1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 24 #include "zonefs.h" 25 26 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 27 unsigned int flags, struct iomap *iomap, 28 struct iomap *srcmap) 29 { 30 struct zonefs_inode_info *zi = ZONEFS_I(inode); 31 struct super_block *sb = inode->i_sb; 32 loff_t isize; 33 34 /* All I/Os should always be within the file maximum size */ 35 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 36 return -EIO; 37 38 /* 39 * Sequential zones can only accept direct writes. This is already 40 * checked when writes are issued, so warn if we see a page writeback 41 * operation. 42 */ 43 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 44 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 45 return -EIO; 46 47 /* 48 * For conventional zones, all blocks are always mapped. For sequential 49 * zones, all blocks after always mapped below the inode size (zone 50 * write pointer) and unwriten beyond. 51 */ 52 mutex_lock(&zi->i_truncate_mutex); 53 isize = i_size_read(inode); 54 if (offset >= isize) 55 iomap->type = IOMAP_UNWRITTEN; 56 else 57 iomap->type = IOMAP_MAPPED; 58 if (flags & IOMAP_WRITE) 59 length = zi->i_max_size - offset; 60 else 61 length = min(length, isize - offset); 62 mutex_unlock(&zi->i_truncate_mutex); 63 64 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 65 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 66 iomap->bdev = inode->i_sb->s_bdev; 67 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 68 69 return 0; 70 } 71 72 static const struct iomap_ops zonefs_iomap_ops = { 73 .iomap_begin = zonefs_iomap_begin, 74 }; 75 76 static int zonefs_readpage(struct file *unused, struct page *page) 77 { 78 return iomap_readpage(page, &zonefs_iomap_ops); 79 } 80 81 static int zonefs_readpages(struct file *unused, struct address_space *mapping, 82 struct list_head *pages, unsigned int nr_pages) 83 { 84 return iomap_readpages(mapping, pages, nr_pages, &zonefs_iomap_ops); 85 } 86 87 /* 88 * Map blocks for page writeback. This is used only on conventional zone files, 89 * which implies that the page range can only be within the fixed inode size. 90 */ 91 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 92 struct inode *inode, loff_t offset) 93 { 94 struct zonefs_inode_info *zi = ZONEFS_I(inode); 95 96 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 97 return -EIO; 98 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 99 return -EIO; 100 101 /* If the mapping is already OK, nothing needs to be done */ 102 if (offset >= wpc->iomap.offset && 103 offset < wpc->iomap.offset + wpc->iomap.length) 104 return 0; 105 106 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 107 IOMAP_WRITE, &wpc->iomap, NULL); 108 } 109 110 static const struct iomap_writeback_ops zonefs_writeback_ops = { 111 .map_blocks = zonefs_map_blocks, 112 }; 113 114 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 115 { 116 struct iomap_writepage_ctx wpc = { }; 117 118 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 119 } 120 121 static int zonefs_writepages(struct address_space *mapping, 122 struct writeback_control *wbc) 123 { 124 struct iomap_writepage_ctx wpc = { }; 125 126 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 127 } 128 129 static const struct address_space_operations zonefs_file_aops = { 130 .readpage = zonefs_readpage, 131 .readpages = zonefs_readpages, 132 .writepage = zonefs_writepage, 133 .writepages = zonefs_writepages, 134 .set_page_dirty = iomap_set_page_dirty, 135 .releasepage = iomap_releasepage, 136 .invalidatepage = iomap_invalidatepage, 137 .migratepage = iomap_migrate_page, 138 .is_partially_uptodate = iomap_is_partially_uptodate, 139 .error_remove_page = generic_error_remove_page, 140 .direct_IO = noop_direct_IO, 141 }; 142 143 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 144 { 145 struct super_block *sb = inode->i_sb; 146 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 147 loff_t old_isize = i_size_read(inode); 148 loff_t nr_blocks; 149 150 if (new_isize == old_isize) 151 return; 152 153 spin_lock(&sbi->s_lock); 154 155 /* 156 * This may be called for an update after an IO error. 157 * So beware of the values seen. 158 */ 159 if (new_isize < old_isize) { 160 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 161 if (sbi->s_used_blocks > nr_blocks) 162 sbi->s_used_blocks -= nr_blocks; 163 else 164 sbi->s_used_blocks = 0; 165 } else { 166 sbi->s_used_blocks += 167 (new_isize - old_isize) >> sb->s_blocksize_bits; 168 if (sbi->s_used_blocks > sbi->s_blocks) 169 sbi->s_used_blocks = sbi->s_blocks; 170 } 171 172 spin_unlock(&sbi->s_lock); 173 } 174 175 /* 176 * Check a zone condition and adjust its file inode access permissions for 177 * offline and readonly zones. Return the inode size corresponding to the 178 * amount of readable data in the zone. 179 */ 180 static loff_t zonefs_check_zone_condition(struct inode *inode, 181 struct blk_zone *zone, bool warn) 182 { 183 struct zonefs_inode_info *zi = ZONEFS_I(inode); 184 185 switch (zone->cond) { 186 case BLK_ZONE_COND_OFFLINE: 187 /* 188 * Dead zone: make the inode immutable, disable all accesses 189 * and set the file size to 0 (zone wp set to zone start). 