xref: /openbmc/linux/fs/zonefs/super.c (revision 83c4a4ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 				   enum req_opf op)
29 {
30 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 	int ret;
32 
33 	lockdep_assert_held(&zi->i_truncate_mutex);
34 
35 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
36 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
37 	if (ret) {
38 		zonefs_err(inode->i_sb,
39 			   "Zone management operation %s at %llu failed %d\n",
40 			   blk_op_str(op), zi->i_zsector, ret);
41 		return ret;
42 	}
43 
44 	return 0;
45 }
46 
47 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
48 {
49 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
50 
51 	i_size_write(inode, isize);
52 	/*
53 	 * A full zone is no longer open/active and does not need
54 	 * explicit closing.
55 	 */
56 	if (isize >= zi->i_max_size)
57 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
58 }
59 
60 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
61 			      unsigned int flags, struct iomap *iomap,
62 			      struct iomap *srcmap)
63 {
64 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 	struct super_block *sb = inode->i_sb;
66 	loff_t isize;
67 
68 	/* All I/Os should always be within the file maximum size */
69 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
70 		return -EIO;
71 
72 	/*
73 	 * Sequential zones can only accept direct writes. This is already
74 	 * checked when writes are issued, so warn if we see a page writeback
75 	 * operation.
76 	 */
77 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
78 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
79 		return -EIO;
80 
81 	/*
82 	 * For conventional zones, all blocks are always mapped. For sequential
83 	 * zones, all blocks after always mapped below the inode size (zone
84 	 * write pointer) and unwriten beyond.
85 	 */
86 	mutex_lock(&zi->i_truncate_mutex);
87 	isize = i_size_read(inode);
88 	if (offset >= isize)
89 		iomap->type = IOMAP_UNWRITTEN;
90 	else
91 		iomap->type = IOMAP_MAPPED;
92 	if (flags & IOMAP_WRITE)
93 		length = zi->i_max_size - offset;
94 	else
95 		length = min(length, isize - offset);
96 	mutex_unlock(&zi->i_truncate_mutex);
97 
98 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
99 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
100 	iomap->bdev = inode->i_sb->s_bdev;
101 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
102 
103 	return 0;
104 }
105 
106 static const struct iomap_ops zonefs_iomap_ops = {
107 	.iomap_begin	= zonefs_iomap_begin,
108 };
109 
110 static int zonefs_readpage(struct file *unused, struct page *page)
111 {
112 	return iomap_readpage(page, &zonefs_iomap_ops);
113 }
114 
115 static void zonefs_readahead(struct readahead_control *rac)
116 {
117 	iomap_readahead(rac, &zonefs_iomap_ops);
118 }
119 
120 /*
121  * Map blocks for page writeback. This is used only on conventional zone files,
122  * which implies that the page range can only be within the fixed inode size.
123  */
124 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
125 			     struct inode *inode, loff_t offset)
126 {
127 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
128 
129 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
130 		return -EIO;
131 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
132 		return -EIO;
133 
134 	/* If the mapping is already OK, nothing needs to be done */
135 	if (offset >= wpc->iomap.offset &&
136 	    offset < wpc->iomap.offset + wpc->iomap.length)
137 		return 0;
138 
139 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
140 				  IOMAP_WRITE, &wpc->iomap, NULL);
141 }
142 
143 static const struct iomap_writeback_ops zonefs_writeback_ops = {
144 	.map_blocks		= zonefs_map_blocks,
145 };
146 
147 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
148 {
149 	struct iomap_writepage_ctx wpc = { };
150 
151 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
152 }
153 
154 static int zonefs_writepages(struct address_space *mapping,
155 			     struct writeback_control *wbc)
156 {
157 	struct iomap_writepage_ctx wpc = { };
158 
159 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
160 }
161 
162 static const struct address_space_operations zonefs_file_aops = {
163 	.readpage		= zonefs_readpage,
164 	.readahead		= zonefs_readahead,
165 	.writepage		= zonefs_writepage,
166 	.writepages		= zonefs_writepages,
167 	.set_page_dirty		= iomap_set_page_dirty,
168 	.releasepage		= iomap_releasepage,
169 	.invalidatepage		= iomap_invalidatepage,
170 	.migratepage		= iomap_migrate_page,
171 	.is_partially_uptodate	= iomap_is_partially_uptodate,
172 	.error_remove_page	= generic_error_remove_page,
173 	.direct_IO		= noop_direct_IO,
174 };
175 
176 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
177 {
178 	struct super_block *sb = inode->i_sb;
179 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
180 	loff_t old_isize = i_size_read(inode);
181 	loff_t nr_blocks;
182 
183 	if (new_isize == old_isize)
184 		return;
185 
186 	spin_lock(&sbi->s_lock);
187 
188 	/*
189 	 * This may be called for an update after an IO error.
190 	 * So beware of the values seen.
191 	 */
192 	if (new_isize < old_isize) {
193 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
194 		if (sbi->s_used_blocks > nr_blocks)
195 			sbi->s_used_blocks -= nr_blocks;
196 		else
197 			sbi->s_used_blocks = 0;
198 	} else {
199 		sbi->s_used_blocks +=
200 			(new_isize - old_isize) >> sb->s_blocksize_bits;
201 		if (sbi->s_used_blocks > sbi->s_blocks)
202 			sbi->s_used_blocks = sbi->s_blocks;
203 	}
204 
205 	spin_unlock(&sbi->s_lock);
206 }
207 
208 /*
209  * Check a zone condition and adjust its file inode access permissions for
210  * offline and readonly zones. Return the inode size corresponding to the
211  * amount of readable data in the zone.
212  */
213 static loff_t zonefs_check_zone_condition(struct inode *inode,
214 					  struct blk_zone *zone, bool warn,
215 					  bool mount)
216 {
217 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
218 
219 	switch (zone->cond) {
220 	case BLK_ZONE_COND_OFFLINE:
221 		/*
222 		 * Dead zone: make the inode immutable, disable all accesses
223 		 * and set the file size to 0 (zone wp set to zone start).
224 		 */
225 		if (warn)
226 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
227 				    inode->i_ino);
228 		inode->i_flags |= S_IMMUTABLE;
229 		inode->i_mode &= ~0777;
230 		zone->wp = zone->start;
231 		return 0;
232 	case BLK_ZONE_COND_READONLY:
233 		/*
234 		 * The write pointer of read-only zones is invalid. If such a
235 		 * zone is found during mount, the file size cannot be retrieved
236 		 * so we treat the zone as offline (mount == true case).
