1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 24 #include "zonefs.h" 25 26 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 27 unsigned int flags, struct iomap *iomap, 28 struct iomap *srcmap) 29 { 30 struct zonefs_inode_info *zi = ZONEFS_I(inode); 31 struct super_block *sb = inode->i_sb; 32 loff_t isize; 33 34 /* All I/Os should always be within the file maximum size */ 35 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 36 return -EIO; 37 38 /* 39 * Sequential zones can only accept direct writes. This is already 40 * checked when writes are issued, so warn if we see a page writeback 41 * operation. 42 */ 43 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 44 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 45 return -EIO; 46 47 /* 48 * For conventional zones, all blocks are always mapped. For sequential 49 * zones, all blocks after always mapped below the inode size (zone 50 * write pointer) and unwriten beyond. 51 */ 52 mutex_lock(&zi->i_truncate_mutex); 53 isize = i_size_read(inode); 54 if (offset >= isize) 55 iomap->type = IOMAP_UNWRITTEN; 56 else 57 iomap->type = IOMAP_MAPPED; 58 if (flags & IOMAP_WRITE) 59 length = zi->i_max_size - offset; 60 else 61 length = min(length, isize - offset); 62 mutex_unlock(&zi->i_truncate_mutex); 63 64 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 65 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 66 iomap->bdev = inode->i_sb->s_bdev; 67 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 68 69 return 0; 70 } 71 72 static const struct iomap_ops zonefs_iomap_ops = { 73 .iomap_begin = zonefs_iomap_begin, 74 }; 75 76 static int zonefs_readpage(struct file *unused, struct page *page) 77 { 78 return iomap_readpage(page, &zonefs_iomap_ops); 79 } 80 81 static void zonefs_readahead(struct readahead_control *rac) 82 { 83 iomap_readahead(rac, &zonefs_iomap_ops); 84 } 85 86 /* 87 * Map blocks for page writeback. This is used only on conventional zone files, 88 * which implies that the page range can only be within the fixed inode size. 89 */ 90 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 91 struct inode *inode, loff_t offset) 92 { 93 struct zonefs_inode_info *zi = ZONEFS_I(inode); 94 95 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 96 return -EIO; 97 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 98 return -EIO; 99 100 /* If the mapping is already OK, nothing needs to be done */ 101 if (offset >= wpc->iomap.offset && 102 offset < wpc->iomap.offset + wpc->iomap.length) 103 return 0; 104 105 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 106 IOMAP_WRITE, &wpc->iomap, NULL); 107 } 108 109 static const struct iomap_writeback_ops zonefs_writeback_ops = { 110 .map_blocks = zonefs_map_blocks, 111 }; 112 113 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 114 { 115 struct iomap_writepage_ctx wpc = { }; 116 117 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 118 } 119 120 static int zonefs_writepages(struct address_space *mapping, 121 struct writeback_control *wbc) 122 { 123 struct iomap_writepage_ctx wpc = { }; 124 125 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 126 } 127 128 static const struct address_space_operations zonefs_file_aops = { 129 .readpage = zonefs_readpage, 130 .readahead = zonefs_readahead, 131 .writepage = zonefs_writepage, 132 .writepages = zonefs_writepages, 133 .set_page_dirty = iomap_set_page_dirty, 134 .releasepage = iomap_releasepage, 135 .invalidatepage = iomap_invalidatepage, 136 .migratepage = iomap_migrate_page, 137 .is_partially_uptodate = iomap_is_partially_uptodate, 138 .error_remove_page = generic_error_remove_page, 139 .direct_IO = noop_direct_IO, 140 }; 141 142 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 143 { 144 struct super_block *sb = inode->i_sb; 145 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 146 loff_t old_isize = i_size_read(inode); 147 loff_t nr_blocks; 148 149 if (new_isize == old_isize) 150 return; 151 152 spin_lock(&sbi->s_lock); 153 154 /* 155 * This may be called for an update after an IO error. 