data */
970 	mutex_lock(&zi->i_truncate_mutex);
971 	isize = i_size_read(inode);
972 	if (iocb->ki_pos >= isize) {
973 		mutex_unlock(&zi->i_truncate_mutex);
974 		ret = 0;
975 		goto inode_unlock;
976 	}
977 	iov_iter_truncate(to, isize - iocb->ki_pos);
978 	mutex_unlock(&zi->i_truncate_mutex);
979 
980 	if (iocb->ki_flags & IOCB_DIRECT) {
981 		size_t count = iov_iter_count(to);
982 
983 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
984 			ret = -EINVAL;
985 			goto inode_unlock;
986 		}
987 		file_accessed(iocb->ki_filp);
988 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
989 				   &zonefs_read_dio_ops, 0, 0);
990 	} else {
991 		ret = generic_file_read_iter(iocb, to);
992 		if (ret == -EIO)
993 			zonefs_io_error(inode, false);
994 	}
995 
996 inode_unlock:
997 	inode_unlock_shared(inode);
998 
999 	return ret;
1000 }
1001 
1002 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1003 {
1004 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1005 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1006 
1007 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1008 		return false;
1009 
1010 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1011 		return false;
1012 
1013 	if (!(file->f_mode & FMODE_WRITE))
1014 		return false;
1015 
1016 	return true;
1017 }
1018 
1019 static int zonefs_open_zone(struct inode *inode)
1020 {
1021 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1022 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1023 	int ret = 0;
1024 
1025 	mutex_lock(&zi->i_truncate_mutex);
1026 
1027 	if (!zi->i_wr_refcnt) {
1028 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1029 			atomic_dec(&sbi->s_open_zones);
1030 			ret = -EBUSY;
1031 			goto unlock;
1032 		}
1033 
1034 		if (i_size_read(inode) < zi->i_max_size) {
1035 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1036 			if (ret) {
1037 				atomic_dec(&sbi->s_open_zones);
1038 				goto unlock;
1039 			}
1040 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1041 		}
1042 	}
1043 
1044 	zi->i_wr_refcnt++;
1045 
1046 unlock:
1047 	mutex_unlock(&zi->i_truncate_mutex);
1048 
1049 	return ret;
1050 }
1051 
1052 static int zonefs_file_open(struct inode *inode, struct file *file)
1053 {
1054 	int ret;
1055 
1056 	ret = generic_file_open(inode, file);
1057 	if (ret)
1058 		return ret;
1059 
1060 	if (zonefs_file_use_exp_open(inode, file))
1061 		return zonefs_open_zone(inode);
1062 
1063 	return 0;
1064 }
1065 
1066 static void zonefs_close_zone(struct inode *inode)
1067 {
1068 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1069 	int ret = 0;
1070 
1071 	mutex_lock(&zi->i_truncate_mutex);
1072 	zi->i_wr_refcnt--;
1073 	if (!zi->i_wr_refcnt) {
1074 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1075 		struct super_block *sb = inode->i_sb;
1076 
1077 		/*
1078 		 * If the file zone is full, it is not open anymore and we only
1079 		 * need to decrement the open count.
1080 		 */
1081 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1082 			goto dec;
1083 
1084 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1085 		if (ret) {
1086 			__zonefs_io_error(inode, false);
1087 			/*
1088 			 * Leaving zones explicitly open may lead to a state
1089 			 * where most zones cannot be written (zone resources
1090 			 * exhausted). So take preventive action by remounting
1091 			 * read-only.
1092 			 */
1093 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1094 			    !(sb->s_flags & SB_RDONLY)) {
1095 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1096 				sb->s_flags |= SB_RDONLY;
1097 			}
1098 		}
1099 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1100 dec:
1101 		atomic_dec(&sbi->s_open_zones);
1102 	}
1103 	mutex_unlock(&zi->i_truncate_mutex);
1104 }
1105 
1106 static int zonefs_file_release(struct inode *inode, struct file *file)
1107 {
1108 	/*
1109 	 * If we explicitly open a zone we must close it again as well, but the
1110 	 * zone management operation can fail (either due to an IO error or as
1111 	 * the zone has gone offline or read-only). Make sure we don't fail the
1112 	 * close(2) for user-space.
