1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 /* 39 * With ZNS drives, closing an explicitly open zone that has not been 40 * written will change the zone state to "closed", that is, the zone 41 * will remain active. Since this can then cause failure of explicit 42 * open operation on other zones if the drive active zone resources 43 * are exceeded, make sure that the zone does not remain active by 44 * resetting it. 45 */ 46 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset) 47 op = REQ_OP_ZONE_RESET; 48 49 trace_zonefs_zone_mgmt(inode, op); 50 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 51 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 52 if (ret) { 53 zonefs_err(inode->i_sb, 54 "Zone management operation %s at %llu failed %d\n", 55 blk_op_str(op), zi->i_zsector, ret); 56 return ret; 57 } 58 59 return 0; 60 } 61 62 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 63 { 64 struct zonefs_inode_info *zi = ZONEFS_I(inode); 65 66 i_size_write(inode, isize); 67 /* 68 * A full zone is no longer open/active and does not need 69 * explicit closing. 70 */ 71 if (isize >= zi->i_max_size) 72 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 73 } 74 75 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 76 unsigned int flags, struct iomap *iomap, 77 struct iomap *srcmap) 78 { 79 struct zonefs_inode_info *zi = ZONEFS_I(inode); 80 struct super_block *sb = inode->i_sb; 81 loff_t isize; 82 83 /* All I/Os should always be within the file maximum size */ 84 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 85 return -EIO; 86 87 /* 88 * Sequential zones can only accept direct writes. This is already 89 * checked when writes are issued, so warn if we see a page writeback 90 * operation. 91 */ 92 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 93 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 94 return -EIO; 95 96 /* 97 * For conventional zones, all blocks are always mapped. For sequential 98 * zones, all blocks after always mapped below the inode size (zone 99 * write pointer) and unwriten beyond. 100 */ 101 mutex_lock(&zi->i_truncate_mutex); 102 isize = i_size_read(inode); 103 if (offset >= isize) 104 iomap->type = IOMAP_UNWRITTEN; 105 else 106 iomap->type = IOMAP_MAPPED; 107 if (flags & IOMAP_WRITE) 108 length = zi->i_max_size - offset; 109 else 110 length = min(length, isize - offset); 111 mutex_unlock(&zi->i_truncate_mutex); 112 113 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 114 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 115 iomap->bdev = inode->i_sb->s_bdev; 116 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 117 118 trace_zonefs_iomap_begin(inode, iomap); 119 120 return 0; 121 } 122 123 static const struct iomap_ops zonefs_iomap_ops = { 124 .iomap_begin = zonefs_iomap_begin, 125 }; 126 127 static int zonefs_readpage(struct file *unused, struct page *page) 128 { 129 return iomap_readpage(page, &zonefs_iomap_ops); 130 } 131 132 static void zonefs_readahead(struct readahead_control *rac) 133 { 134 iomap_readahead(rac, &zonefs_iomap_ops); 135 } 136 137 /* 138 * Map blocks for page writeback. This is used only on conventional zone files, 139 * which implies that the page range can only be within the fixed inode size. 140 */ 141 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 142 struct inode *inode, loff_t offset) 143 { 144 struct zonefs_inode_info *zi = ZONEFS_I(inode); 145 146 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 147 return -EIO; 148 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 149 return -EIO; 150 151 /* If the mapping is already OK, nothing needs to be done */ 152 if (offset >= wpc->iomap.offset && 153 offset < wpc->iomap.offset + wpc->iomap.length) 154 return 0; 155 156 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 157 IOMAP_WRITE, &wpc->iomap, NULL); 158 } 159 160 static const struct iomap_writeback_ops zonefs_writeback_ops = { 161 .map_blocks = zonefs_map_blocks, 162 }; 163 164 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 165 { 166 struct iomap_writepage_ctx wpc = { }; 167 168 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 169 } 170 171 static int zonefs_writepages(struct address_space *mapping, 172 struct writeback_control *wbc) 173 { 174 struct iomap_writepage_ctx wpc = { }; 175 176 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 177 } 178 179 static int zonefs_swap_activate(struct swap_info_struct *sis, 180 struct file *swap_file, sector_t *span) 181 { 182 struct inode *inode = file_inode(swap_file); 183 struct zonefs_inode_info *zi = ZONEFS_I(inode); 184 185 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 186 zonefs_err(inode->i_sb, 187 "swap file: not a conventional zone file\n"); 188 return -EINVAL; 189 } 190 191 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops); 192 } 193 194 static const struct address_space_operations zonefs_file_aops = { 195 .readpage = zonefs_readpage, 196 .readahead = zonefs_readahead, 197 .writepage = zonefs_writepage, 198 .writepages = zonefs_writepages, 199 .dirty_folio = filemap_dirty_folio, 200 .releasepage = iomap_releasepage, 201 .invalidate_folio = iomap_invalidate_folio, 202 .migratepage = iomap_migrate_page, 203 .is_partially_uptodate = iomap_is_partially_uptodate, 204 .error_remove_page = generic_error_remove_page, 205 .direct_IO = noop_direct_IO, 206 .swap_activate = zonefs_swap_activate, 207 }; 208 209 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 210 { 211 struct super_block *sb = inode->i_sb; 212 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 213 loff_t old_isize = i_size_read(inode); 214 loff_t nr_blocks; 215 216 if (new_isize == old_isize) 217 return; 218 219 spin_lock(&sbi->s_lock); 220 221 /* 222 * This may be called for an update after an IO error. 223 * So beware of the values seen. 224 */ 225 if (new_isize < old_isize) { 226 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 227 if (sbi->s_used_blocks > nr_blocks) 228 sbi->s_used_blocks -= nr_blocks; 229 else 230 sbi->s_used_blocks = 0; 231 } else { 232 sbi->s_used_blocks += 233 (new_isize - old_isize) >> sb->s_blocksize_bits; 234 if (sbi->s_used_blocks > sbi->s_blocks) 235 sbi->s_used_blocks = sbi->s_blocks; 236 } 237 238 spin_unlock(&sbi->s_lock); 239 } 240 241 /* 242 * Check a zone condition and adjust its file inode access permissions for 243 * offline and readonly zones. Return the inode size corresponding to the 244 * amount of readable data in the zone. 245 */ 246 static loff_t zonefs_check_zone_condition(struct inode *inode, 247 struct blk_zone *zone, bool warn, 248 bool mount) 249 { 250 struct zonefs_inode_info *zi = ZONEFS_I(inode); 251 252 switch (zone->cond) { 253 case BLK_ZONE_COND_OFFLINE: 254 /* 255 * Dead zone: make the inode immutable, disable all accesses 256 * and set the file size to 0 (zone wp set to zone start). 