190 */ 191 if (warn) 192 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 193 inode->i_ino); 194 inode->i_flags |= S_IMMUTABLE; 195 inode->i_mode &= ~0777; 196 zone->wp = zone->start; 197 return 0; 198 case BLK_ZONE_COND_READONLY: 199 /* Do not allow writes in read-only zones */ 200 if (warn) 201 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 202 inode->i_ino); 203 inode->i_flags |= S_IMMUTABLE; 204 inode->i_mode &= ~0222; 205 /* fallthrough */ 206 default: 207 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 208 return zi->i_max_size; 209 return (zone->wp - zone->start) << SECTOR_SHIFT; 210 } 211 } 212 213 struct zonefs_ioerr_data { 214 struct inode *inode; 215 bool write; 216 }; 217 218 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 219 void *data) 220 { 221 struct zonefs_ioerr_data *err = data; 222 struct inode *inode = err->inode; 223 struct zonefs_inode_info *zi = ZONEFS_I(inode); 224 struct super_block *sb = inode->i_sb; 225 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 226 loff_t isize, data_size; 227 228 /* 229 * Check the zone condition: if the zone is not "bad" (offline or 230 * read-only), read errors are simply signaled to the IO issuer as long 231 * as there is no inconsistency between the inode size and the amount of 232 * data writen in the zone (data_size). 233 */ 234 data_size = zonefs_check_zone_condition(inode, zone, true); 235 isize = i_size_read(inode); 236 if (zone->cond != BLK_ZONE_COND_OFFLINE && 237 zone->cond != BLK_ZONE_COND_READONLY && 238 !err->write && isize == data_size) 239 return 0; 240 241 /* 242 * At this point, we detected either a bad zone or an inconsistency 243 * between the inode size and the amount of data written in the zone. 244 * For the latter case, the cause may be a write IO error or an external 245 * action on the device. Two error patterns exist: 246 * 1) The inode size is lower than the amount of data in the zone: 247 * a write operation partially failed and data was writen at the end 248 * of the file. This can happen in the case of a large direct IO 249 * needing several BIOs and/or write requests to be processed. 250 * 2) The inode size is larger than the amount of data in the zone: 251 * this can happen with a deferred write error with the use of the 252 * device side write cache after getting successful write IO 253 * completions. Other possibilities are (a) an external corruption, 254 * e.g. an application reset the zone directly, or (b) the device 255 * has a serious problem (e.g. firmware bug). 256 * 257 * In all cases, warn about inode size inconsistency and handle the 258 * IO error according to the zone condition and to the mount options. 259 */ 260 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 261 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 262 inode->i_ino, isize, data_size); 263 264 /* 265 * First handle bad zones signaled by hardware. The mount options 266 * errors=zone-ro and errors=zone-offline result in changing the 267 * zone condition to read-only and offline respectively, as if the 268 * condition was signaled by the hardware. 269 */ 270 if (zone->cond == BLK_ZONE_COND_OFFLINE || 271 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 272 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 273 inode->i_ino); 274 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 275 zone->cond = BLK_ZONE_COND_OFFLINE; 276 data_size = zonefs_check_zone_condition(inode, zone, 277 false); 278 } 279 } else if (zone->cond == BLK_ZONE_COND_READONLY || 280 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 281 zonefs_warn(sb, "inode %lu: write access disabled\n", 282 inode->i_ino); 283 if (zone->cond != BLK_ZONE_COND_READONLY) { 284 zone->cond = BLK_ZONE_COND_READONLY; 285 data_size = zonefs_check_zone_condition(inode, zone, 286 false); 287 } 288 } 289 290 /* 291 * If error=remount-ro was specified, any error result in remounting 292 * the volume as read-only. 293 */ 294 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 295 zonefs_warn(sb, "remounting filesystem read-only\n"); 296 sb->s_flags |= SB_RDONLY; 297 } 298 299 /* 300 * Update block usage stats and the inode size to prevent access to 301 * invalid data. 302 */ 303 zonefs_update_stats(inode, data_size); 304 i_size_write(inode, data_size); 305 zi->i_wpoffset = data_size; 306 307 return 0; 308 } 309 310 /* 311 * When an file IO error occurs, check the file zone to see if there is a change 312 * in the zone condition (e.g. offline or read-only). For a failed write to a 313 * sequential zone, the zone write pointer position must also be checked to 314 * eventually correct the file size and zonefs inode write pointer offset 315 * (which can be out of sync with the drive due to partial write failures). 