1113 	 */
1114 	if (zonefs_file_use_exp_open(inode, file))
1115 		zonefs_close_zone(inode);
1116 
1117 	return 0;
1118 }
1119 
1120 static const struct file_operations zonefs_file_operations = {
1121 	.open		= zonefs_file_open,
1122 	.release	= zonefs_file_release,
1123 	.fsync		= zonefs_file_fsync,
1124 	.mmap		= zonefs_file_mmap,
1125 	.llseek		= zonefs_file_llseek,
1126 	.read_iter	= zonefs_file_read_iter,
1127 	.write_iter	= zonefs_file_write_iter,
1128 	.splice_read	= generic_file_splice_read,
1129 	.splice_write	= iter_file_splice_write,
1130 	.iopoll		= iocb_bio_iopoll,
1131 };
1132 
1133 static struct kmem_cache *zonefs_inode_cachep;
1134 
1135 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1136 {
1137 	struct zonefs_inode_info *zi;
1138 
1139 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1140 	if (!zi)
1141 		return NULL;
1142 
1143 	inode_init_once(&zi->i_vnode);
1144 	mutex_init(&zi->i_truncate_mutex);
1145 	zi->i_wr_refcnt = 0;
1146 
1147 	return &zi->i_vnode;
1148 }
1149 
1150 static void zonefs_free_inode(struct inode *inode)
1151 {
1152 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1153 }
1154 
1155 /*
1156  * File system stat.
1157  */
1158 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1159 {
1160 	struct super_block *sb = dentry->d_sb;
1161 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1162 	enum zonefs_ztype t;
1163 
1164 	buf->f_type = ZONEFS_MAGIC;
1165 	buf->f_bsize = sb->s_blocksize;
1166 	buf->f_namelen = ZONEFS_NAME_MAX;
1167 
1168 	spin_lock(&sbi->s_lock);
1169 
1170 	buf->f_blocks = sbi->s_blocks;
1171 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1172 		buf->f_bfree = 0;
1173 	else
1174 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1175 	buf->f_bavail = buf->f_bfree;
1176 
1177 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1178 		if (sbi->s_nr_files[t])
1179 			buf->f_files += sbi->s_nr_files[t] + 1;
1180 	}
1181 	buf->f_ffree = 0;
1182 
1183 	spin_unlock(&sbi->s_lock);
1184 
1185 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1186 
1187 	return 0;
1188 }
1189 
1190 enum {
1191 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1192 	Opt_explicit_open, Opt_err,
1193 };
1194 
1195 static const match_table_t tokens = {
1196 	{ Opt_errors_ro,	"errors=remount-ro"},
1197 	{ Opt_errors_zro,	"errors=zone-ro"},
1198 	{ Opt_errors_zol,	"errors=zone-offline"},
1199 	{ Opt_errors_repair,	"errors=repair"},
1200 	{ Opt_explicit_open,	"explicit-open" },
1201 	{ Opt_err,		NULL}
1202 };
1203 
1204 static int zonefs_parse_options(struct super_block *sb, char *options)
1205 {
1206 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1207 	substring_t args[MAX_OPT_ARGS];
1208 	char *p;
1209 
1210 	if (!options)
1211 		return 0;
1212 
1213 	while ((p = strsep(&options, ",")) != NULL) {
1214 		int token;
1215 
1216 		if (!*p)
1217 			continue;
1218 
1219 		token = match_token(p, tokens, args);
1220 		switch (token) {
1221 		case Opt_errors_ro:
1222 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1223 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1224 			break;
1225 		case Opt_errors_zro:
1226 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1227 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1228 			break;
1229 		case Opt_errors_zol:
1230 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1231 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1232 			break;
1233 		case Opt_errors_repair:
1234 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1235 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1236 			break;
1237 		case Opt_explicit_open:
1238 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1239 			break;
1240 		default:
1241 			return -EINVAL;
1242 		}