257 */ 258 if (warn) 259 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 260 inode->i_ino); 261 inode->i_flags |= S_IMMUTABLE; 262 inode->i_mode &= ~0777; 263 zone->wp = zone->start; 264 return 0; 265 case BLK_ZONE_COND_READONLY: 266 /* 267 * The write pointer of read-only zones is invalid. If such a 268 * zone is found during mount, the file size cannot be retrieved 269 * so we treat the zone as offline (mount == true case). 270 * Otherwise, keep the file size as it was when last updated 271 * so that the user can recover data. In both cases, writes are 272 * always disabled for the zone. 273 */ 274 if (warn) 275 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 276 inode->i_ino); 277 inode->i_flags |= S_IMMUTABLE; 278 if (mount) { 279 zone->cond = BLK_ZONE_COND_OFFLINE; 280 inode->i_mode &= ~0777; 281 zone->wp = zone->start; 282 return 0; 283 } 284 inode->i_mode &= ~0222; 285 return i_size_read(inode); 286 case BLK_ZONE_COND_FULL: 287 /* The write pointer of full zones is invalid. */ 288 return zi->i_max_size; 289 default: 290 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 291 return zi->i_max_size; 292 return (zone->wp - zone->start) << SECTOR_SHIFT; 293 } 294 } 295 296 struct zonefs_ioerr_data { 297 struct inode *inode; 298 bool write; 299 }; 300 301 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 302 void *data) 303 { 304 struct zonefs_ioerr_data *err = data; 305 struct inode *inode = err->inode; 306 struct zonefs_inode_info *zi = ZONEFS_I(inode); 307 struct super_block *sb = inode->i_sb; 308 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 309 loff_t isize, data_size; 310 311 /* 312 * Check the zone condition: if the zone is not "bad" (offline or 313 * read-only), read errors are simply signaled to the IO issuer as long 314 * as there is no inconsistency between the inode size and the amount of 315 * data writen in the zone (data_size). 316 */ 317 data_size = zonefs_check_zone_condition(inode, zone, true, false); 318 isize = i_size_read(inode); 319 if (zone->cond != BLK_ZONE_COND_OFFLINE && 320 zone->cond != BLK_ZONE_COND_READONLY && 321 !err->write && isize == data_size) 322 return 0; 323 324 /* 325 * At this point, we detected either a bad zone or an inconsistency 326 * between the inode size and the amount of data written in the zone. 327 * For the latter case, the cause may be a write IO error or an external 328 * action on the device. Two error patterns exist: 329 * 1) The inode size is lower than the amount of data in the zone: 330 * a write operation partially failed and data was writen at the end 331 * of the file. This can happen in the case of a large direct IO 332 * needing several BIOs and/or write requests to be processed. 333 * 2) The inode size is larger than the amount of data in the zone: 334 * this can happen with a deferred write error with the use of the 335 * device side write cache after getting successful write IO 336 * completions. Other possibilities are (a) an external corruption, 337 * e.g. an application reset the zone directly, or (b) the device 338 * has a serious problem (e.g. firmware bug). 339 * 340 * In all cases, warn about inode size inconsistency and handle the 341 * IO error according to the zone condition and to the mount options. 342 */ 343 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 344 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 345 inode->i_ino, isize, data_size); 346 347 /* 348 * First handle bad zones signaled by hardware. The mount options 349 * errors=zone-ro and errors=zone-offline result in changing the 350 * zone condition to read-only and offline respectively, as if the 351 * condition was signaled by the hardware. 352 */ 353 if (zone->cond == BLK_ZONE_COND_OFFLINE || 354 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 355 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 356 inode->i_ino); 357 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 358 zone->cond = BLK_ZONE_COND_OFFLINE; 359 data_size = zonefs_check_zone_condition(inode, zone, 360 false, false); 361 } 362 } else if (zone->cond == BLK_ZONE_COND_READONLY || 363 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 364 zonefs_warn(sb, "inode %lu: write access disabled\n", 365 inode->i_ino); 366 if (zone->cond != BLK_ZONE_COND_READONLY) { 367 zone->cond = BLK_ZONE_COND_READONLY; 368 data_size = zonefs_check_zone_condition(inode, zone, 369 false, false); 370 } 371 } 372 373 /* 374 * If the filesystem is mounted with the explicit-open mount option, we 375 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 376 * the read-only or offline condition, to avoid attempting an explicit 377 * close of the zone when the inode file is closed. 378 */ 379 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 380 (zone->cond == BLK_ZONE_COND_OFFLINE || 381 zone->cond == BLK_ZONE_COND_READONLY)) 382 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 383 384 /* 385 * If error=remount-ro was specified, any error result in remounting 386 * the volume as read-only. 387 */ 388 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 389 zonefs_warn(sb, "remounting filesystem read-only\n"); 390 sb->s_flags |= SB_RDONLY; 391 } 392 393 /* 394 * Update block usage stats and the inode size to prevent access to 395 * invalid data. 396 */ 397 zonefs_update_stats(inode, data_size); 398 zonefs_i_size_write(inode, data_size); 399 zi->i_wpoffset = data_size; 400 401 return 0; 402 } 403 404 /* 405 * When an file IO error occurs, check the file zone to see if there is a change 406 * in the zone condition (e.g. offline or read-only). For a failed write to a 407 * sequential zone, the zone write pointer position must also be checked to 408 * eventually correct the file size and zonefs inode write pointer offset 409 * (which can be out of sync with the drive due to partial write failures). 