316 */ 317 static void zonefs_io_error(struct inode *inode, bool write) 318 { 319 struct zonefs_inode_info *zi = ZONEFS_I(inode); 320 struct super_block *sb = inode->i_sb; 321 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 322 unsigned int noio_flag; 323 unsigned int nr_zones = 324 zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 325 struct zonefs_ioerr_data err = { 326 .inode = inode, 327 .write = write, 328 }; 329 int ret; 330 331 mutex_lock(&zi->i_truncate_mutex); 332 333 /* 334 * Memory allocations in blkdev_report_zones() can trigger a memory 335 * reclaim which may in turn cause a recursion into zonefs as well as 336 * struct request allocations for the same device. The former case may 337 * end up in a deadlock on the inode truncate mutex, while the latter 338 * may prevent IO forward progress. Executing the report zones under 339 * the GFP_NOIO context avoids both problems. 340 */ 341 noio_flag = memalloc_noio_save(); 342 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 343 zonefs_io_error_cb, &err); 344 if (ret != nr_zones) 345 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 346 inode->i_ino, ret); 347 memalloc_noio_restore(noio_flag); 348 349 mutex_unlock(&zi->i_truncate_mutex); 350 } 351 352 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 353 { 354 struct zonefs_inode_info *zi = ZONEFS_I(inode); 355 loff_t old_isize; 356 enum req_opf op; 357 int ret = 0; 358 359 /* 360 * Only sequential zone files can be truncated and truncation is allowed 361 * only down to a 0 size, which is equivalent to a zone reset, and to 362 * the maximum file size, which is equivalent to a zone finish. 363 */ 364 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 365 return -EPERM; 366 367 if (!isize) 368 op = REQ_OP_ZONE_RESET; 369 else if (isize == zi->i_max_size) 370 op = REQ_OP_ZONE_FINISH; 371 else 372 return -EPERM; 373 374 inode_dio_wait(inode); 375 376 /* Serialize against page faults */ 377 down_write(&zi->i_mmap_sem); 378 379 /* Serialize against zonefs_iomap_begin() */ 380 mutex_lock(&zi->i_truncate_mutex); 381 382 old_isize = i_size_read(inode); 383 if (isize == old_isize) 384 goto unlock; 385 386 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 387 zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS); 388 if (ret) { 389 zonefs_err(inode->i_sb, 390 "Zone management operation at %llu failed %d", 391 zi->i_zsector, ret); 392 goto unlock; 393 } 394 395 zonefs_update_stats(inode, isize); 396 truncate_setsize(inode, isize); 397 zi->i_wpoffset = isize; 398 399 unlock: 400 mutex_unlock(&zi->i_truncate_mutex); 401 up_write(&zi->i_mmap_sem); 402 403 return ret; 404 } 405 406 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr) 407 { 408 struct inode *inode = d_inode(dentry); 409 int ret; 410 411 if (unlikely(IS_IMMUTABLE(inode))) 412 return -EPERM; 413 414 ret = setattr_prepare(dentry, iattr); 415 if (ret) 416 return ret; 417 418 /* 419 * Since files and directories cannot be created nor deleted, do not 420 * allow setting any write attributes on the sub-directories grouping 421 * files by zone type. 422 */ 423 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 424 (iattr->ia_mode & 0222)) 425 return -EPERM; 426 427 if (((iattr->ia_valid & ATTR_UID) && 428 !uid_eq(iattr->ia_uid, inode->i_uid)) || 429 ((iattr->ia_valid & ATTR_GID) && 430 !gid_eq(iattr->ia_gid, inode->i_gid))) { 431 ret = dquot_transfer(inode, iattr); 432 if (ret) 433 return ret; 434 } 435 436 if (iattr->ia_valid & ATTR_SIZE) { 437 ret = zonefs_file_truncate(inode, iattr->ia_size); 438 if (ret) 439 return ret; 440 } 441 442 setattr_copy(inode, iattr); 443 444 return 0; 445 } 446 447 static const struct inode_operations zonefs_file_inode_operations = { 448 .setattr = zonefs_inode_setattr, 449 }; 450 451 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 452 int datasync) 453 { 454 struct inode *inode = file_inode(file); 455 int ret = 0; 456 457 if (unlikely(IS_IMMUTABLE(inode))) 458 return -EPERM; 459 460 /* 461 * Since only direct writes are allowed in sequential files, page cache 462 * flush is needed only for conventional zone files. 463 */ 464 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 465 ret = file_write_and_wait_range(file, start, end); 466 if (!ret) 467 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 468 469 if (ret) 470 zonefs_io_error(inode, true); 471 472 return ret; 473 } 474 475 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 476 { 477 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 478 vm_fault_t ret; 479 480 down_read(&zi->i_mmap_sem); 481 ret = filemap_fault(vmf); 482 up_read(&zi->i_mmap_sem); 483 484 return ret; 485 } 486 487 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 488 { 489 struct inode *inode = file_inode(vmf->vma->vm_file); 490 struct zonefs_inode_info *zi = ZONEFS_I(inode); 491 vm_fault_t ret; 492 493 if (unlikely(IS_IMMUTABLE(inode))) 494 return VM_FAULT_SIGBUS; 495 496 /* 497 * Sanity check: only conventional zone files can have shared 498 * writeable mappings. 