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1249 {
1250 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1251 
1252 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1253 		seq_puts(seq, ",errors=remount-ro");
1254 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1255 		seq_puts(seq, ",errors=zone-ro");
1256 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1257 		seq_puts(seq, ",errors=zone-offline");
1258 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1259 		seq_puts(seq, ",errors=repair");
1260 
1261 	return 0;
1262 }
1263 
1264 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1265 {
1266 	sync_filesystem(sb);
1267 
1268 	return zonefs_parse_options(sb, data);
1269 }
1270 
1271 static const struct super_operations zonefs_sops = {
1272 	.alloc_inode	= zonefs_alloc_inode,
1273 	.free_inode	= zonefs_free_inode,
1274 	.statfs		= zonefs_statfs,
1275 	.remount_fs	= zonefs_remount,
1276 	.show_options	= zonefs_show_options,
1277 };
1278 
1279 static const struct inode_operations zonefs_dir_inode_operations = {
1280 	.lookup		= simple_lookup,
1281 	.setattr	= zonefs_inode_setattr,
1282 };
1283 
1284 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1285 				  enum zonefs_ztype type)
1286 {
1287 	struct super_block *sb = parent->i_sb;
1288 
1289 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1290 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1291 	inode->i_op = &zonefs_dir_inode_operations;
1292 	inode->i_fop = &simple_dir_operations;
1293 	set_nlink(inode, 2);
1294 	inc_nlink(parent);
1295 }
1296 
1297 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1298 				   enum zonefs_ztype type)
1299 {
1300 	struct super_block *sb = inode->i_sb;
1301 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1302 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1303 
1304 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1305 	inode->i_mode = S_IFREG | sbi->s_perm;
1306 
1307 	zi->i_ztype = type;
1308 	zi->i_zsector = zone->start;
1309 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1310 
1311 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1312 			       zone->capacity << SECTOR_SHIFT);
1313 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1314 
1315 	inode->i_uid = sbi->s_uid;
1316 	inode->i_gid = sbi->s_gid;
1317 	inode->i_size = zi->i_wpoffset;
1318 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1319 
1320 	inode->i_op = &zonefs_file_inode_operations;
1321 	inode->i_fop = &zonefs_file_operations;
1322 	inode->i_mapping->a_ops = &zonefs_file_aops;
1323 
1324 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1325 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1326 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1327 }
1328 
1329 static struct dentry *zonefs_create_inode(struct dentry *parent,
1330 					const char *name, struct blk_zone *zone,
1331 					enum zonefs_ztype type)
1332 {
1333 	struct inode *dir = d_inode(parent);
1334 	struct dentry *dentry;
1335 	struct inode *inode;
1336 
1337 	dentry = d_alloc_name(parent, name);
1338 	if (!dentry)
1339 		return NULL;
1340 
1341 	inode = new_inode(parent->d_sb);
1342 	if (!inode)
1343 		goto dput;
1344 
1345 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1346 	if (zone)
1347 		zonefs_init_file_inode(inode, zone, type);
1348 	else
1349 		zonefs_init_dir_inode(dir, inode, type);
1350 	d_add(dentry, inode);
1351 	dir->i_size++;
1352 
1353 	return dentry;
1354 
1355 dput:
1356 	dput(dentry);
1357 
1358 	return NULL;
1359 }
1360 
1361 struct zonefs_zone_data {
1362 	struct super_block	*sb;
1363 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1364 	struct blk_zone		*zones;
1365 };
1366 
1367 /*
1368  * Create a zone group and populate it with zone files.