410 */ 411 static void __zonefs_io_error(struct inode *inode, bool write) 412 { 413 struct zonefs_inode_info *zi = ZONEFS_I(inode); 414 struct super_block *sb = inode->i_sb; 415 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 416 unsigned int noio_flag; 417 unsigned int nr_zones = 418 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 419 struct zonefs_ioerr_data err = { 420 .inode = inode, 421 .write = write, 422 }; 423 int ret; 424 425 /* 426 * Memory allocations in blkdev_report_zones() can trigger a memory 427 * reclaim which may in turn cause a recursion into zonefs as well as 428 * struct request allocations for the same device. The former case may 429 * end up in a deadlock on the inode truncate mutex, while the latter 430 * may prevent IO forward progress. Executing the report zones under 431 * the GFP_NOIO context avoids both problems. 432 */ 433 noio_flag = memalloc_noio_save(); 434 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 435 zonefs_io_error_cb, &err); 436 if (ret != nr_zones) 437 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 438 inode->i_ino, ret); 439 memalloc_noio_restore(noio_flag); 440 } 441 442 static void zonefs_io_error(struct inode *inode, bool write) 443 { 444 struct zonefs_inode_info *zi = ZONEFS_I(inode); 445 446 mutex_lock(&zi->i_truncate_mutex); 447 __zonefs_io_error(inode, write); 448 mutex_unlock(&zi->i_truncate_mutex); 449 } 450 451 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 452 { 453 struct zonefs_inode_info *zi = ZONEFS_I(inode); 454 loff_t old_isize; 455 enum req_opf op; 456 int ret = 0; 457 458 /* 459 * Only sequential zone files can be truncated and truncation is allowed 460 * only down to a 0 size, which is equivalent to a zone reset, and to 461 * the maximum file size, which is equivalent to a zone finish. 462 */ 463 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 464 return -EPERM; 465 466 if (!isize) 467 op = REQ_OP_ZONE_RESET; 468 else if (isize == zi->i_max_size) 469 op = REQ_OP_ZONE_FINISH; 470 else 471 return -EPERM; 472 473 inode_dio_wait(inode); 474 475 /* Serialize against page faults */ 476 filemap_invalidate_lock(inode->i_mapping); 477 478 /* Serialize against zonefs_iomap_begin() */ 479 mutex_lock(&zi->i_truncate_mutex); 480 481 old_isize = i_size_read(inode); 482 if (isize == old_isize) 483 goto unlock; 484 485 ret = zonefs_zone_mgmt(inode, op); 486 if (ret) 487 goto unlock; 488 489 /* 490 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 491 * take care of open zones. 492 */ 493 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 494 /* 495 * Truncating a zone to EMPTY or FULL is the equivalent of 496 * closing the zone. For a truncation to 0, we need to 497 * re-open the zone to ensure new writes can be processed. 498 * For a truncation to the maximum file size, the zone is 499 * closed and writes cannot be accepted anymore, so clear 500 * the open flag. 501 */ 502 if (!isize) 503 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 504 else 505 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 506 } 507 508 zonefs_update_stats(inode, isize); 509 truncate_setsize(inode, isize); 510 zi->i_wpoffset = isize; 511 512 unlock: 513 mutex_unlock(&zi->i_truncate_mutex); 514 filemap_invalidate_unlock(inode->i_mapping); 515 516 return ret; 517 } 518 519 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 520 struct dentry *dentry, struct iattr *iattr) 521 { 522 struct inode *inode = d_inode(dentry); 523 int ret; 524 525 if (unlikely(IS_IMMUTABLE(inode))) 526 return -EPERM; 527 528 ret = setattr_prepare(&init_user_ns, dentry, iattr); 529 if (ret) 530 return ret; 531 532 /* 533 * Since files and directories cannot be created nor deleted, do not 534 * allow setting any write attributes on the sub-directories grouping 535 * files by zone type. 536 */ 537 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 538 (iattr->ia_mode & 0222)) 539 return -EPERM; 540 541 if (((iattr->ia_valid & ATTR_UID) && 542 !uid_eq(iattr->ia_uid, inode->i_uid)) || 543 ((iattr->ia_valid & ATTR_GID) && 544 !gid_eq(iattr->ia_gid, inode->i_gid))) { 545 ret = dquot_transfer(inode, iattr); 546 if (ret) 547 return ret; 548 } 549 550 if (iattr->ia_valid & ATTR_SIZE) { 551 ret = zonefs_file_truncate(inode, iattr->ia_size); 552 if (ret) 553 return ret; 554 } 555 556 setattr_copy(&init_user_ns, inode, iattr); 557 558 return 0; 559 } 560 561 static const struct inode_operations zonefs_file_inode_operations = { 562 .setattr = zonefs_inode_setattr, 563 }; 564 565 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 566 int datasync) 567 { 568 struct inode *inode = file_inode(file); 569 int ret = 0; 570 571 if (unlikely(IS_IMMUTABLE(inode))) 572 return -EPERM; 573 574 /* 575 * Since only direct writes are allowed in sequential files, page cache 576 * flush is needed only for conventional zone files. 577 */ 578 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 579 ret = file_write_and_wait_range(file, start, end); 580 if (!ret) 581 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 582 583 if (ret) 584 zonefs_io_error(inode, true); 585 586 return ret; 587 } 588 589 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 590 { 591 struct inode *inode = file_inode(vmf->vma->vm_file); 592 struct zonefs_inode_info *zi = ZONEFS_I(inode); 593 vm_fault_t ret; 594 595 if (unlikely(IS_IMMUTABLE(inode))) 596 return VM_FAULT_SIGBUS; 597 598 /* 599 * Sanity check: only conventional zone files can have shared 600 * writeable mappings. 601 */ 602 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 603 return VM_FAULT_NOPAGE; 604 605 sb_start_pagefault(inode->i_sb); 606 file_update_time(vmf->vma->vm_file); 607 608 /* Serialize against truncates */ 609 filemap_invalidate_lock_shared(inode->i_mapping); 610 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 611 filemap_invalidate_unlock_shared(inode->i_mapping); 612 613 sb_end_pagefault(inode->i_sb); 614 return ret; 615 } 616 617 static const struct vm_operations_struct zonefs_file_vm_ops = { 618 .fault = filemap_fault, 619 .map_pages = filemap_map_pages, 620 .page_mkwrite = zonefs_filemap_page_mkwrite, 621 }; 622 623 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 624 { 625 /* 626 * Conventional zones accept random writes, so their files can support 627 * shared writable mappings. For sequential zone files, only read 628 * mappings are possible since there are no guarantees for write 629 * ordering between msync() and page cache writeback. 