156 * So beware of the values seen. 157 */ 158 if (new_isize < old_isize) { 159 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 160 if (sbi->s_used_blocks > nr_blocks) 161 sbi->s_used_blocks -= nr_blocks; 162 else 163 sbi->s_used_blocks = 0; 164 } else { 165 sbi->s_used_blocks += 166 (new_isize - old_isize) >> sb->s_blocksize_bits; 167 if (sbi->s_used_blocks > sbi->s_blocks) 168 sbi->s_used_blocks = sbi->s_blocks; 169 } 170 171 spin_unlock(&sbi->s_lock); 172 } 173 174 /* 175 * Check a zone condition and adjust its file inode access permissions for 176 * offline and readonly zones. Return the inode size corresponding to the 177 * amount of readable data in the zone. 178 */ 179 static loff_t zonefs_check_zone_condition(struct inode *inode, 180 struct blk_zone *zone, bool warn, 181 bool mount) 182 { 183 struct zonefs_inode_info *zi = ZONEFS_I(inode); 184 185 switch (zone->cond) { 186 case BLK_ZONE_COND_OFFLINE: 187 /* 188 * Dead zone: make the inode immutable, disable all accesses 189 * and set the file size to 0 (zone wp set to zone start). 190 */ 191 if (warn) 192 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 193 inode->i_ino); 194 inode->i_flags |= S_IMMUTABLE; 195 inode->i_mode &= ~0777; 196 zone->wp = zone->start; 197 return 0; 198 case BLK_ZONE_COND_READONLY: 199 /* 200 * The write pointer of read-only zones is invalid. If such a 201 * zone is found during mount, the file size cannot be retrieved 202 * so we treat the zone as offline (mount == true case). 203 * Otherwise, keep the file size as it was when last updated 204 * so that the user can recover data. In both cases, writes are 205 * always disabled for the zone. 206 */ 207 if (warn) 208 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 209 inode->i_ino); 210 inode->i_flags |= S_IMMUTABLE; 211 if (mount) { 212 zone->cond = BLK_ZONE_COND_OFFLINE; 213 inode->i_mode &= ~0777; 214 zone->wp = zone->start; 215 return 0; 216 } 217 inode->i_mode &= ~0222; 218 return i_size_read(inode); 219 default: 220 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 221 return zi->i_max_size; 222 return (zone->wp - zone->start) << SECTOR_SHIFT; 223 } 224 } 225 226 struct zonefs_ioerr_data { 227 struct inode *inode; 228 bool write; 229 }; 230 231 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 232 void *data) 233 { 234 struct zonefs_ioerr_data *err = data; 235 struct inode *inode = err->inode; 236 struct zonefs_inode_info *zi = ZONEFS_I(inode); 237 struct super_block *sb = inode->i_sb; 238 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 239 loff_t isize, data_size; 240 241 /* 242 * Check the zone condition: if the zone is not "bad" (offline or 243 * read-only), read errors are simply signaled to the IO issuer as long 244 * as there is no inconsistency between the inode size and the amount of 245 * data writen in the zone (data_size). 246 */ 247 data_size = zonefs_check_zone_condition(inode, zone, true, false); 248 isize = i_size_read(inode); 249 if (zone->cond != BLK_ZONE_COND_OFFLINE && 250 zone->cond != BLK_ZONE_COND_READONLY && 251 !err->write && isize == data_size) 252 return 0; 253 254 /* 255 * At this point, we detected either a bad zone or an inconsistency 256 * between the inode size and the amount of data written in the zone. 257 * For the latter case, the cause may be a write IO error or an external 258 * action on the device. Two error patterns exist: 259 * 1) The inode size is lower than the amount of data in the zone: 260 * a write operation partially failed and data was writen at the end 261 * of the file. This can happen in the case of a large direct IO 262 * needing several BIOs and/or write requests to be processed. 263 * 2) The inode size is larger than the amount of data in the zone: 264 * this can happen with a deferred write error with the use of the 265 * device side write cache after getting successful write IO 266 * completions. Other possibilities are (a) an external corruption, 267 * e.g. an application reset the zone directly, or (b) the device 268 * has a serious problem (e.g. firmware bug). 269 * 270 * In all cases, warn about inode size inconsistency and handle the 271 * IO error according to the zone condition and to the mount options. 272 */ 273 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 274 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 275 inode->i_ino, isize, data_size); 276 277 /* 278 * First handle bad zones signaled by hardware. The mount options 279 * errors=zone-ro and errors=zone-offline result in changing the 280 * zone condition to read-only and offline respectively, as if the 281 * condition was signaled by the hardware. 