1369  */
1370 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1371 				enum zonefs_ztype type)
1372 {
1373 	struct super_block *sb = zd->sb;
1374 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1375 	struct blk_zone *zone, *next, *end;
1376 	const char *zgroup_name;
1377 	char *file_name;
1378 	struct dentry *dir;
1379 	unsigned int n = 0;
1380 	int ret;
1381 
1382 	/* If the group is empty, there is nothing to do */
1383 	if (!zd->nr_zones[type])
1384 		return 0;
1385 
1386 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1387 	if (!file_name)
1388 		return -ENOMEM;
1389 
1390 	if (type == ZONEFS_ZTYPE_CNV)
1391 		zgroup_name = "cnv";
1392 	else
1393 		zgroup_name = "seq";
1394 
1395 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1396 	if (!dir) {
1397 		ret = -ENOMEM;
1398 		goto free;
1399 	}
1400 
1401 	/*
1402 	 * The first zone contains the super block: skip it.
1403 	 */
1404 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1405 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1406 
1407 		next = zone + 1;
1408 		if (zonefs_zone_type(zone) != type)
1409 			continue;
1410 
1411 		/*
1412 		 * For conventional zones, contiguous zones can be aggregated
1413 		 * together to form larger files. Note that this overwrites the
1414 		 * length of the first zone of the set of contiguous zones
1415 		 * aggregated together. If one offline or read-only zone is
1416 		 * found, assume that all zones aggregated have the same
1417 		 * condition.
1418 		 */
1419 		if (type == ZONEFS_ZTYPE_CNV &&
1420 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1421 			for (; next < end; next++) {
1422 				if (zonefs_zone_type(next) != type)
1423 					break;
1424 				zone->len += next->len;
1425 				zone->capacity += next->capacity;
1426 				if (next->cond == BLK_ZONE_COND_READONLY &&
1427 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1428 					zone->cond = BLK_ZONE_COND_READONLY;
1429 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1430 					zone->cond = BLK_ZONE_COND_OFFLINE;
1431 			}
1432 			if (zone->capacity != zone->len) {
1433 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1434 				ret = -EINVAL;
1435 				goto free;
1436 			}
1437 		}
1438 
1439 		/*
1440 		 * Use the file number within its group as file name.
1441 		 */
1442 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1443 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1444 			ret = -ENOMEM;
1445 			goto free;
1446 		}
1447 
1448 		n++;
1449 	}
1450 
1451 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1452 		    zgroup_name, n, n > 1 ? "s" : "");
1453 
1454 	sbi->s_nr_files[type] = n;
1455 	ret = 0;
1456 
1457 free:
1458 	kfree(file_name);
1459 
1460 	return ret;
1461 }
1462 
1463 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1464 				   void *data)
1465 {
1466 	struct zonefs_zone_data *zd = data;
1467 
1468 	/*
1469 	 * Count the number of usable zones: the first zone at index 0 contains
1470 	 * the super block and is ignored.
1471 	 */
1472 	switch (zone->type) {
1473 	case BLK_ZONE_TYPE_CONVENTIONAL:
1474 		zone->wp = zone->start + zone->len;
1475 		if (idx)
1476 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1477 		break;
1478 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1479 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1480 		if (idx)
1481 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1482 		break;
1483 	default:
1484 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1485 			   zone->type);
1486 		return -EIO;
1487 	}
1488 
1489 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1490 
1491 	return 0;
1492 }
1493 
1494 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1495 {
1496 	struct block_device *bdev = zd->sb->s_bdev;
1497 	int ret;
1498 
1499 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1500 			     sizeof(struct blk_zone), GFP_KERNEL);
1501 	if (!zd->zones)
1502 		return -ENOMEM;
1503 
1504 	/* Get zones information from the device */
1505 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1506 				  zonefs_get_zone_info_cb, zd);
1507 	if (ret < 0) {
1508 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1509 		return ret;
1510 	}
1511 
1512 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1513 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1514 			   ret, blkdev_nr_zones(bdev->bd_disk));
1515 		return -EIO;
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1522 {
1523 	kvfree(zd->zones);
1524 }
1525 
1526 /*
1527  * Read super block information from the device.