630 */ 631 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 632 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 633 return -EINVAL; 634 635 file_accessed(file); 636 vma->vm_ops = &zonefs_file_vm_ops; 637 638 return 0; 639 } 640 641 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 642 { 643 loff_t isize = i_size_read(file_inode(file)); 644 645 /* 646 * Seeks are limited to below the zone size for conventional zones 647 * and below the zone write pointer for sequential zones. In both 648 * cases, this limit is the inode size. 649 */ 650 return generic_file_llseek_size(file, offset, whence, isize, isize); 651 } 652 653 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 654 int error, unsigned int flags) 655 { 656 struct inode *inode = file_inode(iocb->ki_filp); 657 struct zonefs_inode_info *zi = ZONEFS_I(inode); 658 659 if (error) { 660 zonefs_io_error(inode, true); 661 return error; 662 } 663 664 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 665 /* 666 * Note that we may be seeing completions out of order, 667 * but that is not a problem since a write completed 668 * successfully necessarily means that all preceding writes 669 * were also successful. So we can safely increase the inode 670 * size to the write end location. 671 */ 672 mutex_lock(&zi->i_truncate_mutex); 673 if (i_size_read(inode) < iocb->ki_pos + size) { 674 zonefs_update_stats(inode, iocb->ki_pos + size); 675 zonefs_i_size_write(inode, iocb->ki_pos + size); 676 } 677 mutex_unlock(&zi->i_truncate_mutex); 678 } 679 680 return 0; 681 } 682 683 static const struct iomap_dio_ops zonefs_write_dio_ops = { 684 .end_io = zonefs_file_write_dio_end_io, 685 }; 686 687 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 688 { 689 struct inode *inode = file_inode(iocb->ki_filp); 690 struct zonefs_inode_info *zi = ZONEFS_I(inode); 691 struct block_device *bdev = inode->i_sb->s_bdev; 692 unsigned int max; 693 struct bio *bio; 694 ssize_t size; 695 int nr_pages; 696 ssize_t ret; 697 698 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 699 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 700 iov_iter_truncate(from, max); 701 702 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 703 if (!nr_pages) 704 return 0; 705 706 bio = bio_alloc(bdev, nr_pages, 707 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 708 bio->bi_iter.bi_sector = zi->i_zsector; 709 bio->bi_ioprio = iocb->ki_ioprio; 710 if (iocb->ki_flags & IOCB_DSYNC) 711 bio->bi_opf |= REQ_FUA; 712 713 ret = bio_iov_iter_get_pages(bio, from); 714 if (unlikely(ret)) 715 goto out_release; 716 717 size = bio->bi_iter.bi_size; 718 task_io_account_write(size); 719 720 if (iocb->ki_flags & IOCB_HIPRI) 721 bio_set_polled(bio, iocb); 722 723 ret = submit_bio_wait(bio); 724 725 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 726 trace_zonefs_file_dio_append(inode, size, ret); 727 728 out_release: 729 bio_release_pages(bio, false); 730 bio_put(bio); 731 732 if (ret >= 0) { 733 iocb->ki_pos += size; 734 return size; 735 } 736 737 return ret; 738 } 739 740 /* 741 * Do not exceed the LFS limits nor the file zone size. If pos is under the 742 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 743 */ 744 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 745 loff_t count) 746 { 747 struct inode *inode = file_inode(file); 748 struct zonefs_inode_info *zi = ZONEFS_I(inode); 749 loff_t limit = rlimit(RLIMIT_FSIZE); 750 loff_t max_size = zi->i_max_size; 751 752 if (limit != RLIM_INFINITY) { 753 if (pos >= limit) { 754 send_sig(SIGXFSZ, current, 0); 755 return -EFBIG; 756 } 757 count = min(count, limit - pos); 758 } 759 760 if (!(file->f_flags & O_LARGEFILE)) 761 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 762 763 if (unlikely(pos >= max_size)) 764 return -EFBIG; 765 766 return min(count, max_size - pos); 767 } 768 769 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 770 { 771 struct file *file = iocb->ki_filp; 772 struct inode *inode = file_inode(file); 773 struct zonefs_inode_info *zi = ZONEFS_I(inode); 774 loff_t count; 775 776 if (IS_SWAPFILE(inode)) 777 return -ETXTBSY; 778 779 if (!iov_iter_count(from)) 780 return 0; 781 782 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 783 return -EINVAL; 784 785 if (iocb->ki_flags & IOCB_APPEND) { 786 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 787 return -EINVAL; 788 mutex_lock(&zi->i_truncate_mutex); 789 iocb->ki_pos = zi->i_wpoffset; 790 mutex_unlock(&zi->i_truncate_mutex); 791 } 792 793 count = zonefs_write_check_limits(file, iocb->ki_pos, 794 iov_iter_count(from)); 795 if (count < 0) 796 return count; 797 798 iov_iter_truncate(from, count); 799 return iov_iter_count(from); 800 } 801 802 /* 803 * Handle direct writes. For sequential zone files, this is the only possible 804 * write path. For these files, check that the user is issuing writes 805 * sequentially from the end of the file. This code assumes that the block layer 806 * delivers write requests to the device in sequential order. This is always the 807 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 808 * elevator feature is being used (e.g. mq-deadline). The block layer always 809 * automatically select such an elevator for zoned block devices during the 810 * device initialization. 811 */ 812 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 813 { 814 struct inode *inode = file_inode(iocb->ki_filp); 815 struct zonefs_inode_info *zi = ZONEFS_I(inode); 816 struct super_block *sb = inode->i_sb; 817 bool sync = is_sync_kiocb(iocb); 818 bool append = false; 819 ssize_t ret, count; 820 821 /* 822 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 823 * as this can cause write reordering (e.g. the first aio gets EAGAIN 824 * on the inode lock but the second goes through but is now unaligned). 825 */ 826 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 827 (iocb->ki_flags & IOCB_NOWAIT)) 828 return -EOPNOTSUPP; 829 830 if (iocb->ki_flags & IOCB_NOWAIT) { 831 if (!inode_trylock(inode)) 832 return -EAGAIN; 833 } else { 834 inode_lock(inode); 835 } 836 837 count = zonefs_write_checks(iocb, from); 838 if (count <= 0) { 839 ret = count; 840 goto inode_unlock; 841 } 842 843 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 844 ret = -EINVAL; 845 goto inode_unlock; 846 } 847 848 /* Enforce sequential writes (append only) in sequential zones */ 849 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 850 mutex_lock(&zi->i_truncate_mutex); 851 if (iocb->ki_pos != zi->i_wpoffset) { 852 mutex_unlock(&zi->i_truncate_mutex); 853 ret = -EINVAL; 854 goto inode_unlock; 855 } 856 mutex_unlock(&zi->i_truncate_mutex); 857 append = sync; 858 } 859 860 if (append) 861 ret = zonefs_file_dio_append(iocb, from); 862 else 863 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 864 &zonefs_write_dio_ops, 0, 0); 865 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 866 (ret > 0 || ret == -EIOCBQUEUED)) { 867 if (ret > 0) 868 count = ret; 869 mutex_lock(&zi->i_truncate_mutex); 870 zi->i_wpoffset += count; 871 mutex_unlock(&zi->i_truncate_mutex); 872 } 873 874 inode_unlock: 875 inode_unlock(inode); 876 877 return ret; 878 } 879 880 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 881 struct iov_iter *from) 882 { 883 struct inode *inode = file_inode(iocb->ki_filp); 884 struct zonefs_inode_info *zi = ZONEFS_I(inode); 885 ssize_t ret; 886 887 /* 888 * Direct IO writes are mandatory for sequential zone files so that the 889 * write IO issuing order is preserved. 