282 */ 283 if (zone->cond == BLK_ZONE_COND_OFFLINE || 284 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 285 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 286 inode->i_ino); 287 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 288 zone->cond = BLK_ZONE_COND_OFFLINE; 289 data_size = zonefs_check_zone_condition(inode, zone, 290 false, false); 291 } 292 } else if (zone->cond == BLK_ZONE_COND_READONLY || 293 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 294 zonefs_warn(sb, "inode %lu: write access disabled\n", 295 inode->i_ino); 296 if (zone->cond != BLK_ZONE_COND_READONLY) { 297 zone->cond = BLK_ZONE_COND_READONLY; 298 data_size = zonefs_check_zone_condition(inode, zone, 299 false, false); 300 } 301 } 302 303 /* 304 * If error=remount-ro was specified, any error result in remounting 305 * the volume as read-only. 306 */ 307 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 308 zonefs_warn(sb, "remounting filesystem read-only\n"); 309 sb->s_flags |= SB_RDONLY; 310 } 311 312 /* 313 * Update block usage stats and the inode size to prevent access to 314 * invalid data. 315 */ 316 zonefs_update_stats(inode, data_size); 317 i_size_write(inode, data_size); 318 zi->i_wpoffset = data_size; 319 320 return 0; 321 } 322 323 /* 324 * When an file IO error occurs, check the file zone to see if there is a change 325 * in the zone condition (e.g. offline or read-only). For a failed write to a 326 * sequential zone, the zone write pointer position must also be checked to 327 * eventually correct the file size and zonefs inode write pointer offset 328 * (which can be out of sync with the drive due to partial write failures). 329 */ 330 static void zonefs_io_error(struct inode *inode, bool write) 331 { 332 struct zonefs_inode_info *zi = ZONEFS_I(inode); 333 struct super_block *sb = inode->i_sb; 334 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 335 unsigned int noio_flag; 336 unsigned int nr_zones = 337 zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 338 struct zonefs_ioerr_data err = { 339 .inode = inode, 340 .write = write, 341 }; 342 int ret; 343 344 mutex_lock(&zi->i_truncate_mutex); 345 346 /* 347 * Memory allocations in blkdev_report_zones() can trigger a memory 348 * reclaim which may in turn cause a recursion into zonefs as well as 349 * struct request allocations for the same device. The former case may 350 * end up in a deadlock on the inode truncate mutex, while the latter 351 * may prevent IO forward progress. Executing the report zones under 352 * the GFP_NOIO context avoids both problems. 353 */ 354 noio_flag = memalloc_noio_save(); 355 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 356 zonefs_io_error_cb, &err); 357 if (ret != nr_zones) 358 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 359 inode->i_ino, ret); 360 memalloc_noio_restore(noio_flag); 361 362 mutex_unlock(&zi->i_truncate_mutex); 363 } 364 365 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 366 { 367 struct zonefs_inode_info *zi = ZONEFS_I(inode); 368 loff_t old_isize; 369 enum req_opf op; 370 int ret = 0; 371 372 /* 373 * Only sequential zone files can be truncated and truncation is allowed 374 * only down to a 0 size, which is equivalent to a zone reset, and to 375 * the maximum file size, which is equivalent to a zone finish. 376 */ 377 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 378 return -EPERM; 379 380 if (!isize) 381 op = REQ_OP_ZONE_RESET; 382 else if (isize == zi->i_max_size) 383 op = REQ_OP_ZONE_FINISH; 384 else 385 return -EPERM; 386 387 inode_dio_wait(inode); 388 389 /* Serialize against page faults */ 390 down_write(&zi->i_mmap_sem); 391 392 /* Serialize against zonefs_iomap_begin() */ 393 mutex_lock(&zi->i_truncate_mutex); 394 395 old_isize = i_size_read(inode); 396 if (isize == old_isize) 397 goto unlock; 398 399 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 400 zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS); 401 if (ret) { 402 zonefs_err(inode->i_sb, 403 "Zone management operation at %llu failed %d", 404 zi->i_zsector, ret); 405 goto unlock; 406 } 407 408 zonefs_update_stats(inode, isize); 409 truncate_setsize(inode, isize); 410 zi->i_wpoffset = isize; 411 412 unlock: 413 mutex_unlock(&zi->i_truncate_mutex); 414 up_write(&zi->i_mmap_sem); 415 416 return ret; 417 } 418 419 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr) 