499 */ 500 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 501 return VM_FAULT_NOPAGE; 502 503 sb_start_pagefault(inode->i_sb); 504 file_update_time(vmf->vma->vm_file); 505 506 /* Serialize against truncates */ 507 down_read(&zi->i_mmap_sem); 508 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 509 up_read(&zi->i_mmap_sem); 510 511 sb_end_pagefault(inode->i_sb); 512 return ret; 513 } 514 515 static const struct vm_operations_struct zonefs_file_vm_ops = { 516 .fault = zonefs_filemap_fault, 517 .map_pages = filemap_map_pages, 518 .page_mkwrite = zonefs_filemap_page_mkwrite, 519 }; 520 521 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 /* 524 * Conventional zones accept random writes, so their files can support 525 * shared writable mappings. For sequential zone files, only read 526 * mappings are possible since there are no guarantees for write 527 * ordering between msync() and page cache writeback. 528 */ 529 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 530 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 531 return -EINVAL; 532 533 file_accessed(file); 534 vma->vm_ops = &zonefs_file_vm_ops; 535 536 return 0; 537 } 538 539 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 540 { 541 loff_t isize = i_size_read(file_inode(file)); 542 543 /* 544 * Seeks are limited to below the zone size for conventional zones 545 * and below the zone write pointer for sequential zones. In both 546 * cases, this limit is the inode size. 547 */ 548 return generic_file_llseek_size(file, offset, whence, isize, isize); 549 } 550 551 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 552 int error, unsigned int flags) 553 { 554 struct inode *inode = file_inode(iocb->ki_filp); 555 struct zonefs_inode_info *zi = ZONEFS_I(inode); 556 557 if (error) { 558 zonefs_io_error(inode, true); 559 return error; 560 } 561 562 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 563 /* 564 * Note that we may be seeing completions out of order, 565 * but that is not a problem since a write completed 566 * successfully necessarily means that all preceding writes 567 * were also successful. So we can safely increase the inode 568 * size to the write end location. 569 */ 570 mutex_lock(&zi->i_truncate_mutex); 571 if (i_size_read(inode) < iocb->ki_pos + size) { 572 zonefs_update_stats(inode, iocb->ki_pos + size); 573 i_size_write(inode, iocb->ki_pos + size); 574 } 575 mutex_unlock(&zi->i_truncate_mutex); 576 } 577 578 return 0; 579 } 580 581 static const struct iomap_dio_ops zonefs_write_dio_ops = { 582 .end_io = zonefs_file_write_dio_end_io, 583 }; 584 585 /* 586 * Handle direct writes. For sequential zone files, this is the only possible 587 * write path. For these files, check that the user is issuing writes 588 * sequentially from the end of the file. This code assumes that the block layer 589 * delivers write requests to the device in sequential order. This is always the 590 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 591 * elevator feature is being used (e.g. mq-deadline). The block layer always 592 * automatically select such an elevator for zoned block devices during the 593 * device initialization. 594 */ 595 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 596 { 597 struct inode *inode = file_inode(iocb->ki_filp); 598 struct zonefs_inode_info *zi = ZONEFS_I(inode); 599 struct super_block *sb = inode->i_sb; 600 size_t count; 601 ssize_t ret; 602 603 /* 604 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 605 * as this can cause write reordering (e.g. the first aio gets EAGAIN 606 * on the inode lock but the second goes through but is now unaligned). 607 */ 608 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !is_sync_kiocb(iocb) && 609 (iocb->ki_flags & IOCB_NOWAIT)) 610 return -EOPNOTSUPP; 611 612 if (iocb->ki_flags & IOCB_NOWAIT) { 613 if (!inode_trylock(inode)) 614 return -EAGAIN; 615 } else { 616 inode_lock(inode); 617 } 618 619 ret = generic_write_checks(iocb, from); 620 if (ret <= 0) 621 goto inode_unlock; 622 623 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 624 count = iov_iter_count(from); 625 626 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 627 ret = -EINVAL; 628 goto inode_unlock; 629 } 630 631 /* Enforce sequential writes (append only) in sequential zones */ 632 mutex_lock(&zi->i_truncate_mutex); 633 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && iocb->ki_pos != zi->i_wpoffset) { 634 mutex_unlock(&zi->i_truncate_mutex); 635 ret = -EINVAL; 636 goto inode_unlock; 637 } 638 mutex_unlock(&zi->i_truncate_mutex); 639 640 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 641 &zonefs_write_dio_ops, is_sync_kiocb(iocb)); 642 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 643 (ret > 0 || ret == -EIOCBQUEUED)) { 644 if (ret > 0) 645 count = ret; 646 mutex_lock(&zi->i_truncate_mutex); 647 zi->i_wpoffset += count; 648 mutex_unlock(&zi->i_truncate_mutex); 649 } 650 651 inode_unlock: 652 inode_unlock(inode); 653 654 return ret; 655 } 656 657 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 658 struct iov_iter *from) 659 { 660 struct inode *inode = file_inode(iocb->ki_filp); 661 struct zonefs_inode_info *zi = ZONEFS_I(inode); 662 ssize_t ret; 663 664 /* 665 * Direct IO writes are mandatory for sequential zone files so that the 666 * write IO issuing order is preserved. 