890 */ 891 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 892 return -EIO; 893 894 if (iocb->ki_flags & IOCB_NOWAIT) { 895 if (!inode_trylock(inode)) 896 return -EAGAIN; 897 } else { 898 inode_lock(inode); 899 } 900 901 ret = zonefs_write_checks(iocb, from); 902 if (ret <= 0) 903 goto inode_unlock; 904 905 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 906 if (ret > 0) 907 iocb->ki_pos += ret; 908 else if (ret == -EIO) 909 zonefs_io_error(inode, true); 910 911 inode_unlock: 912 inode_unlock(inode); 913 if (ret > 0) 914 ret = generic_write_sync(iocb, ret); 915 916 return ret; 917 } 918 919 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 920 { 921 struct inode *inode = file_inode(iocb->ki_filp); 922 923 if (unlikely(IS_IMMUTABLE(inode))) 924 return -EPERM; 925 926 if (sb_rdonly(inode->i_sb)) 927 return -EROFS; 928 929 /* Write operations beyond the zone size are not allowed */ 930 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 931 return -EFBIG; 932 933 if (iocb->ki_flags & IOCB_DIRECT) { 934 ssize_t ret = zonefs_file_dio_write(iocb, from); 935 if (ret != -ENOTBLK) 936 return ret; 937 } 938 939 return zonefs_file_buffered_write(iocb, from); 940 } 941 942 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 943 int error, unsigned int flags) 944 { 945 if (error) { 946 zonefs_io_error(file_inode(iocb->ki_filp), false); 947 return error; 948 } 949 950 return 0; 951 } 952 953 static const struct iomap_dio_ops zonefs_read_dio_ops = { 954 .end_io = zonefs_file_read_dio_end_io, 955 }; 956 957 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 958 { 959 struct inode *inode = file_inode(iocb->ki_filp); 960 struct zonefs_inode_info *zi = ZONEFS_I(inode); 961 struct super_block *sb = inode->i_sb; 962 loff_t isize; 963 ssize_t ret; 964 965 /* Offline zones cannot be read */ 966 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 967 return -EPERM; 968 969 if (iocb->ki_pos >= zi->i_max_size) 970 return 0; 971 972 if (iocb->ki_flags & IOCB_NOWAIT) { 973 if (!inode_trylock_shared(inode)) 974 return -EAGAIN; 975 } else { 976 inode_lock_shared(inode); 977 } 978 979 /* Limit read operations to written data */ 980 mutex_lock(&zi->i_truncate_mutex); 981 isize = i_size_read(inode); 982 if (iocb->ki_pos >= isize) { 983 mutex_unlock(&zi->i_truncate_mutex); 984 ret = 0; 985 goto inode_unlock; 986 } 987 iov_iter_truncate(to, isize - iocb->ki_pos); 988 mutex_unlock(&zi->i_truncate_mutex); 989 990 if (iocb->ki_flags & IOCB_DIRECT) { 991 size_t count = iov_iter_count(to); 992 993 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 994 ret = -EINVAL; 995 goto inode_unlock; 996 } 997 file_accessed(iocb->ki_filp); 998 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 999 &zonefs_read_dio_ops, 0, 0); 1000 } else { 1001 ret = generic_file_read_iter(iocb, to); 1002 if (ret == -EIO) 1003 zonefs_io_error(inode, false); 1004 } 1005 1006 inode_unlock: 1007 inode_unlock_shared(inode); 1008 1009 return ret; 1010 } 1011 1012 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 1013 { 1014 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1015 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1016 1017 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 1018 return false; 1019 1020 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1021 return false; 1022 1023 if (!(file->f_mode & FMODE_WRITE)) 1024 return false; 1025 1026 return true; 1027 } 1028 1029 static int zonefs_open_zone(struct inode *inode) 1030 { 1031 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1032 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1033 int ret = 0; 1034 1035 mutex_lock(&zi->i_truncate_mutex); 1036 1037 if (!zi->i_wr_refcnt) { 1038 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 1039 atomic_dec(&sbi->s_open_zones); 1040 ret = -EBUSY; 1041 goto unlock; 1042 } 1043 1044 if (i_size_read(inode) < zi->i_max_size) { 1045 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1046 if (ret) { 1047 atomic_dec(&sbi->s_open_zones); 1048 goto unlock; 1049 } 1050 zi->i_flags |= ZONEFS_ZONE_OPEN; 1051 } 1052 } 1053 1054 zi->i_wr_refcnt++; 1055 1056 unlock: 1057 mutex_unlock(&zi->i_truncate_mutex); 1058 1059 return ret; 1060 } 1061 1062 static int zonefs_file_open(struct inode *inode, struct file *file) 1063 { 1064 int ret; 1065 1066 ret = generic_file_open(inode, file); 1067 if (ret) 1068 return ret; 1069 1070 if (zonefs_file_use_exp_open(inode, file)) 1071 return zonefs_open_zone(inode); 1072 1073 return 0; 1074 } 1075 1076 static void zonefs_close_zone(struct inode *inode) 1077 { 1078 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1079 int ret = 0; 1080 1081 mutex_lock(&zi->i_truncate_mutex); 1082 zi->i_wr_refcnt--; 1083 if (!zi->i_wr_refcnt) { 1084 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1085 struct super_block *sb = inode->i_sb; 1086 1087 /* 1088 * If the file zone is full, it is not open anymore and we only 1089 * need to decrement the open count. 1090 */ 1091 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1092 goto dec; 1093 1094 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1095 if (ret) { 1096 __zonefs_io_error(inode, false); 1097 /* 1098 * Leaving zones explicitly open may lead to a state 1099 * where most zones cannot be written (zone resources 1100 * exhausted). So take preventive action by remounting 1101 * read-only. 1102 */ 1103 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1104 !(sb->s_flags & SB_RDONLY)) { 1105 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1106 sb->s_flags |= SB_RDONLY; 1107 } 1108 } 1109 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1110 dec: 1111 atomic_dec(&sbi->s_open_zones); 1112 } 1113 mutex_unlock(&zi->i_truncate_mutex); 1114 } 1115 1116 static int zonefs_file_release(struct inode *inode, struct file *file) 1117 { 1118 /* 1119 * If we explicitly open a zone we must close it again as well, but the 1120 * zone management operation can fail (either due to an IO error or as 1121 * the zone has gone offline or read-only). Make sure we don't fail the 1122 * close(2) for user-space. 