1528  */
1529 static int zonefs_read_super(struct super_block *sb)
1530 {
1531 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1532 	struct zonefs_super *super;
1533 	u32 crc, stored_crc;
1534 	struct page *page;
1535 	struct bio_vec bio_vec;
1536 	struct bio bio;
1537 	int ret;
1538 
1539 	page = alloc_page(GFP_KERNEL);
1540 	if (!page)
1541 		return -ENOMEM;
1542 
1543 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1544 	bio.bi_iter.bi_sector = 0;
1545 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1546 
1547 	ret = submit_bio_wait(&bio);
1548 	if (ret)
1549 		goto free_page;
1550 
1551 	super = kmap(page);
1552 
1553 	ret = -EINVAL;
1554 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1555 		goto unmap;
1556 
1557 	stored_crc = le32_to_cpu(super->s_crc);
1558 	super->s_crc = 0;
1559 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1560 	if (crc != stored_crc) {
1561 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1562 			   crc, stored_crc);
1563 		goto unmap;
1564 	}
1565 
1566 	sbi->s_features = le64_to_cpu(super->s_features);
1567 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1568 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1569 			   sbi->s_features);
1570 		goto unmap;
1571 	}
1572 
1573 	if (sbi->s_features & ZONEFS_F_UID) {
1574 		sbi->s_uid = make_kuid(current_user_ns(),
1575 				       le32_to_cpu(super->s_uid));
1576 		if (!uid_valid(sbi->s_uid)) {
1577 			zonefs_err(sb, "Invalid UID feature\n");
1578 			goto unmap;
1579 		}
1580 	}
1581 
1582 	if (sbi->s_features & ZONEFS_F_GID) {
1583 		sbi->s_gid = make_kgid(current_user_ns(),
1584 				       le32_to_cpu(super->s_gid));
1585 		if (!gid_valid(sbi->s_gid)) {
1586 			zonefs_err(sb, "Invalid GID feature\n");
1587 			goto unmap;
1588 		}
1589 	}
1590 
1591 	if (sbi->s_features & ZONEFS_F_PERM)
1592 		sbi->s_perm = le32_to_cpu(super->s_perm);
1593 
1594 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1595 		zonefs_err(sb, "Reserved area is being used\n");
1596 		goto unmap;
1597 	}
1598 
1599 	import_uuid(&sbi->s_uuid, super->s_uuid);
1600 	ret = 0;
1601 
1602 unmap:
1603 	kunmap(page);
1604 free_page:
1605 	__free_page(page);
1606 
1607 	return ret;
1608 }
1609 
1610 /*
1611  * Check that the device is zoned. If it is, get the list of zones and create
1612  * sub-directories and files according to the device zone configuration and
1613  * format options.
1614  */
1615 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1616 {
1617 	struct zonefs_zone_data zd;
1618 	struct zonefs_sb_info *sbi;
1619 	struct inode *inode;
1620 	enum zonefs_ztype t;
1621 	int ret;
1622 
1623 	if (!bdev_is_zoned(sb->s_bdev)) {
1624 		zonefs_err(sb, "Not a zoned block device\n");
1625 		return -EINVAL;
1626 	}
1627 
1628 	/*
1629 	 * Initialize super block information: the maximum file size is updated
1630 	 * when the zone files are created so that the format option
1631 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1632 	 * beyond the zone size is taken into account.
1633 	 */
1634 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1635 	if (!sbi)
1636 		return -ENOMEM;
1637 
1638 	spin_lock_init(&sbi->s_lock);
1639 	sb->s_fs_info = sbi;
1640 	sb->s_magic = ZONEFS_MAGIC;
1641 	sb->s_maxbytes = 0;
1642 	sb->s_op = &zonefs_sops;
1643 	sb->s_time_gran	= 1;
1644 
1645 	/*
1646 	 * The block size is set to the device zone write granularity to ensure
1647 	 * that write operations are always aligned according to the device
1648 	 * interface constraints.