237 		 * Otherwise, keep the file size as it was when last updated
238 		 * so that the user can recover data. In both cases, writes are
239 		 * always disabled for the zone.
240 		 */
241 		if (warn)
242 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
243 				    inode->i_ino);
244 		inode->i_flags |= S_IMMUTABLE;
245 		if (mount) {
246 			zone->cond = BLK_ZONE_COND_OFFLINE;
247 			inode->i_mode &= ~0777;
248 			zone->wp = zone->start;
249 			return 0;
250 		}
251 		inode->i_mode &= ~0222;
252 		return i_size_read(inode);
253 	default:
254 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
255 			return zi->i_max_size;
256 		return (zone->wp - zone->start) << SECTOR_SHIFT;
257 	}
258 }
259 
260 struct zonefs_ioerr_data {
261 	struct inode	*inode;
262 	bool		write;
263 };
264 
265 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
266 			      void *data)
267 {
268 	struct zonefs_ioerr_data *err = data;
269 	struct inode *inode = err->inode;
270 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
271 	struct super_block *sb = inode->i_sb;
272 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
273 	loff_t isize, data_size;
274 
275 	/*
276 	 * Check the zone condition: if the zone is not "bad" (offline or
277 	 * read-only), read errors are simply signaled to the IO issuer as long
278 	 * as there is no inconsistency between the inode size and the amount of
279 	 * data writen in the zone (data_size).
280 	 */
281 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
282 	isize = i_size_read(inode);
283 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
284 	    zone->cond != BLK_ZONE_COND_READONLY &&
285 	    !err->write && isize == data_size)
286 		return 0;
287 
288 	/*
289 	 * At this point, we detected either a bad zone or an inconsistency
290 	 * between the inode size and the amount of data written in the zone.
291 	 * For the latter case, the cause may be a write IO error or an external
292 	 * action on the device. Two error patterns exist:
293 	 * 1) The inode size is lower than the amount of data in the zone:
294 	 *    a write operation partially failed and data was writen at the end
295 	 *    of the file. This can happen in the case of a large direct IO
296 	 *    needing several BIOs and/or write requests to be processed.
297 	 * 2) The inode size is larger than the amount of data in the zone:
298 	 *    this can happen with a deferred write error with the use of the
299 	 *    device side write cache after getting successful write IO
300 	 *    completions. Other possibilities are (a) an external corruption,
301 	 *    e.g. an application reset the zone directly, or (b) the device
302 	 *    has a serious problem (e.g. firmware bug).
303 	 *
304 	 * In all cases, warn about inode size inconsistency and handle the
305 	 * IO error according to the zone condition and to the mount options.
306 	 */
307 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
308 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
309 			    inode->i_ino, isize, data_size);
310 
311 	/*
312 	 * First handle bad zones signaled by hardware. The mount options
313 	 * errors=zone-ro and errors=zone-offline result in changing the
314 	 * zone condition to read-only and offline respectively, as if the
315 	 * condition was signaled by the hardware.
316 	 */
317 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
318 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
319 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
320 			    inode->i_ino);
321 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
322 			zone->cond = BLK_ZONE_COND_OFFLINE;
323 			data_size = zonefs_check_zone_condition(inode, zone,
324 								false, false);
325 		}
326 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
327 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
328 		zonefs_warn(sb, "inode %lu: write access disabled\n",
329 			    inode->i_ino);
330 		if (zone->cond != BLK_ZONE_COND_READONLY) {
331 			zone->cond = BLK_ZONE_COND_READONLY;
332 			data_size = zonefs_check_zone_condition(inode, zone,
333 								false, false);
334 		}
335 	}
336 
337 	/*
338 	 * If the filesystem is mounted with the explicit-open mount option, we
339 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
340 	 * the read-only or offline condition, to avoid attempting an explicit
341 	 * close of the zone when the inode file is closed.
342 	 */
343 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
344 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
345 	     zone->cond == BLK_ZONE_COND_READONLY))
346 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
347 
348 	/*
349 	 * If error=remount-ro was specified, any error result in remounting
350 	 * the volume as read-only.
351 	 */
352 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
353 		zonefs_warn(sb, "remounting filesystem read-only\n");
354 		sb->s_flags |= SB_RDONLY;
355 	}
356 
357 	/*
358 	 * Update block usage stats and the inode size  to prevent access to
359 	 * invalid data.
360 	 */
361 	zonefs_update_stats(inode, data_size);
362 	zonefs_i_size_write(inode, data_size);
363 	zi->i_wpoffset = data_size;
364 
365 	return 0;
366 }
367 
368 /*
369  * When an file IO error occurs, check the file zone to see if there is a change
370  * in the zone condition (e.g. offline or read-only). For a failed write to a
371  * sequential zone, the zone write pointer position must also be checked to
372  * eventually correct the file size and zonefs inode write pointer offset
373  * (which can be out of sync with the drive due to partial write failures).
374  */
375 static void __zonefs_io_error(struct inode *inode, bool write)
376 {
377 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
378 	struct super_block *sb = inode->i_sb;
379 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
380 	unsigned int noio_flag;
381 	unsigned int nr_zones =
382 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
383 	struct zonefs_ioerr_data err = {
384 		.inode = inode,
385 		.write = write,
386 	};
387 	int ret;
388 
389 	/*
390 	 * Memory allocations in blkdev_report_zones() can trigger a memory
391 	 * reclaim which may in turn cause a recursion into zonefs as well as
392 	 * struct request allocations for the same device. The former case may
393 	 * end up in a deadlock on the inode truncate mutex, while the latter
394 	 * may prevent IO forward progress. Executing the report zones under
395 	 * the GFP_NOIO context avoids both problems.
396 	 */
397 	noio_flag = memalloc_noio_save();
398 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
399 				  zonefs_io_error_cb, &err);
400 	if (ret != nr_zones)
401 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
402 			   inode->i_ino, ret);
403 	memalloc_noio_restore(noio_flag);
404 }
405 
406 static void zonefs_io_error(struct inode *inode, bool write)
407 {
408 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
409 
410 	mutex_lock(&zi->i_truncate_mutex);
411 	__zonefs_io_error(inode, write);
412 	mutex_unlock(&zi->i_truncate_mutex);
413 }
414 
415 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
416 {
417 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
418 	loff_t old_isize;
419 	enum req_opf op;
420 	int ret = 0;
421 
422 	/*
423 	 * Only sequential zone files can be truncated and truncation is allowed
424 	 * only down to a 0 size, which is equivalent to a zone reset, and to
425 	 * the maximum file size, which is equivalent to a zone finish.