667 */ 668 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 669 return -EIO; 670 671 if (iocb->ki_flags & IOCB_NOWAIT) { 672 if (!inode_trylock(inode)) 673 return -EAGAIN; 674 } else { 675 inode_lock(inode); 676 } 677 678 ret = generic_write_checks(iocb, from); 679 if (ret <= 0) 680 goto inode_unlock; 681 682 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 683 684 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 685 if (ret > 0) 686 iocb->ki_pos += ret; 687 else if (ret == -EIO) 688 zonefs_io_error(inode, true); 689 690 inode_unlock: 691 inode_unlock(inode); 692 if (ret > 0) 693 ret = generic_write_sync(iocb, ret); 694 695 return ret; 696 } 697 698 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 699 { 700 struct inode *inode = file_inode(iocb->ki_filp); 701 702 if (unlikely(IS_IMMUTABLE(inode))) 703 return -EPERM; 704 705 if (sb_rdonly(inode->i_sb)) 706 return -EROFS; 707 708 /* Write operations beyond the zone size are not allowed */ 709 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 710 return -EFBIG; 711 712 if (iocb->ki_flags & IOCB_DIRECT) 713 return zonefs_file_dio_write(iocb, from); 714 715 return zonefs_file_buffered_write(iocb, from); 716 } 717 718 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 719 int error, unsigned int flags) 720 { 721 if (error) { 722 zonefs_io_error(file_inode(iocb->ki_filp), false); 723 return error; 724 } 725 726 return 0; 727 } 728 729 static const struct iomap_dio_ops zonefs_read_dio_ops = { 730 .end_io = zonefs_file_read_dio_end_io, 731 }; 732 733 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 734 { 735 struct inode *inode = file_inode(iocb->ki_filp); 736 struct zonefs_inode_info *zi = ZONEFS_I(inode); 737 struct super_block *sb = inode->i_sb; 738 loff_t isize; 739 ssize_t ret; 740 741 /* Offline zones cannot be read */ 742 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 743 return -EPERM; 744 745 if (iocb->ki_pos >= zi->i_max_size) 746 return 0; 747 748 if (iocb->ki_flags & IOCB_NOWAIT) { 749 if (!inode_trylock_shared(inode)) 750 return -EAGAIN; 751 } else { 752 inode_lock_shared(inode); 753 } 754 755 /* Limit read operations to written data */ 756 mutex_lock(&zi->i_truncate_mutex); 757 isize = i_size_read(inode); 758 if (iocb->ki_pos >= isize) { 759 mutex_unlock(&zi->i_truncate_mutex); 760 ret = 0; 761 goto inode_unlock; 762 } 763 iov_iter_truncate(to, isize - iocb->ki_pos); 764 mutex_unlock(&zi->i_truncate_mutex); 765 766 if (iocb->ki_flags & IOCB_DIRECT) { 767 size_t count = iov_iter_count(to); 768 769 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 770 ret = -EINVAL; 771 goto inode_unlock; 772 } 773 file_accessed(iocb->ki_filp); 774 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 775 &zonefs_read_dio_ops, is_sync_kiocb(iocb)); 776 } else { 777 ret = generic_file_read_iter(iocb, to); 778 if (ret == -EIO) 779 zonefs_io_error(inode, false); 780 } 781 782 inode_unlock: 783 inode_unlock_shared(inode); 784 785 return ret; 786 } 787 788 static const struct file_operations zonefs_file_operations = { 789 .open = generic_file_open, 790 .fsync = zonefs_file_fsync, 791 .mmap = zonefs_file_mmap, 792 .llseek = zonefs_file_llseek, 793 .read_iter = zonefs_file_read_iter, 794 .write_iter = zonefs_file_write_iter, 795 .splice_read = generic_file_splice_read, 796 .splice_write = iter_file_splice_write, 797 .iopoll = iomap_dio_iopoll, 798 }; 799 800 static struct kmem_cache *zonefs_inode_cachep; 801 802 static struct inode *zonefs_alloc_inode(struct super_block *sb) 803 { 804 struct zonefs_inode_info *zi; 805 806 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 807 if (!zi) 808 return NULL; 809 810 inode_init_once(&zi->i_vnode); 811 mutex_init(&zi->i_truncate_mutex); 812 init_rwsem(&zi->i_mmap_sem); 813 814 return &zi->i_vnode; 815 } 816 817 static void zonefs_free_inode(struct inode *inode) 818 { 819 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 820 } 821 822 /* 823 * File system stat. 824 */ 825 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 826 { 827 struct super_block *sb = dentry->d_sb; 828 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 829 enum zonefs_ztype t; 830 u64 fsid; 831 832 buf->f_type = ZONEFS_MAGIC; 833 buf->f_bsize = sb->s_blocksize; 834 buf->f_namelen = ZONEFS_NAME_MAX; 835 836 spin_lock(&sbi->s_lock); 837 838 buf->f_blocks = sbi->s_blocks; 839 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 840 buf->f_bfree = 0; 841 else 842 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 843 buf->f_bavail = buf->f_bfree; 844 845 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 846 if (sbi->s_nr_files[t]) 847 buf->f_files += sbi->s_nr_files[t] + 1; 848 } 849 buf->f_ffree = 0; 850 851 spin_unlock(&sbi->s_lock); 852 853 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 854 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 855 buf->f_fsid.val[0] = (u32)fsid; 856 buf->f_fsid.val[1] = (u32)(fsid >> 32); 857 858 return 0; 859 } 860 861 enum { 862 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 863 Opt_err, 864 }; 865 866 static const match_table_t tokens = { 867 { Opt_errors_ro, "errors=remount-ro"}, 868 { Opt_errors_zro, "errors=zone-ro"}, 869 { Opt_errors_zol, "errors=zone-offline"}, 870 { Opt_errors_repair, "errors=repair"}, 871 { Opt_err, NULL} 872 }; 873 874 static int zonefs_parse_options(struct super_block *sb, char *options) 875 { 876 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 877 substring_t args[MAX_OPT_ARGS]; 878 char *p; 879 880 if (!options) 881 return 0; 882 883 while ((p = strsep(&options, ",")) != NULL) { 884 int token; 885 886 if (!