420 { 421 struct inode *inode = d_inode(dentry); 422 int ret; 423 424 if (unlikely(IS_IMMUTABLE(inode))) 425 return -EPERM; 426 427 ret = setattr_prepare(dentry, iattr); 428 if (ret) 429 return ret; 430 431 /* 432 * Since files and directories cannot be created nor deleted, do not 433 * allow setting any write attributes on the sub-directories grouping 434 * files by zone type. 435 */ 436 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 437 (iattr->ia_mode & 0222)) 438 return -EPERM; 439 440 if (((iattr->ia_valid & ATTR_UID) && 441 !uid_eq(iattr->ia_uid, inode->i_uid)) || 442 ((iattr->ia_valid & ATTR_GID) && 443 !gid_eq(iattr->ia_gid, inode->i_gid))) { 444 ret = dquot_transfer(inode, iattr); 445 if (ret) 446 return ret; 447 } 448 449 if (iattr->ia_valid & ATTR_SIZE) { 450 ret = zonefs_file_truncate(inode, iattr->ia_size); 451 if (ret) 452 return ret; 453 } 454 455 setattr_copy(inode, iattr); 456 457 return 0; 458 } 459 460 static const struct inode_operations zonefs_file_inode_operations = { 461 .setattr = zonefs_inode_setattr, 462 }; 463 464 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 465 int datasync) 466 { 467 struct inode *inode = file_inode(file); 468 int ret = 0; 469 470 if (unlikely(IS_IMMUTABLE(inode))) 471 return -EPERM; 472 473 /* 474 * Since only direct writes are allowed in sequential files, page cache 475 * flush is needed only for conventional zone files. 476 */ 477 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 478 ret = file_write_and_wait_range(file, start, end); 479 if (!ret) 480 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 481 482 if (ret) 483 zonefs_io_error(inode, true); 484 485 return ret; 486 } 487 488 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 489 { 490 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 491 vm_fault_t ret; 492 493 down_read(&zi->i_mmap_sem); 494 ret = filemap_fault(vmf); 495 up_read(&zi->i_mmap_sem); 496 497 return ret; 498 } 499 500 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 501 { 502 struct inode *inode = file_inode(vmf->vma->vm_file); 503 struct zonefs_inode_info *zi = ZONEFS_I(inode); 504 vm_fault_t ret; 505 506 if (unlikely(IS_IMMUTABLE(inode))) 507 return VM_FAULT_SIGBUS; 508 509 /* 510 * Sanity check: only conventional zone files can have shared 511 * writeable mappings. 512 */ 513 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 514 return VM_FAULT_NOPAGE; 515 516 sb_start_pagefault(inode->i_sb); 517 file_update_time(vmf->vma->vm_file); 518 519 /* Serialize against truncates */ 520 down_read(&zi->i_mmap_sem); 521 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 522 up_read(&zi->i_mmap_sem); 523 524 sb_end_pagefault(inode->i_sb); 525 return ret; 526 } 527 528 static const struct vm_operations_struct zonefs_file_vm_ops = { 529 .fault = zonefs_filemap_fault, 530 .map_pages = filemap_map_pages, 531 .page_mkwrite = zonefs_filemap_page_mkwrite, 532 }; 533 534 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 535 { 536 /* 537 * Conventional zones accept random writes, so their files can support 538 * shared writable mappings. For sequential zone files, only read 539 * mappings are possible since there are no guarantees for write 540 * ordering between msync() and page cache writeback. 541 */ 542 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 543 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 544 return -EINVAL; 545 546 file_accessed(file); 547 vma->vm_ops = &zonefs_file_vm_ops; 548 549 return 0; 550 } 551 552 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 553 { 554 loff_t isize = i_size_read(file_inode(file)); 555 556 /* 557 * Seeks are limited to below the zone size for conventional zones 558 * and below the zone write pointer for sequential zones. In both 559 * cases, this limit is the inode size. 560 */ 561 return generic_file_llseek_size(file, offset, whence, isize, isize); 562 } 563 564 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 565 int error, unsigned int flags) 566 { 567 struct inode *inode = file_inode(iocb->ki_filp); 568 struct zonefs_inode_info *zi = ZONEFS_I(inode); 569 570 if (error) { 571 zonefs_io_error(inode, true); 572 return error; 573 } 574 575 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 576 /* 577 * Note that we may be seeing completions out of order, 578 * but that is not a problem since a write completed 579 * successfully necessarily means that all preceding writes 580 * were also successful. So we can safely increase the inode 581 * size to the write end location. 