426 	 */
427 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
428 		return -EPERM;
429 
430 	if (!isize)
431 		op = REQ_OP_ZONE_RESET;
432 	else if (isize == zi->i_max_size)
433 		op = REQ_OP_ZONE_FINISH;
434 	else
435 		return -EPERM;
436 
437 	inode_dio_wait(inode);
438 
439 	/* Serialize against page faults */
440 	down_write(&zi->i_mmap_sem);
441 
442 	/* Serialize against zonefs_iomap_begin() */
443 	mutex_lock(&zi->i_truncate_mutex);
444 
445 	old_isize = i_size_read(inode);
446 	if (isize == old_isize)
447 		goto unlock;
448 
449 	ret = zonefs_zone_mgmt(inode, op);
450 	if (ret)
451 		goto unlock;
452 
453 	/*
454 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
455 	 * take care of open zones.
456 	 */
457 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
458 		/*
459 		 * Truncating a zone to EMPTY or FULL is the equivalent of
460 		 * closing the zone. For a truncation to 0, we need to
461 		 * re-open the zone to ensure new writes can be processed.
462 		 * For a truncation to the maximum file size, the zone is
463 		 * closed and writes cannot be accepted anymore, so clear
464 		 * the open flag.
465 		 */
466 		if (!isize)
467 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
468 		else
469 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
470 	}
471 
472 	zonefs_update_stats(inode, isize);
473 	truncate_setsize(inode, isize);
474 	zi->i_wpoffset = isize;
475 
476 unlock:
477 	mutex_unlock(&zi->i_truncate_mutex);
478 	up_write(&zi->i_mmap_sem);
479 
480 	return ret;
481 }
482 
483 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
484 {
485 	struct inode *inode = d_inode(dentry);
486 	int ret;
487 
488 	if (unlikely(IS_IMMUTABLE(inode)))
489 		return -EPERM;
490 
491 	ret = setattr_prepare(dentry, iattr);
492 	if (ret)
493 		return ret;
494 
495 	/*
496 	 * Since files and directories cannot be created nor deleted, do not
497 	 * allow setting any write attributes on the sub-directories grouping
498 	 * files by zone type.
499 	 */
500 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
501 	    (iattr->ia_mode & 0222))
502 		return -EPERM;
503 
504 	if (((iattr->ia_valid & ATTR_UID) &&
505 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
506 	    ((iattr->ia_valid & ATTR_GID) &&
507 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
508 		ret = dquot_transfer(inode, iattr);
509 		if (ret)
510 			return ret;
511 	}
512 
513 	if (iattr->ia_valid & ATTR_SIZE) {
514 		ret = zonefs_file_truncate(inode, iattr->ia_size);
515 		if (ret)
516 			return ret;
517 	}
518 
519 	setattr_copy(inode, iattr);
520 
521 	return 0;
522 }
523 
524 static const struct inode_operations zonefs_file_inode_operations = {
525 	.setattr	= zonefs_inode_setattr,
526 };
527 
528 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
529 			     int datasync)
530 {
531 	struct inode *inode = file_inode(file);
532 	int ret = 0;
533 
534 	if (unlikely(IS_IMMUTABLE(inode)))
535 		return -EPERM;
536 
537 	/*
538 	 * Since only direct writes are allowed in sequential files, page cache
539 	 * flush is needed only for conventional zone files.
540 	 */
541 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
542 		ret = file_write_and_wait_range(file, start, end);
543 	if (!ret)
544 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
545 
546 	if (ret)
547 		zonefs_io_error(inode, true);
548 
549 	return ret;
550 }
551 
552 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
553 {
554 	struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
555 	vm_fault_t ret;
556 
557 	down_read(&zi->i_mmap_sem);
558 	ret = filemap_fault(vmf);
559 	up_read(&zi->i_mmap_sem);
560 
561 	return ret;
562 }
563 
564 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
565 {
566 	struct inode *inode = file_inode(vmf->vma->vm_file);
567 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
568 	vm_fault_t ret;
569 
570 	if (unlikely(IS_IMMUTABLE(inode)))
571 		return VM_FAULT_SIGBUS;
572 
573 	/*
574 	 * Sanity check: only conventional zone files can have shared
575 	 * writeable mappings.
576 	 */
577 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
578 		return VM_FAULT_NOPAGE;
579 
580 	sb_start_pagefault(inode->i_sb);
581 	file_update_time(vmf->vma->vm_file);
582 
583 	/* Serialize against truncates */
584 	down_read(&zi->i_mmap_sem);
585 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
586 	up_read(&zi->i_mmap_sem);
587 
588 	sb_end_pagefault(inode->i_sb);
589 	return ret;
590 }
591 
592 static const struct vm_operations_struct zonefs_file_vm_ops = {
593 	.fault		= zonefs_filemap_fault,
594 	.map_pages	= filemap_map_pages,
595 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
596 };
597 
598 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
599 {
600 	/*
601 	 * Conventional zones accept random writes, so their files can support
602 	 * shared writable mappings. For sequential zone files, only read
603 	 * mappings are possible since there are no guarantees for write
604 	 * ordering between msync() and page cache writeback.
605 	 */
606 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
607 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
608 		return -EINVAL;
609 
610 	file_accessed(file);
611 	vma->vm_ops = &zonefs_file_vm_ops;
612 
613 	return 0;
614 }
615 
616 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
617 {
618 	loff_t isize = i_size_read(file_inode(file));
619 
620 	/*
621 	 * Seeks are limited to below the zone size for conventional zones
622 	 * and below the zone write pointer for sequential zones. In both
623 	 * cases, this limit is the inode size.
624 	 */
625 	return generic_file_llseek_size(file, offset, whence, isize, isize);
626 }
627 
628 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
629 					int error, unsigned int flags)
630 {
631 	struct inode *inode = file_inode(iocb->ki_filp);
632 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
633 
634 	if (error) {
635 		zonefs_io_error(inode, true);
636 		return error;
637 	}
638 
639 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
640 		/*
641 		 * Note that we may be seeing completions out of order,
642 		 * but that is not a problem since a write completed
643 		 * successfully necessarily means that all preceding writes
644 		 * were also successful. So we can safely increase the inode
645 		 * size to the write end location.