*p) 887 continue; 888 889 token = match_token(p, tokens, args); 890 switch (token) { 891 case Opt_errors_ro: 892 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 893 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 894 break; 895 case Opt_errors_zro: 896 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 897 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 898 break; 899 case Opt_errors_zol: 900 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 901 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 902 break; 903 case Opt_errors_repair: 904 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 905 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 906 break; 907 default: 908 return -EINVAL; 909 } 910 } 911 912 return 0; 913 } 914 915 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 916 { 917 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 918 919 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 920 seq_puts(seq, ",errors=remount-ro"); 921 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 922 seq_puts(seq, ",errors=zone-ro"); 923 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 924 seq_puts(seq, ",errors=zone-offline"); 925 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 926 seq_puts(seq, ",errors=repair"); 927 928 return 0; 929 } 930 931 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 932 { 933 sync_filesystem(sb); 934 935 return zonefs_parse_options(sb, data); 936 } 937 938 static const struct super_operations zonefs_sops = { 939 .alloc_inode = zonefs_alloc_inode, 940 .free_inode = zonefs_free_inode, 941 .statfs = zonefs_statfs, 942 .remount_fs = zonefs_remount, 943 .show_options = zonefs_show_options, 944 }; 945 946 static const struct inode_operations zonefs_dir_inode_operations = { 947 .lookup = simple_lookup, 948 .setattr = zonefs_inode_setattr, 949 }; 950 951 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 952 enum zonefs_ztype type) 953 { 954 struct super_block *sb = parent->i_sb; 955 956 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 957 inode_init_owner(inode, parent, S_IFDIR | 0555); 958 inode->i_op = &zonefs_dir_inode_operations; 959 inode->i_fop = &simple_dir_operations; 960 set_nlink(inode, 2); 961 inc_nlink(parent); 962 } 963 964 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 965 enum zonefs_ztype type) 966 { 967 struct super_block *sb = inode->i_sb; 968 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 969 struct zonefs_inode_info *zi = ZONEFS_I(inode); 970 971 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 972 inode->i_mode = S_IFREG | sbi->s_perm; 973 974 zi->i_ztype = type; 975 zi->i_zsector = zone->start; 976 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 977 zone->len << SECTOR_SHIFT); 978 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true); 979 980 inode->i_uid = sbi->s_uid; 981 inode->i_gid = sbi->s_gid; 982 inode->i_size = zi->i_wpoffset; 983 inode->i_blocks = zone->len; 984 985 inode->i_op = &zonefs_file_inode_operations; 986 inode->i_fop = &zonefs_file_operations; 987 inode->i_mapping->a_ops = &zonefs_file_aops; 988 989 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 990 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 991 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 992 } 993 994 static struct dentry *zonefs_create_inode(struct dentry *parent, 995 const char *name, struct blk_zone *zone, 996 enum zonefs_ztype type) 997 { 998 struct inode *dir = d_inode(parent); 999 struct dentry *dentry; 1000 struct inode *inode; 1001 1002 dentry = d_alloc_name(parent, name); 1003 if (!dentry) 1004 return NULL; 1005 1006 inode = new_inode(parent->d_sb); 1007 if (!inode) 1008 goto dput; 1009 1010 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1011 if (zone) 1012 zonefs_init_file_inode(inode, zone, type); 1013 else 1014 zonefs_init_dir_inode(dir, inode, type); 1015 d_add(dentry, inode); 1016 dir->i_size++; 1017 1018 return dentry; 1019 1020 dput: 1021 dput(dentry); 1022 1023 return NULL; 1024 } 1025 1026 struct zonefs_zone_data { 1027 struct super_block *sb; 1028 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1029 struct blk_zone *zones; 1030 }; 1031 1032 /* 1033 * Create a zone group and populate it with zone files. 