1123 */ 1124 if (zonefs_file_use_exp_open(inode, file)) 1125 zonefs_close_zone(inode); 1126 1127 return 0; 1128 } 1129 1130 static const struct file_operations zonefs_file_operations = { 1131 .open = zonefs_file_open, 1132 .release = zonefs_file_release, 1133 .fsync = zonefs_file_fsync, 1134 .mmap = zonefs_file_mmap, 1135 .llseek = zonefs_file_llseek, 1136 .read_iter = zonefs_file_read_iter, 1137 .write_iter = zonefs_file_write_iter, 1138 .splice_read = generic_file_splice_read, 1139 .splice_write = iter_file_splice_write, 1140 .iopoll = iocb_bio_iopoll, 1141 }; 1142 1143 static struct kmem_cache *zonefs_inode_cachep; 1144 1145 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1146 { 1147 struct zonefs_inode_info *zi; 1148 1149 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1150 if (!zi) 1151 return NULL; 1152 1153 inode_init_once(&zi->i_vnode); 1154 mutex_init(&zi->i_truncate_mutex); 1155 zi->i_wr_refcnt = 0; 1156 zi->i_flags = 0; 1157 1158 return &zi->i_vnode; 1159 } 1160 1161 static void zonefs_free_inode(struct inode *inode) 1162 { 1163 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1164 } 1165 1166 /* 1167 * File system stat. 1168 */ 1169 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1170 { 1171 struct super_block *sb = dentry->d_sb; 1172 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1173 enum zonefs_ztype t; 1174 1175 buf->f_type = ZONEFS_MAGIC; 1176 buf->f_bsize = sb->s_blocksize; 1177 buf->f_namelen = ZONEFS_NAME_MAX; 1178 1179 spin_lock(&sbi->s_lock); 1180 1181 buf->f_blocks = sbi->s_blocks; 1182 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1183 buf->f_bfree = 0; 1184 else 1185 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1186 buf->f_bavail = buf->f_bfree; 1187 1188 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1189 if (sbi->s_nr_files[t]) 1190 buf->f_files += sbi->s_nr_files[t] + 1; 1191 } 1192 buf->f_ffree = 0; 1193 1194 spin_unlock(&sbi->s_lock); 1195 1196 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1197 1198 return 0; 1199 } 1200 1201 enum { 1202 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1203 Opt_explicit_open, Opt_err, 1204 }; 1205 1206 static const match_table_t tokens = { 1207 { Opt_errors_ro, "errors=remount-ro"}, 1208 { Opt_errors_zro, "errors=zone-ro"}, 1209 { Opt_errors_zol, "errors=zone-offline"}, 1210 { Opt_errors_repair, "errors=repair"}, 1211 { Opt_explicit_open, "explicit-open" }, 1212 { Opt_err, NULL} 1213 }; 1214 1215 static int zonefs_parse_options(struct super_block *sb, char *options) 1216 { 1217 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1218 substring_t args[MAX_OPT_ARGS]; 1219 char *p; 1220 1221 if (!options) 1222 return 0; 1223 1224 while ((p = strsep(&options, ",")) != NULL) { 1225 int token; 1226 1227 if (!*p) 1228 continue; 1229 1230 token = match_token(p, tokens, args); 1231 switch (token) { 1232 case Opt_errors_ro: 1233 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1234 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1235 break; 1236 case Opt_errors_zro: 1237 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1238 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1239 break; 1240 case Opt_errors_zol: 1241 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1242 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1243 break; 1244 case Opt_errors_repair: 1245 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1246 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1247 break; 1248 case Opt_explicit_open: 1249 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1250 break; 1251 default: 1252 return -EINVAL; 1253 } 1254 } 1255 1256 return 0; 1257 } 1258 1259 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1260 { 1261 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1262 1263 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1264 seq_puts(seq, ",errors=remount-ro"); 1265 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1266 seq_puts(seq, ",errors=zone-ro"); 1267 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1268 seq_puts(seq, ",errors=zone-offline"); 1269 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1270 seq_puts(seq, ",errors=repair"); 1271 1272 return 0; 1273 } 1274 1275 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1276 { 1277 sync_filesystem(sb); 1278 1279 return zonefs_parse_options(sb, data); 1280 } 1281 1282 static const struct super_operations zonefs_sops = { 1283 .alloc_inode = zonefs_alloc_inode, 1284 .free_inode = zonefs_free_inode, 1285 .statfs = zonefs_statfs, 1286 .remount_fs = zonefs_remount, 1287 .show_options = zonefs_show_options, 1288 }; 1289 1290 static const struct inode_operations zonefs_dir_inode_operations = { 1291 .lookup = simple_lookup, 1292 .setattr = zonefs_inode_setattr, 1293 }; 1294 1295 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1296 enum zonefs_ztype type) 1297 { 1298 struct super_block *sb = parent->i_sb; 1299 1300 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1301 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1302 inode->i_op = &zonefs_dir_inode_operations; 1303 inode->i_fop = &simple_dir_operations; 1304 set_nlink(inode, 2); 1305 inc_nlink(parent); 1306 } 1307 1308 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1309 enum zonefs_ztype type) 1310 { 1311 struct super_block *sb = inode->i_sb; 1312 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1313 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1314 int ret = 0; 1315 1316 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1317 inode->i_mode = S_IFREG | sbi->s_perm; 1318 1319 zi->i_ztype = type; 1320 zi->i_zsector = zone->start; 1321 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1322 1323 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1324 zone->capacity << SECTOR_SHIFT); 1325 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1326 1327 inode->i_uid = sbi->s_uid; 1328 inode->i_gid = sbi->s_gid; 1329 inode->i_size = zi->i_wpoffset; 1330 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1331 1332 inode->i_op = &zonefs_file_inode_operations; 1333 inode->i_fop = &zonefs_file_operations; 1334 inode->i_mapping->a_ops = &zonefs_file_aops; 1335 1336 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1337 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1338 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1339 1340 /* 1341 * For sequential