646 		 */
647 		mutex_lock(&zi->i_truncate_mutex);
648 		if (i_size_read(inode) < iocb->ki_pos + size) {
649 			zonefs_update_stats(inode, iocb->ki_pos + size);
650 			zonefs_i_size_write(inode, iocb->ki_pos + size);
651 		}
652 		mutex_unlock(&zi->i_truncate_mutex);
653 	}
654 
655 	return 0;
656 }
657 
658 static const struct iomap_dio_ops zonefs_write_dio_ops = {
659 	.end_io			= zonefs_file_write_dio_end_io,
660 };
661 
662 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
663 {
664 	struct inode *inode = file_inode(iocb->ki_filp);
665 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
666 	struct block_device *bdev = inode->i_sb->s_bdev;
667 	unsigned int max;
668 	struct bio *bio;
669 	ssize_t size;
670 	int nr_pages;
671 	ssize_t ret;
672 
673 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
674 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
675 	iov_iter_truncate(from, max);
676 
677 	nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
678 	if (!nr_pages)
679 		return 0;
680 
681 	bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
682 	if (!bio)
683 		return -ENOMEM;
684 
685 	bio_set_dev(bio, bdev);
686 	bio->bi_iter.bi_sector = zi->i_zsector;
687 	bio->bi_write_hint = iocb->ki_hint;
688 	bio->bi_ioprio = iocb->ki_ioprio;
689 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
690 	if (iocb->ki_flags & IOCB_DSYNC)
691 		bio->bi_opf |= REQ_FUA;
692 
693 	ret = bio_iov_iter_get_pages(bio, from);
694 	if (unlikely(ret))
695 		goto out_release;
696 
697 	size = bio->bi_iter.bi_size;
698 	task_io_account_write(size);
699 
700 	if (iocb->ki_flags & IOCB_HIPRI)
701 		bio_set_polled(bio, iocb);
702 
703 	ret = submit_bio_wait(bio);
704 
705 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
706 
707 out_release:
708 	bio_release_pages(bio, false);
709 	bio_put(bio);
710 
711 	if (ret >= 0) {
712 		iocb->ki_pos += size;
713 		return size;
714 	}
715 
716 	return ret;
717 }
718 
719 /*
720  * Handle direct writes. For sequential zone files, this is the only possible
721  * write path. For these files, check that the user is issuing writes
722  * sequentially from the end of the file. This code assumes that the block layer
723  * delivers write requests to the device in sequential order. This is always the
724  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
725  * elevator feature is being used (e.g. mq-deadline). The block layer always
726  * automatically select such an elevator for zoned block devices during the
727  * device initialization.
728  */
729 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
730 {
731 	struct inode *inode = file_inode(iocb->ki_filp);
732 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
733 	struct super_block *sb = inode->i_sb;
734 	bool sync = is_sync_kiocb(iocb);
735 	bool append = false;
736 	size_t count;
737 	ssize_t ret;
738 
739 	/*
740 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
741 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
742 	 * on the inode lock but the second goes through but is now unaligned).
743 	 */
744 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
745 	    (iocb->ki_flags & IOCB_NOWAIT))
746 		return -EOPNOTSUPP;
747 
748 	if (iocb->ki_flags & IOCB_NOWAIT) {
749 		if (!inode_trylock(inode))
750 			return -EAGAIN;
751 	} else {
752 		inode_lock(inode);
753 	}
754 
755 	ret = generic_write_checks(iocb, from);
756 	if (ret <= 0)
757 		goto inode_unlock;
758 
759 	iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
760 	count = iov_iter_count(from);
761 
762 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
763 		ret = -EINVAL;
764 		goto inode_unlock;
765 	}
766 
767 	/* Enforce sequential writes (append only) in sequential zones */
768 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
769 		mutex_lock(&zi->i_truncate_mutex);
770 		if (iocb->ki_pos != zi->i_wpoffset) {
771 			mutex_unlock(&zi->i_truncate_mutex);
772 			ret = -EINVAL;
773 			goto inode_unlock;
774 		}
775 		mutex_unlock(&zi->i_truncate_mutex);
776 		append = sync;
777 	}
778 
779 	if (append)
780 		ret = zonefs_file_dio_append(iocb, from);
781 	else
782 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
783 				   &zonefs_write_dio_ops, sync);
784 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
785 	    (ret > 0 || ret == -EIOCBQUEUED)) {
786 		if (ret > 0)
787 			count = ret;
788 		mutex_lock(&zi->i_truncate_mutex);
789 		zi->i_wpoffset += count;
790 		mutex_unlock(&zi->i_truncate_mutex);
791 	}
792 
793 inode_unlock:
794 	inode_unlock(inode);
795 
796 	return ret;
797 }
798 
799 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
800 					  struct iov_iter *from)
801 {
802 	struct inode *inode = file_inode(iocb->ki_filp);
803 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
804 	ssize_t ret;
805 
806 	/*
807 	 * Direct IO writes are mandatory for sequential zone files so that the
808 	 * write IO issuing order is preserved.