1649 	 */
1650 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1651 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1652 	sbi->s_uid = GLOBAL_ROOT_UID;
1653 	sbi->s_gid = GLOBAL_ROOT_GID;
1654 	sbi->s_perm = 0640;
1655 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1656 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1657 	atomic_set(&sbi->s_open_zones, 0);
1658 	if (!sbi->s_max_open_zones &&
1659 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1660 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1661 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1662 	}
1663 
1664 	ret = zonefs_read_super(sb);
1665 	if (ret)
1666 		return ret;
1667 
1668 	ret = zonefs_parse_options(sb, data);
1669 	if (ret)
1670 		return ret;
1671 
1672 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1673 	zd.sb = sb;
1674 	ret = zonefs_get_zone_info(&zd);
1675 	if (ret)
1676 		goto cleanup;
1677 
1678 	zonefs_info(sb, "Mounting %u zones",
1679 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1680 
1681 	/* Create root directory inode */
1682 	ret = -ENOMEM;
1683 	inode = new_inode(sb);
1684 	if (!inode)
1685 		goto cleanup;
1686 
1687 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1688 	inode->i_mode = S_IFDIR | 0555;
1689 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1690 	inode->i_op = &zonefs_dir_inode_operations;
1691 	inode->i_fop = &simple_dir_operations;
1692 	set_nlink(inode, 2);
1693 
1694 	sb->s_root = d_make_root(inode);
1695 	if (!sb->s_root)
1696 		goto cleanup;
1697 
1698 	/* Create and populate files in zone groups directories */
1699 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1700 		ret = zonefs_create_zgroup(&zd, t);
1701 		if (ret)
1702 			break;
1703 	}
1704 
1705 cleanup:
1706 	zonefs_cleanup_zone_info(&zd);
1707 
1708 	return ret;
1709 }
1710 
1711 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1712 				   int flags, const char *dev_name, void *data)
1713 {
1714 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1715 }
1716 
1717 static void zonefs_kill_super(struct super_block *sb)
1718 {
1719 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1720 
1721 	if (sb->s_root)
1722 		d_genocide(sb->s_root);
1723 	kill_block_super(sb);
1724 	kfree(sbi);
1725 }
1726 
1727 /*
1728  * File system definition and registration.
1729  */
1730 static struct file_system_type zonefs_type = {
1731 	.owner		= THIS_MODULE,
1732 	.name		= "zonefs",
1733 	.mount		= zonefs_mount,
1734 	.kill_sb	= zonefs_kill_super,
1735 	.fs_flags	= FS_REQUIRES_DEV,
1736 };
1737 
1738 static int __init zonefs_init_inodecache(void)
1739 {
1740 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1741 			sizeof(struct zonefs_inode_info), 0,
1742 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1743 			NULL);
1744 	if (zonefs_inode_cachep == NULL)
1745 		return -ENOMEM;
1746 	return 0;
1747 }
1748 
1749 static void zonefs_destroy_inodecache(void)
1750 {
1751 	/*
1752 	 * Make sure all delayed rcu free inodes are flushed before we
1753 	 * destroy the inode cache.
1754 	 */
1755 	rcu_barrier();
1756 	kmem_cache_destroy(zonefs_inode_cachep);
1757 }
1758 
1759 static int __init zonefs_init(void)
1760 {
1761 	int ret;
1762 
1763 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1764 
1765 	ret = zonefs_init_inodecache();
1766 	if (ret)
1767 		return ret;
1768 
1769 	ret = register_filesystem(&zonefs_type);
1770 	if (ret) {
1771 		zonefs_destroy_inodecache();
1772 		return ret;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static void __exit zonefs_exit(void)
1779 {
1780 	zonefs_destroy_inodecache();
1781 	unregister_filesystem(&zonefs_type);
1782 }
1783 
1784 MODULE_AUTHOR("Damien Le Moal");
1785 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1786 MODULE_LICENSE("GPL");
1787 MODULE_ALIAS_FS("zonefs");
1788 module_init(zonefs_init);
1789 module_exit(zonefs_exit);
1790