zones, make sure that any open zone is closed first 1342 * to ensure that the initial number of open zones is 0, in sync with 1343 * the open zone accounting done when the mount option 1344 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used. 1345 */ 1346 if (type == ZONEFS_ZTYPE_SEQ && 1347 (zone->cond == BLK_ZONE_COND_IMP_OPEN || 1348 zone->cond == BLK_ZONE_COND_EXP_OPEN)) { 1349 mutex_lock(&zi->i_truncate_mutex); 1350 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1351 mutex_unlock(&zi->i_truncate_mutex); 1352 } 1353 1354 return ret; 1355 } 1356 1357 static struct dentry *zonefs_create_inode(struct dentry *parent, 1358 const char *name, struct blk_zone *zone, 1359 enum zonefs_ztype type) 1360 { 1361 struct inode *dir = d_inode(parent); 1362 struct dentry *dentry; 1363 struct inode *inode; 1364 int ret; 1365 1366 dentry = d_alloc_name(parent, name); 1367 if (!dentry) 1368 return NULL; 1369 1370 inode = new_inode(parent->d_sb); 1371 if (!inode) 1372 goto dput; 1373 1374 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1375 if (zone) { 1376 ret = zonefs_init_file_inode(inode, zone, type); 1377 if (ret) { 1378 iput(inode); 1379 goto dput; 1380 } 1381 } else { 1382 zonefs_init_dir_inode(dir, inode, type); 1383 } 1384 1385 d_add(dentry, inode); 1386 dir->i_size++; 1387 1388 return dentry; 1389 1390 dput: 1391 dput(dentry); 1392 1393 return NULL; 1394 } 1395 1396 struct zonefs_zone_data { 1397 struct super_block *sb; 1398 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1399 struct blk_zone *zones; 1400 }; 1401 1402 /* 1403 * Create a zone group and populate it with zone files. 1404 */ 1405 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1406 enum zonefs_ztype type) 1407 { 1408 struct super_block *sb = zd->sb; 1409 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1410 struct blk_zone *zone, *next, *end; 1411 const char *zgroup_name; 1412 char *file_name; 1413 struct dentry *dir; 1414 unsigned int n = 0; 1415 int ret; 1416 1417 /* If the group is empty, there is nothing to do */ 1418 if (!zd->nr_zones[type]) 1419 return 0; 1420 1421 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1422 if (!file_name) 1423 return -ENOMEM; 1424 1425 if (type == ZONEFS_ZTYPE_CNV) 1426 zgroup_name = "cnv"; 1427 else 1428 zgroup_name = "seq"; 1429 1430 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1431 if (!dir) { 1432 ret = -ENOMEM; 1433 goto free; 1434 } 1435 1436 /* 1437 * The first zone contains the super block: skip it. 1438 */ 1439 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1440 for (zone = &zd->zones[1]; zone < end; zone = next) { 1441 1442 next = zone + 1; 1443 if (zonefs_zone_type(zone) != type) 1444 continue; 1445 1446 /* 1447 * For conventional zones, contiguous zones can be aggregated 1448 * together to form larger files. Note that this overwrites the 1449 * length of the first zone of the set of contiguous zones 1450 * aggregated together. If one offline or read-only zone is 1451 * found, assume that all zones aggregated have the same 1452 * condition. 1453 */ 1454 if (type == ZONEFS_ZTYPE_CNV && 1455 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1456 for (; next < end; next++) { 1457 if (zonefs_zone_type(next) != type) 1458 break; 1459 zone->len += next->len; 1460 zone->capacity += next->capacity; 1461 if (next->cond == BLK_ZONE_COND_READONLY && 1462 zone->cond != BLK_ZONE_COND_OFFLINE) 1463 zone->cond = BLK_ZONE_COND_READONLY; 1464 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1465 zone->cond = BLK_ZONE_COND_OFFLINE; 1466 } 1467 if (zone->capacity != zone->len) { 1468 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1469 ret = -EINVAL; 1470 goto free; 1471 } 1472 } 1473 1474 /* 1475 * Use the file number within its group as file name. 1476 */ 1477 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1478 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1479 ret = -ENOMEM; 1480 goto free; 1481 } 1482 1483 n++; 1484 } 1485 1486 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1487 zgroup_name, n, n > 1 ? "s" : ""); 1488 1489 sbi->s_nr_files[type] = n; 1490 ret = 0; 1491 1492 free: 1493 kfree(file_name); 1494 1495 return ret; 1496 } 1497 1498 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1499 void *data) 1500 { 1501 struct zonefs_zone_data *zd = data; 1502 1503 /* 1504 * Count the number of usable zones: the first zone at index 0 contains 1505 * the super block and is ignored. 1506 */ 1507 switch (zone->type) { 1508 case BLK_ZONE_TYPE_CONVENTIONAL: 1509 zone->wp = zone->start + zone->len; 1510 if (idx) 1511 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1512 break; 1513 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1514 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1515 if (idx) 1516 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1517 break; 1518 default: 1519 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1520 zone->type); 1521 return -EIO; 1522 } 1523 1524 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1525 1526 return 0; 1527 } 1528 1529 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1530 { 1531 struct block_device *bdev = zd->sb->s_bdev; 1532 int ret; 1533 1534 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1535 sizeof(struct blk_zone), GFP_KERNEL); 1536 if (!zd->zones) 1537 return -ENOMEM; 1538 1539 /* Get zones information from the device */ 1540 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1541 zonefs_get_zone_info_cb, zd); 1542 if (ret < 0) { 1543 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1544 return ret; 1545 } 1546 1547 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1548 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1549 ret, blkdev_nr_zones(bdev->bd_disk)); 1550 return -EIO; 1551 } 1552 1553 return 0; 1554 } 1555 1556 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1557 { 1558 kvfree(zd->zones); 1559 } 1560 1561 /* 1562 * Read super block information from the device. 