809 	 */
810 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
811 		return -EIO;
812 
813 	if (iocb->ki_flags & IOCB_NOWAIT) {
814 		if (!inode_trylock(inode))
815 			return -EAGAIN;
816 	} else {
817 		inode_lock(inode);
818 	}
819 
820 	ret = generic_write_checks(iocb, from);
821 	if (ret <= 0)
822 		goto inode_unlock;
823 
824 	iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
825 
826 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
827 	if (ret > 0)
828 		iocb->ki_pos += ret;
829 	else if (ret == -EIO)
830 		zonefs_io_error(inode, true);
831 
832 inode_unlock:
833 	inode_unlock(inode);
834 	if (ret > 0)
835 		ret = generic_write_sync(iocb, ret);
836 
837 	return ret;
838 }
839 
840 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
841 {
842 	struct inode *inode = file_inode(iocb->ki_filp);
843 
844 	if (unlikely(IS_IMMUTABLE(inode)))
845 		return -EPERM;
846 
847 	if (sb_rdonly(inode->i_sb))
848 		return -EROFS;
849 
850 	/* Write operations beyond the zone size are not allowed */
851 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
852 		return -EFBIG;
853 
854 	if (iocb->ki_flags & IOCB_DIRECT) {
855 		ssize_t ret = zonefs_file_dio_write(iocb, from);
856 		if (ret != -ENOTBLK)
857 			return ret;
858 	}
859 
860 	return zonefs_file_buffered_write(iocb, from);
861 }
862 
863 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
864 				       int error, unsigned int flags)
865 {
866 	if (error) {
867 		zonefs_io_error(file_inode(iocb->ki_filp), false);
868 		return error;
869 	}
870 
871 	return 0;
872 }
873 
874 static const struct iomap_dio_ops zonefs_read_dio_ops = {
875 	.end_io			= zonefs_file_read_dio_end_io,
876 };
877 
878 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
879 {
880 	struct inode *inode = file_inode(iocb->ki_filp);
881 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
882 	struct super_block *sb = inode->i_sb;
883 	loff_t isize;
884 	ssize_t ret;
885 
886 	/* Offline zones cannot be read */
887 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
888 		return -EPERM;
889 
890 	if (iocb->ki_pos >= zi->i_max_size)
891 		return 0;
892 
893 	if (iocb->ki_flags & IOCB_NOWAIT) {
894 		if (!inode_trylock_shared(inode))
895 			return -EAGAIN;
896 	} else {
897 		inode_lock_shared(inode);
898 	}
899 
900 	/* Limit read operations to written data */
901 	mutex_lock(&zi->i_truncate_mutex);
902 	isize = i_size_read(inode);
903 	if (iocb->ki_pos >= isize) {
904 		mutex_unlock(&zi->i_truncate_mutex);
905 		ret = 0;
906 		goto inode_unlock;
907 	}
908 	iov_iter_truncate(to, isize - iocb->ki_pos);
909 	mutex_unlock(&zi->i_truncate_mutex);
910 
911 	if (iocb->ki_flags & IOCB_DIRECT) {
912 		size_t count = iov_iter_count(to);
913 
914 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
915 			ret = -EINVAL;
916 			goto inode_unlock;
917 		}
918 		file_accessed(iocb->ki_filp);
919 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
920 				   &zonefs_read_dio_ops, is_sync_kiocb(iocb));
921 	} else {
922 		ret = generic_file_read_iter(iocb, to);
923 		if (ret == -EIO)
924 			zonefs_io_error(inode, false);
925 	}
926 
927 inode_unlock:
928 	inode_unlock_shared(inode);
929 
930 	return ret;
931 }
932 
933 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
934 {
935 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
936 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
937 
938 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
939 		return false;
940 
941 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
942 		return false;
943 
944 	if (!(file->f_mode & FMODE_WRITE))
945 		return false;
946 
947 	return true;
948 }
949 
950 static int zonefs_open_zone(struct inode *inode)
951 {
952 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
953 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
954 	int ret = 0;
955 
956 	mutex_lock(&zi->i_truncate_mutex);
957 
958 	zi->i_wr_refcnt++;
959 	if (zi->i_wr_refcnt == 1) {
960 
961 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
962 			atomic_dec(&sbi->s_open_zones);
963 			ret = -EBUSY;
964 			goto unlock;
965 		}
966 
967 		if (i_size_read(inode) < zi->i_max_size) {
968 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
969 			if (ret) {
970 				zi->i_wr_refcnt--;
971 				atomic_dec(&sbi->s_open_zones);
972 				goto unlock;
973 			}
974 			zi->i_flags |= ZONEFS_ZONE_OPEN;
975 		}
976 	}
977 
978 unlock:
979 	mutex_unlock(&zi->i_truncate_mutex);
980 
981 	return ret;
982 }
983 
984 static int zonefs_file_open(struct inode *inode, struct file *file)
985 {
986 	int ret;
987 
988 	ret = generic_file_open(inode, file);
989 	if (ret)
990 		return ret;
991 
992 	if (zonefs_file_use_exp_open(inode, file))
993 		return zonefs_open_zone(inode);
994 
995 	return 0;
996 }
997 
998 static void zonefs_close_zone(struct inode *inode)
999 {
1000 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1001 	int ret = 0;
1002 
1003 	mutex_lock(&zi->i_truncate_mutex);
1004 	zi->i_wr_refcnt--;
1005 	if (!zi->i_wr_refcnt) {
1006 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1007 		struct super_block *sb = inode->i_sb;
1008 
1009 		/*
1010 		 * If the file zone is full, it is not open anymore and we only
1011 		 * need to decrement the open count.
1012 		 */
1013 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1014 			goto dec;
1015 
1016 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1017 		if (ret) {
1018 			__zonefs_io_error(inode, false);
1019 			/*
1020 			 * Leaving zones explicitly open may lead to a state
1021 			 * where most zones cannot be written (zone resources
1022 			 * exhausted). So take preventive action by remounting
1023 			 * read-only.
1024 			 */
1025 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1026 			    !(sb->s_flags & SB_RDONLY)) {
1027 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1028 				sb->s_flags |= SB_RDONLY;
1029 			}
1030 		}
1031 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1032 dec:
1033 		atomic_dec(&sbi->s_open_zones);
1034 	}
1035 	mutex_unlock(&zi->i_truncate_mutex);
1036 }
1037 
1038 static int zonefs_file_release(struct inode *inode, struct file *file)
1039 {
1040 	/*
1041 	 * If we explicitly open a zone we must close it again as well, but the
1042 	 * zone management operation can fail (either due to an IO error or as
1043 	 * the zone has gone offline or read-only). Make sure we don't fail the
1044 	 * close(2) for user-space.
1045 	 */
1046 	if (zonefs_file_use_exp_open(inode, file))
1047 		zonefs_close_zone(inode);
1048 
1049 	return 0;
1050 }
1051 
1052 static const struct file_operations zonefs_file_operations = {
1053 	.open		= zonefs_file_open,
1054 	.release	= zonefs_file_release,
1055 	.fsync		= zonefs_file_fsync,
1056 	.mmap		= zonefs_file_mmap,
1057 	.llseek		= zonefs_file_llseek,
1058 	.read_iter	= zonefs_file_read_iter,
1059 	.write_iter	= zonefs_file_write_iter,
1060 	.splice_read	= generic_file_splice_read,
1061 	.splice_write	= iter_file_splice_write,
1062 	.iopoll		= iomap_dio_iopoll,
1063 };
1064 
1065 static struct kmem_cache *zonefs_inode_cachep;
1066 
1067 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1068 {
1069 	struct zonefs_inode_info *zi;
1070 
1071 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1072 	if (!zi)
1073 		return NULL;
1074 
1075 	inode_init_once(&zi->i_vnode);
1076 	mutex_init(&zi->i_truncate_mutex);
1077 	init_rwsem(&zi->i_mmap_sem);
1078 	zi->i_wr_refcnt = 0;
1079 
1080 	return &zi->i_vnode;
1081 }
1082 
1083 static void zonefs_free_inode(struct inode *inode)
1084 {
1085 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1086 }
1087 
1088 /*
1089  * File system stat.