1034 */ 1035 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1036 enum zonefs_ztype type) 1037 { 1038 struct super_block *sb = zd->sb; 1039 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1040 struct blk_zone *zone, *next, *end; 1041 const char *zgroup_name; 1042 char *file_name; 1043 struct dentry *dir; 1044 unsigned int n = 0; 1045 int ret = -ENOMEM; 1046 1047 /* If the group is empty, there is nothing to do */ 1048 if (!zd->nr_zones[type]) 1049 return 0; 1050 1051 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1052 if (!file_name) 1053 return -ENOMEM; 1054 1055 if (type == ZONEFS_ZTYPE_CNV) 1056 zgroup_name = "cnv"; 1057 else 1058 zgroup_name = "seq"; 1059 1060 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1061 if (!dir) 1062 goto free; 1063 1064 /* 1065 * The first zone contains the super block: skip it. 1066 */ 1067 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1068 for (zone = &zd->zones[1]; zone < end; zone = next) { 1069 1070 next = zone + 1; 1071 if (zonefs_zone_type(zone) != type) 1072 continue; 1073 1074 /* 1075 * For conventional zones, contiguous zones can be aggregated 1076 * together to form larger files. Note that this overwrites the 1077 * length of the first zone of the set of contiguous zones 1078 * aggregated together. If one offline or read-only zone is 1079 * found, assume that all zones aggregated have the same 1080 * condition. 1081 */ 1082 if (type == ZONEFS_ZTYPE_CNV && 1083 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1084 for (; next < end; next++) { 1085 if (zonefs_zone_type(next) != type) 1086 break; 1087 zone->len += next->len; 1088 if (next->cond == BLK_ZONE_COND_READONLY && 1089 zone->cond != BLK_ZONE_COND_OFFLINE) 1090 zone->cond = BLK_ZONE_COND_READONLY; 1091 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1092 zone->cond = BLK_ZONE_COND_OFFLINE; 1093 } 1094 } 1095 1096 /* 1097 * Use the file number within its group as file name. 1098 */ 1099 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1100 if (!zonefs_create_inode(dir, file_name, zone, type)) 1101 goto free; 1102 1103 n++; 1104 } 1105 1106 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1107 zgroup_name, n, n > 1 ? "s" : ""); 1108 1109 sbi->s_nr_files[type] = n; 1110 ret = 0; 1111 1112 free: 1113 kfree(file_name); 1114 1115 return ret; 1116 } 1117 1118 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1119 void *data) 1120 { 1121 struct zonefs_zone_data *zd = data; 1122 1123 /* 1124 * Count the number of usable zones: the first zone at index 0 contains 1125 * the super block and is ignored. 1126 */ 1127 switch (zone->type) { 1128 case BLK_ZONE_TYPE_CONVENTIONAL: 1129 zone->wp = zone->start + zone->len; 1130 if (idx) 1131 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1132 break; 1133 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1134 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1135 if (idx) 1136 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1137 break; 1138 default: 1139 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1140 zone->type); 1141 return -EIO; 1142 } 1143 1144 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1145 1146 return 0; 1147 } 1148 1149 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1150 { 1151 struct block_device *bdev = zd->sb->s_bdev; 1152 int ret; 1153 1154 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1155 sizeof(struct blk_zone), GFP_KERNEL); 1156 if (!zd->zones) 1157 return -ENOMEM; 1158 1159 /* Get zones information from the device */ 1160 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1161 zonefs_get_zone_info_cb, zd); 1162 if (ret < 0) { 1163 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1164 return ret; 1165 } 1166 1167 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1168 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1169 ret, blkdev_nr_zones(bdev->bd_disk)); 1170 return -EIO; 1171 } 1172 1173 return 0; 1174 } 1175 1176 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1177 { 1178 kvfree(zd->zones); 1179 } 1180 1181 /* 1182 * Read super block information from the device. 1183 */ 1184 static int zonefs_read_super(struct super_block *sb) 1185 { 1186 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1187 struct zonefs_super *super; 1188 u32 crc, stored_crc; 1189 struct page *page; 1190 struct bio_vec bio_vec; 1191 struct bio bio; 1192 int ret; 1193 1194 page = alloc_page(GFP_KERNEL); 1195 if (!page) 1196 return -ENOMEM; 1197 1198 bio_init(&bio, &bio_vec, 1); 1199 bio.bi_iter.bi_sector = 0; 1200 bio.bi_opf = REQ_OP_READ; 1201 bio_set_dev(&bio, sb->s_bdev); 1202 bio_add_page(&bio, page, PAGE_SIZE, 0); 1203 1204 ret = submit_bio_wait(&bio); 1205 if (ret) 1206 goto free_page; 1207 1208 super = kmap(page); 1209 1210 ret = -EINVAL; 1211 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1212 goto unmap; 1213 1214 stored_crc = le32_to_cpu(super->s_crc); 1215 super->s_crc = 0; 1216 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1217 if (crc != stored_crc) { 1218 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1219 crc, stored_crc); 1220 goto unmap; 1221 } 1222 1223 sbi->s_features = le64_to_cpu(super->s_features); 1224 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1225 zonefs_err(sb, "Unknown features set 0x%llx\n", 1226 sbi->s_features); 1227 goto unmap; 1228 } 1229 1230 if (sbi->s_features & ZONEFS_F_UID) { 1231 sbi->s_uid = make_kuid(current_user_ns(), 1232 le32_to_cpu(super->s_uid)); 1233 if (!uid_valid(sbi->s_uid)) { 1234 zonefs_err(sb, "Invalid UID feature\n"); 1235 goto unmap; 1236 } 1237 } 1238 1239 if (sbi->s_features & ZONEFS_F_GID) { 1240 sbi->s_gid = make_kgid(current_user_ns(), 1241 le32_to_cpu(super->s_gid)); 1242 if (!gid_valid(sbi->s_gid)) { 1243 zonefs_err(sb, "Invalid GID feature\n"); 1244 goto unmap; 1245 } 1246 } 1247 1248 if (sbi->s_features & ZONEFS_F_PERM) 1249 sbi->s_perm = le32_to_cpu(super->s_perm); 1250 1251 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1252 zonefs_err(sb, "Reserved area is being used\n"); 1253 goto unmap; 1254 } 1255 1256 uuid_copy(&sbi->s_uuid, (uuid_t *)super->s_uuid); 1257 ret = 0; 1258 1259 unmap: 1260 kunmap(page); 1261 free_page: 1262 __free_page(page); 1263 1264 return ret; 1265 } 1266 1267 /* 1268 * Check that the device is zoned. If it is, get the list of zones and create 1269 * sub-directories and files according to the device zone configuration and 1270 * format options. 