1563 */ 1564 static int zonefs_read_super(struct super_block *sb) 1565 { 1566 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1567 struct zonefs_super *super; 1568 u32 crc, stored_crc; 1569 struct page *page; 1570 struct bio_vec bio_vec; 1571 struct bio bio; 1572 int ret; 1573 1574 page = alloc_page(GFP_KERNEL); 1575 if (!page) 1576 return -ENOMEM; 1577 1578 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1579 bio.bi_iter.bi_sector = 0; 1580 bio_add_page(&bio, page, PAGE_SIZE, 0); 1581 1582 ret = submit_bio_wait(&bio); 1583 if (ret) 1584 goto free_page; 1585 1586 super = kmap(page); 1587 1588 ret = -EINVAL; 1589 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1590 goto unmap; 1591 1592 stored_crc = le32_to_cpu(super->s_crc); 1593 super->s_crc = 0; 1594 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1595 if (crc != stored_crc) { 1596 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1597 crc, stored_crc); 1598 goto unmap; 1599 } 1600 1601 sbi->s_features = le64_to_cpu(super->s_features); 1602 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1603 zonefs_err(sb, "Unknown features set 0x%llx\n", 1604 sbi->s_features); 1605 goto unmap; 1606 } 1607 1608 if (sbi->s_features & ZONEFS_F_UID) { 1609 sbi->s_uid = make_kuid(current_user_ns(), 1610 le32_to_cpu(super->s_uid)); 1611 if (!uid_valid(sbi->s_uid)) { 1612 zonefs_err(sb, "Invalid UID feature\n"); 1613 goto unmap; 1614 } 1615 } 1616 1617 if (sbi->s_features & ZONEFS_F_GID) { 1618 sbi->s_gid = make_kgid(current_user_ns(), 1619 le32_to_cpu(super->s_gid)); 1620 if (!gid_valid(sbi->s_gid)) { 1621 zonefs_err(sb, "Invalid GID feature\n"); 1622 goto unmap; 1623 } 1624 } 1625 1626 if (sbi->s_features & ZONEFS_F_PERM) 1627 sbi->s_perm = le32_to_cpu(super->s_perm); 1628 1629 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1630 zonefs_err(sb, "Reserved area is being used\n"); 1631 goto unmap; 1632 } 1633 1634 import_uuid(&sbi->s_uuid, super->s_uuid); 1635 ret = 0; 1636 1637 unmap: 1638 kunmap(page); 1639 free_page: 1640 __free_page(page); 1641 1642 return ret; 1643 } 1644 1645 /* 1646 * Check that the device is zoned. If it is, get the list of zones and create 1647 * sub-directories and files according to the device zone configuration and 1648 * format options. 1649 */ 1650 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1651 { 1652 struct zonefs_zone_data zd; 1653 struct zonefs_sb_info *sbi; 1654 struct inode *inode; 1655 enum zonefs_ztype t; 1656 int ret; 1657 1658 if (!bdev_is_zoned(sb->s_bdev)) { 1659 zonefs_err(sb, "Not a zoned block device\n"); 1660 return -EINVAL; 1661 } 1662 1663 /* 1664 * Initialize super block information: the maximum file size is updated 1665 * when the zone files are created so that the format option 1666 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1667 * beyond the zone size is taken into account. 1668 */ 1669 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1670 if (!sbi) 1671 return -ENOMEM; 1672 1673 spin_lock_init(&sbi->s_lock); 1674 sb->s_fs_info = sbi; 1675 sb->s_magic = ZONEFS_MAGIC; 1676 sb->s_maxbytes = 0; 1677 sb->s_op = &zonefs_sops; 1678 sb->s_time_gran = 1; 1679 1680 /* 1681 * The block size is set to the device zone write granularity to ensure 1682 * that write operations are always aligned according to the device 1683 * interface constraints. 1684 */ 1685 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1686 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1687 sbi->s_uid = GLOBAL_ROOT_UID; 1688 sbi->s_gid = GLOBAL_ROOT_GID; 1689 sbi->s_perm = 0640; 1690 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1691 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1692 atomic_set(&sbi->s_open_zones, 0); 1693 if (!sbi->s_max_open_zones && 1694 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1695 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1696 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1697 } 1698 1699 ret = zonefs_read_super(sb); 1700 if (ret) 1701 return ret; 1702 1703 ret = zonefs_parse_options(sb, data); 1704 if (ret) 1705 return ret; 1706 1707 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1708 zd.sb = sb; 1709 ret = zonefs_get_zone_info(&zd); 1710 if (ret) 1711 goto cleanup; 1712 1713 zonefs_info(sb, "Mounting %u zones", 1714 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1715 1716 /* Create root directory inode */ 1717 ret = -ENOMEM; 1718 inode = new_inode(sb); 1719 if (!inode) 1720 goto cleanup; 1721 1722 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1723 inode->i_mode = S_IFDIR | 0555; 1724 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1725 inode->i_op = &zonefs_dir_inode_operations; 1726 inode->i_fop = &simple_dir_operations; 1727 set_nlink(inode, 2); 1728 1729 sb->s_root = d_make_root(inode); 1730 if (!sb->s_root) 1731 goto cleanup; 1732 1733 /* Create and populate files in zone groups directories */ 1734 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1735 ret = zonefs_create_zgroup(&zd, t); 1736 if (ret) 1737 break; 1738 } 1739 1740 cleanup: 1741 zonefs_cleanup_zone_info(&zd); 1742 1743 return ret; 1744 } 1745 1746 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1747 int flags, const char *dev_name, void *data) 1748 { 1749 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1750 } 1751 1752 static void zonefs_kill_super(struct super_block *sb) 1753 { 1754 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1755 1756 if (sb->s_root) 1757 d_genocide(sb->s_root); 1758 kill_block_super(sb); 1759 kfree(sbi); 1760 } 1761 1762 /* 1763 * File system definition and registration. 1764 */ 1765 static struct file_system_type zonefs_type = { 1766 .owner = THIS_MODULE, 1767 .name = "zonefs", 1768 .mount = zonefs_mount, 1769 .kill_sb = zonefs_kill_super, 1770 .fs_flags = FS_REQUIRES_DEV, 1771 }; 1772 1773 static int __init zonefs_init_inodecache(void) 1774 { 1775 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1776 sizeof(struct zonefs_inode_info), 0, 1777 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1778 NULL); 1779 if (zonefs_inode_cachep == NULL) 1780 return -ENOMEM; 1781 return 0; 1782 } 1783 1784 static void zonefs_destroy_inodecache(void) 1785 { 1786 /* 1787 * Make sure all delayed rcu free inodes are flushed before we 1788 * destroy the inode cache. 1789 */ 1790 rcu_barrier(); 1791 kmem_cache_destroy(zonefs_inode_cachep); 1792 } 1793 1794 static int __init zonefs_init(void) 1795 { 1796 int ret; 1797 1798 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1799 1800 ret = zonefs_init_inodecache(); 1801 if (ret) 1802 return ret; 1803 1804 ret = register_filesystem(&zonefs_type); 1805 if (ret) { 1806 zonefs_destroy_inodecache(); 1807 return ret; 1808 } 1809 1810 return 0; 1811 } 1812 1813 static void __exit zonefs_exit(void) 1814 { 1815 zonefs_destroy_inodecache(); 1816 unregister_filesystem(&zonefs_type); 1817 } 1818 1819 MODULE_AUTHOR("Damien Le Moal"); 1820 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1821 MODULE_LICENSE("GPL"); 1822 MODULE_ALIAS_FS("zonefs"); 1823 module_init(zonefs_init); 1824 module_exit(zonefs_exit); 1825