1090  */
1091 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1092 {
1093 	struct super_block *sb = dentry->d_sb;
1094 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1095 	enum zonefs_ztype t;
1096 	u64 fsid;
1097 
1098 	buf->f_type = ZONEFS_MAGIC;
1099 	buf->f_bsize = sb->s_blocksize;
1100 	buf->f_namelen = ZONEFS_NAME_MAX;
1101 
1102 	spin_lock(&sbi->s_lock);
1103 
1104 	buf->f_blocks = sbi->s_blocks;
1105 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1106 		buf->f_bfree = 0;
1107 	else
1108 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1109 	buf->f_bavail = buf->f_bfree;
1110 
1111 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1112 		if (sbi->s_nr_files[t])
1113 			buf->f_files += sbi->s_nr_files[t] + 1;
1114 	}
1115 	buf->f_ffree = 0;
1116 
1117 	spin_unlock(&sbi->s_lock);
1118 
1119 	fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1120 		le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1121 	buf->f_fsid = u64_to_fsid(fsid);
1122 
1123 	return 0;
1124 }
1125 
1126 enum {
1127 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1128 	Opt_explicit_open, Opt_err,
1129 };
1130 
1131 static const match_table_t tokens = {
1132 	{ Opt_errors_ro,	"errors=remount-ro"},
1133 	{ Opt_errors_zro,	"errors=zone-ro"},
1134 	{ Opt_errors_zol,	"errors=zone-offline"},
1135 	{ Opt_errors_repair,	"errors=repair"},
1136 	{ Opt_explicit_open,	"explicit-open" },
1137 	{ Opt_err,		NULL}
1138 };
1139 
1140 static int zonefs_parse_options(struct super_block *sb, char *options)
1141 {
1142 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1143 	substring_t args[MAX_OPT_ARGS];
1144 	char *p;
1145 
1146 	if (!options)
1147 		return 0;
1148 
1149 	while ((p = strsep(&options, ",")) != NULL) {
1150 		int token;
1151 
1152 		if (!*p)
1153 			continue;
1154 
1155 		token = match_token(p, tokens, args);
1156 		switch (token) {
1157 		case Opt_errors_ro:
1158 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1159 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1160 			break;
1161 		case Opt_errors_zro:
1162 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1163 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1164 			break;
1165 		case Opt_errors_zol:
1166 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1167 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1168 			break;
1169 		case Opt_errors_repair:
1170 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1171 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1172 			break;
1173 		case Opt_explicit_open:
1174 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1175 			break;
1176 		default:
1177 			return -EINVAL;
1178 		}
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1185 {
1186 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1187 
1188 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1189 		seq_puts(seq, ",errors=remount-ro");
1190 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1191 		seq_puts(seq, ",errors=zone-ro");
1192 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1193 		seq_puts(seq, ",errors=zone-offline");
1194 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1195 		seq_puts(seq, ",errors=repair");
1196 
1197 	return 0;
1198 }
1199 
1200 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1201 {
1202 	sync_filesystem(sb);
1203 
1204 	return zonefs_parse_options(sb, data);
1205 }
1206 
1207 static const struct super_operations zonefs_sops = {
1208 	.alloc_inode	= zonefs_alloc_inode,
1209 	.free_inode	= zonefs_free_inode,
1210 	.statfs		= zonefs_statfs,
1211 	.remount_fs	= zonefs_remount,
1212 	.show_options	= zonefs_show_options,
1213 };
1214 
1215 static const struct inode_operations zonefs_dir_inode_operations = {
1216 	.lookup		= simple_lookup,
1217 	.setattr	= zonefs_inode_setattr,
1218 };
1219 
1220 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1221 				  enum zonefs_ztype type)
1222 {
1223 	struct super_block *sb = parent->i_sb;
1224 
1225 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1226 	inode_init_owner(inode, parent, S_IFDIR | 0555);
1227 	inode->i_op = &zonefs_dir_inode_operations;
1228 	inode->i_fop = &simple_dir_operations;
1229 	set_nlink(inode, 2);
1230 	inc_nlink(parent);
1231 }
1232 
1233 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1234 				   enum zonefs_ztype type)
1235 {
1236 	struct super_block *sb = inode->i_sb;
1237 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1238 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1239 
1240 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1241 	inode->i_mode = S_IFREG | sbi->s_perm;
1242 
1243 	zi->i_ztype = type;
1244 	zi->i_zsector = zone->start;
1245 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1246 
1247 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1248 			       zone->capacity << SECTOR_SHIFT);
1249 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1250 
1251 	inode->i_uid = sbi->s_uid;
1252 	inode->i_gid = sbi->s_gid;
1253 	inode->i_size = zi->i_wpoffset;
1254 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1255 
1256 	inode->i_op = &zonefs_file_inode_operations;
1257 	inode->i_fop = &zonefs_file_operations;
1258 	inode->i_mapping->a_ops = &zonefs_file_aops;
1259 
1260 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1261 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1262 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1263 }
1264 
1265 static struct dentry *zonefs_create_inode(struct dentry *parent,
1266 					const char *name, struct blk_zone *zone,
1267 					enum zonefs_ztype type)
1268 {
1269 	struct inode *dir = d_inode(parent);
1270 	struct dentry *dentry;
1271 	struct inode *inode;
1272 
1273 	dentry = d_alloc_name(parent, name);
1274 	if (!dentry)
1275 		return NULL;
1276 
1277 	inode = new_inode(parent->d_sb);
1278 	if (!inode)
1279 		goto dput;
1280 
1281 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1282 	if (zone)
1283 		zonefs_init_file_inode(inode, zone, type);
1284 	else
1285 		zonefs_init_dir_inode(dir, inode, type);
1286 	d_add(dentry, inode);
1287 	dir->i_size++;
1288 
1289 	return dentry;
1290 
1291 dput:
1292 	dput(dentry);
1293 
1294 	return NULL;
1295 }
1296 
1297 struct zonefs_zone_data {
1298 	struct super_block	*sb;
1299 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1300 	struct blk_zone		*zones;
1301 };
1302 
1303 /*
1304  * Create a zone group and populate it with zone files.