1271 */ 1272 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1273 { 1274 struct zonefs_zone_data zd; 1275 struct zonefs_sb_info *sbi; 1276 struct inode *inode; 1277 enum zonefs_ztype t; 1278 int ret; 1279 1280 if (!bdev_is_zoned(sb->s_bdev)) { 1281 zonefs_err(sb, "Not a zoned block device\n"); 1282 return -EINVAL; 1283 } 1284 1285 /* 1286 * Initialize super block information: the maximum file size is updated 1287 * when the zone files are created so that the format option 1288 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1289 * beyond the zone size is taken into account. 1290 */ 1291 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1292 if (!sbi) 1293 return -ENOMEM; 1294 1295 spin_lock_init(&sbi->s_lock); 1296 sb->s_fs_info = sbi; 1297 sb->s_magic = ZONEFS_MAGIC; 1298 sb->s_maxbytes = 0; 1299 sb->s_op = &zonefs_sops; 1300 sb->s_time_gran = 1; 1301 1302 /* 1303 * The block size is set to the device physical sector size to ensure 1304 * that write operations on 512e devices (512B logical block and 4KB 1305 * physical block) are always aligned to the device physical blocks, 1306 * as mandated by the ZBC/ZAC specifications. 1307 */ 1308 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev)); 1309 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1310 sbi->s_uid = GLOBAL_ROOT_UID; 1311 sbi->s_gid = GLOBAL_ROOT_GID; 1312 sbi->s_perm = 0640; 1313 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1314 1315 ret = zonefs_read_super(sb); 1316 if (ret) 1317 return ret; 1318 1319 ret = zonefs_parse_options(sb, data); 1320 if (ret) 1321 return ret; 1322 1323 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1324 zd.sb = sb; 1325 ret = zonefs_get_zone_info(&zd); 1326 if (ret) 1327 goto cleanup; 1328 1329 zonefs_info(sb, "Mounting %u zones", 1330 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1331 1332 /* Create root directory inode */ 1333 ret = -ENOMEM; 1334 inode = new_inode(sb); 1335 if (!inode) 1336 goto cleanup; 1337 1338 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1339 inode->i_mode = S_IFDIR | 0555; 1340 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1341 inode->i_op = &zonefs_dir_inode_operations; 1342 inode->i_fop = &simple_dir_operations; 1343 set_nlink(inode, 2); 1344 1345 sb->s_root = d_make_root(inode); 1346 if (!sb->s_root) 1347 goto cleanup; 1348 1349 /* Create and populate files in zone groups directories */ 1350 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1351 ret = zonefs_create_zgroup(&zd, t); 1352 if (ret) 1353 break; 1354 } 1355 1356 cleanup: 1357 zonefs_cleanup_zone_info(&zd); 1358 1359 return ret; 1360 } 1361 1362 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1363 int flags, const char *dev_name, void *data) 1364 { 1365 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1366 } 1367 1368 static void zonefs_kill_super(struct super_block *sb) 1369 { 1370 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1371 1372 if (sb->s_root) 1373 d_genocide(sb->s_root); 1374 kill_block_super(sb); 1375 kfree(sbi); 1376 } 1377 1378 /* 1379 * File system definition and registration. 1380 */ 1381 static struct file_system_type zonefs_type = { 1382 .owner = THIS_MODULE, 1383 .name = "zonefs", 1384 .mount = zonefs_mount, 1385 .kill_sb = zonefs_kill_super, 1386 .fs_flags = FS_REQUIRES_DEV, 1387 }; 1388 1389 static int __init zonefs_init_inodecache(void) 1390 { 1391 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1392 sizeof(struct zonefs_inode_info), 0, 1393 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1394 NULL); 1395 if (zonefs_inode_cachep == NULL) 1396 return -ENOMEM; 1397 return 0; 1398 } 1399 1400 static void zonefs_destroy_inodecache(void) 1401 { 1402 /* 1403 * Make sure all delayed rcu free inodes are flushed before we 1404 * destroy the inode cache. 1405 */ 1406 rcu_barrier(); 1407 kmem_cache_destroy(zonefs_inode_cachep); 1408 } 1409 1410 static int __init zonefs_init(void) 1411 { 1412 int ret; 1413 1414 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1415 1416 ret = zonefs_init_inodecache(); 1417 if (ret) 1418 return ret; 1419 1420 ret = register_filesystem(&zonefs_type); 1421 if (ret) { 1422 zonefs_destroy_inodecache(); 1423 return ret; 1424 } 1425 1426 return 0; 1427 } 1428 1429 static void __exit zonefs_exit(void) 1430 { 1431 zonefs_destroy_inodecache(); 1432 unregister_filesystem(&zonefs_type); 1433 } 1434 1435 MODULE_AUTHOR("Damien Le Moal"); 1436 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1437 MODULE_LICENSE("GPL"); 1438 module_init(zonefs_init); 1439 module_exit(zonefs_exit); 1440