1305  */
1306 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1307 				enum zonefs_ztype type)
1308 {
1309 	struct super_block *sb = zd->sb;
1310 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1311 	struct blk_zone *zone, *next, *end;
1312 	const char *zgroup_name;
1313 	char *file_name;
1314 	struct dentry *dir;
1315 	unsigned int n = 0;
1316 	int ret;
1317 
1318 	/* If the group is empty, there is nothing to do */
1319 	if (!zd->nr_zones[type])
1320 		return 0;
1321 
1322 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1323 	if (!file_name)
1324 		return -ENOMEM;
1325 
1326 	if (type == ZONEFS_ZTYPE_CNV)
1327 		zgroup_name = "cnv";
1328 	else
1329 		zgroup_name = "seq";
1330 
1331 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1332 	if (!dir) {
1333 		ret = -ENOMEM;
1334 		goto free;
1335 	}
1336 
1337 	/*
1338 	 * The first zone contains the super block: skip it.
1339 	 */
1340 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1341 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1342 
1343 		next = zone + 1;
1344 		if (zonefs_zone_type(zone) != type)
1345 			continue;
1346 
1347 		/*
1348 		 * For conventional zones, contiguous zones can be aggregated
1349 		 * together to form larger files. Note that this overwrites the
1350 		 * length of the first zone of the set of contiguous zones
1351 		 * aggregated together. If one offline or read-only zone is
1352 		 * found, assume that all zones aggregated have the same
1353 		 * condition.
1354 		 */
1355 		if (type == ZONEFS_ZTYPE_CNV &&
1356 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1357 			for (; next < end; next++) {
1358 				if (zonefs_zone_type(next) != type)
1359 					break;
1360 				zone->len += next->len;
1361 				zone->capacity += next->capacity;
1362 				if (next->cond == BLK_ZONE_COND_READONLY &&
1363 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1364 					zone->cond = BLK_ZONE_COND_READONLY;
1365 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1366 					zone->cond = BLK_ZONE_COND_OFFLINE;
1367 			}
1368 			if (zone->capacity != zone->len) {
1369 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1370 				ret = -EINVAL;
1371 				goto free;
1372 			}
1373 		}
1374 
1375 		/*
1376 		 * Use the file number within its group as file name.
1377 		 */
1378 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1379 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1380 			ret = -ENOMEM;
1381 			goto free;
1382 		}
1383 
1384 		n++;
1385 	}
1386 
1387 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1388 		    zgroup_name, n, n > 1 ? "s" : "");
1389 
1390 	sbi->s_nr_files[type] = n;
1391 	ret = 0;
1392 
1393 free:
1394 	kfree(file_name);
1395 
1396 	return ret;
1397 }
1398 
1399 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1400 				   void *data)
1401 {
1402 	struct zonefs_zone_data *zd = data;
1403 
1404 	/*
1405 	 * Count the number of usable zones: the first zone at index 0 contains
1406 	 * the super block and is ignored.
1407 	 */
1408 	switch (zone->type) {
1409 	case BLK_ZONE_TYPE_CONVENTIONAL:
1410 		zone->wp = zone->start + zone->len;
1411 		if (idx)
1412 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1413 		break;
1414 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1415 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1416 		if (idx)
1417 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1418 		break;
1419 	default:
1420 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1421 			   zone->type);
1422 		return -EIO;
1423 	}
1424 
1425 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1426 
1427 	return 0;
1428 }
1429 
1430 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1431 {
1432 	struct block_device *bdev = zd->sb->s_bdev;
1433 	int ret;
1434 
1435 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1436 			     sizeof(struct blk_zone), GFP_KERNEL);
1437 	if (!zd->zones)
1438 		return -ENOMEM;
1439 
1440 	/* Get zones information from the device */
1441 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1442 				  zonefs_get_zone_info_cb, zd);
1443 	if (ret < 0) {
1444 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1445 		return ret;
1446 	}
1447 
1448 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1449 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1450 			   ret, blkdev_nr_zones(bdev->bd_disk));
1451 		return -EIO;
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1458 {
1459 	kvfree(zd->zones);
1460 }
1461 
1462 /*
1463  * Read super block information from the device.
1464  */
1465 static int zonefs_read_super(struct super_block *sb)
1466 {
1467 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1468 	struct zonefs_super *super;
1469 	u32 crc, stored_crc;
1470 	struct page *page;
1471 	struct bio_vec bio_vec;
1472 	struct bio bio;
1473 	int ret;
1474 
1475 	page = alloc_page(GFP_KERNEL);
1476 	if (!page)
1477 		return -ENOMEM;
1478 
1479 	bio_init(&bio, &bio_vec, 1);
1480 	bio.bi_iter.bi_sector = 0;
1481 	bio.bi_opf = REQ_OP_READ;
1482 	bio_set_dev(&bio, sb->s_bdev);
1483 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1484 
1485 	ret = submit_bio_wait(&bio);
1486 	if (ret)
1487 		goto free_page;
1488 
1489 	super = kmap(page);
1490 
1491 	ret = -EINVAL;
1492 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1493 		goto unmap;
1494 
1495 	stored_crc = le32_to_cpu(super->s_crc);
1496 	super->s_crc = 0;
1497 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1498 	if (crc != stored_crc) {
1499 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1500 			   crc, stored_crc);
1501 		goto unmap;
1502 	}
1503 
1504 	sbi->s_features = le64_to_cpu(super->s_features);
1505 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1506 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1507 			   sbi->s_features);
1508 		goto unmap;
1509 	}
1510 
1511 	if (sbi->s_features & ZONEFS_F_UID) {
1512 		sbi->s_uid = make_kuid(current_user_ns(),
1513 				       le32_to_cpu(super->s_uid));
1514 		if (!uid_valid(sbi->s_uid)) {
1515 			zonefs_err(sb, "Invalid UID feature\n");
1516 			goto unmap;
1517 		}
1518 	}
1519 
1520 	if (sbi->s_features & ZONEFS_F_GID) {
1521 		sbi->s_gid = make_kgid(current_user_ns(),
1522 				       le32_to_cpu(super->s_gid));
1523 		if (!gid_valid(sbi->s_gid)) {
1524 			zonefs_err(sb, "Invalid GID feature\n");
1525 			goto unmap;
1526 		}
1527 	}
1528 
1529 	if (sbi->s_features & ZONEFS_F_PERM)
1530 		sbi->s_perm = le32_to_cpu(super->s_perm);
1531 
1532 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1533 		zonefs_err(sb, "Reserved area is being used\n");
1534 		goto unmap;
1535 	}
1536 
1537 	import_uuid(&sbi->s_uuid, super->s_uuid);
1538 	ret = 0;
1539 
1540 unmap:
1541 	kunmap(page);
1542 free_page:
1543 	__free_page(page);
1544 
1545 	return ret;
1546 }
1547 
1548 /*
1549  * Check that the device is zoned. If it is, get the list of zones and create
1550  * sub-directories and files according to the device zone configuration and
1551  * format options.
1552  */
1553 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1554 {
1555 	struct zonefs_zone_data zd;
1556 	struct zonefs_sb_info *sbi;
1557 	struct inode *inode;
1558 	enum zonefs_ztype t;
1559 	int ret;
1560 
1561 	if (!bdev_is_zoned(sb->s_bdev)) {
1562 		zonefs_err(sb, "Not a zoned block device\n");
1563 		return -EINVAL;
1564 	}
1565 
1566 	/*
1567 	 * Initialize super block information: the maximum file size is updated
1568 	 * when the zone files are created so that the format option
1569 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1570 	 * beyond the zone size is taken into account.
1571 	 */
1572 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1573 	if (!sbi)
1574 		return -ENOMEM;
1575 
1576 	spin_lock_init(&sbi->s_lock);
1577 	sb->s_fs_info = sbi;
1578 	sb->s_magic = ZONEFS_MAGIC;
1579 	sb->s_maxbytes = 0;
1580 	sb->s_op = &zonefs_sops;
1581 	sb->s_time_gran	= 1;
1582 
1583 	/*
1584 	 * The block size is set to the device physical sector size to ensure
1585 	 * that write operations on 512e devices (512B logical block and 4KB
1586 	 * physical block) are always aligned to the device physical blocks,
1587 	 * as mandated by the ZBC/ZAC specifications.
1588 	 */
1589 	sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1590 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1591 	sbi->s_uid = GLOBAL_ROOT_UID;
1592 	sbi->s_gid = GLOBAL_ROOT_GID;
1593 	sbi->s_perm = 0640;
1594 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1595 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1596 	atomic_set(&sbi->s_open_zones, 0);
1597 	if (!sbi->s_max_open_zones &&
1598 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1599 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1600 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1601 	}
1602 
1603 	ret = zonefs_read_super(sb);
1604 	if (ret)
1605 		return ret;
1606 
1607 	ret = zonefs_parse_options(sb, data);
1608 	if (ret)
1609 		return ret;
1610 
1611 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1612 	zd.sb = sb;
1613 	ret = zonefs_get_zone_info(&zd);
1614 	if (ret)
1615 		goto cleanup;
1616 
1617 	zonefs_info(sb, "Mounting %u zones",
1618 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1619 
1620 	/* Create root directory inode */
1621 	ret = -ENOMEM;
1622 	inode = new_inode(sb);
1623 	if (!inode)
1624 		goto cleanup;
1625 
1626 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1627 	inode->i_mode = S_IFDIR | 0555;
1628 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1629 	inode->i_op = &zonefs_dir_inode_operations;
1630 	inode->i_fop = &simple_dir_operations;
1631 	set_nlink(inode, 2);
1632 
1633 	sb->s_root = d_make_root(inode);
1634 	if (!sb->s_root)
1635 		goto cleanup;
1636 
1637 	/* Create and populate files in zone groups directories */
1638 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1639 		ret = zonefs_create_zgroup(&zd, t);
1640 		if (ret)
1641 			break;
1642 	}
1643 
1644 cleanup:
1645 	zonefs_cleanup_zone_info(&zd);
1646 
1647 	return ret;
1648 }
1649 
1650 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1651 				   int flags, const char *dev_name, void *data)
1652 {
1653 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1654 }
1655 
1656 static void zonefs_kill_super(struct super_block *sb)
1657 {
1658 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1659 
1660 	if (sb->s_root)
1661 		d_genocide(sb->s_root);
1662 	kill_block_super(sb);
1663 	kfree(sbi);
1664 }
1665 
1666 /*
1667  * File system definition and registration.
1668  */
1669 static struct file_system_type zonefs_type = {
1670 	.owner		= THIS_MODULE,
1671 	.name		= "zonefs",
1672 	.mount		= zonefs_mount,
1673 	.kill_sb	= zonefs_kill_super,
1674 	.fs_flags	= FS_REQUIRES_DEV,
1675 };
1676 
1677 static int __init zonefs_init_inodecache(void)
1678 {
1679 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1680 			sizeof(struct zonefs_inode_info), 0,
1681 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1682 			NULL);
1683 	if (zonefs_inode_cachep == NULL)
1684 		return -ENOMEM;
1685 	return 0;
1686 }
1687 
1688 static void zonefs_destroy_inodecache(void)
1689 {
1690 	/*
1691 	 * Make sure all delayed rcu free inodes are flushed before we
1692 	 * destroy the inode cache.
1693 	 */
1694 	rcu_barrier();
1695 	kmem_cache_destroy(zonefs_inode_cachep);
1696 }
1697 
1698 static int __init zonefs_init(void)
1699 {
1700 	int ret;
1701 
1702 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1703 
1704 	ret = zonefs_init_inodecache();
1705 	if (ret)
1706 		return ret;
1707 
1708 	ret = register_filesystem(&zonefs_type);
1709 	if (ret) {
1710 		zonefs_destroy_inodecache();
1711 		return ret;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static void __exit zonefs_exit(void)
1718 {
1719 	zonefs_destroy_inodecache();
1720 	unregister_filesystem(&zonefs_type);
1721 }
1722 
1723 MODULE_AUTHOR("Damien Le Moal");
1724 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1725 MODULE_LICENSE("GPL");
1726 module_init(zonefs_init);
1727 module_exit(zonefs_exit);
1728