582 */ 583 mutex_lock(&zi->i_truncate_mutex); 584 if (i_size_read(inode) < iocb->ki_pos + size) { 585 zonefs_update_stats(inode, iocb->ki_pos + size); 586 i_size_write(inode, iocb->ki_pos + size); 587 } 588 mutex_unlock(&zi->i_truncate_mutex); 589 } 590 591 return 0; 592 } 593 594 static const struct iomap_dio_ops zonefs_write_dio_ops = { 595 .end_io = zonefs_file_write_dio_end_io, 596 }; 597 598 /* 599 * Handle direct writes. For sequential zone files, this is the only possible 600 * write path. For these files, check that the user is issuing writes 601 * sequentially from the end of the file. This code assumes that the block layer 602 * delivers write requests to the device in sequential order. This is always the 603 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 604 * elevator feature is being used (e.g. mq-deadline). The block layer always 605 * automatically select such an elevator for zoned block devices during the 606 * device initialization. 607 */ 608 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 609 { 610 struct inode *inode = file_inode(iocb->ki_filp); 611 struct zonefs_inode_info *zi = ZONEFS_I(inode); 612 struct super_block *sb = inode->i_sb; 613 size_t count; 614 ssize_t ret; 615 616 /* 617 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 618 * as this can cause write reordering (e.g. the first aio gets EAGAIN 619 * on the inode lock but the second goes through but is now unaligned). 620 */ 621 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !is_sync_kiocb(iocb) && 622 (iocb->ki_flags & IOCB_NOWAIT)) 623 return -EOPNOTSUPP; 624 625 if (iocb->ki_flags & IOCB_NOWAIT) { 626 if (!inode_trylock(inode)) 627 return -EAGAIN; 628 } else { 629 inode_lock(inode); 630 } 631 632 ret = generic_write_checks(iocb, from); 633 if (ret <= 0) 634 goto inode_unlock; 635 636 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 637 count = iov_iter_count(from); 638 639 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 640 ret = -EINVAL; 641 goto inode_unlock; 642 } 643 644 /* Enforce sequential writes (append only) in sequential zones */ 645 mutex_lock(&zi->i_truncate_mutex); 646 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && iocb->ki_pos != zi->i_wpoffset) { 647 mutex_unlock(&zi->i_truncate_mutex); 648 ret = -EINVAL; 649 goto inode_unlock; 650 } 651 mutex_unlock(&zi->i_truncate_mutex); 652 653 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 654 &zonefs_write_dio_ops, is_sync_kiocb(iocb)); 655 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 656 (ret > 0 || ret == -EIOCBQUEUED)) { 657 if (ret > 0) 658 count = ret; 659 mutex_lock(&zi->i_truncate_mutex); 660 zi->i_wpoffset += count; 661 mutex_unlock(&zi->i_truncate_mutex); 662 } 663 664 inode_unlock: 665 inode_unlock(inode); 666 667 return ret; 668 } 669 670 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 671 struct iov_iter *from) 672 { 673 struct inode *inode = file_inode(iocb->ki_filp); 674 struct zonefs_inode_info *zi = ZONEFS_I(inode); 675 ssize_t ret; 676 677 /* 678 * Direct IO writes are mandatory for sequential zone files so that the 679 * write IO issuing order is preserved. 680 */ 681 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 682 return -EIO; 683 684 if (iocb->ki_flags & IOCB_NOWAIT) { 685 if (!inode_trylock(inode)) 686 return -EAGAIN; 687 } else { 688 inode_lock(inode); 689 } 690 691 ret = generic_write_checks(iocb, from); 692 if (ret <= 0) 693 goto inode_unlock; 694 695 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 696 697 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 698 if (ret > 0) 699 iocb->ki_pos += ret; 700 else if (ret == -EIO) 701 zonefs_io_error(inode, true); 702 703 inode_unlock: 704 inode_unlock(inode); 705 if (ret > 0) 706 ret = generic_write_sync(iocb, ret); 707 708 return ret; 709 } 710 711 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 712 { 713 struct inode *inode = file_inode(iocb->ki_filp); 714 715 if (unlikely(IS_IMMUTABLE(inode))) 716 return -EPERM; 717 718 if (sb_rdonly(inode->i_sb)) 719 return -EROFS; 720 721 /* Write operations beyond the zone size are not allowed */ 722 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 723 return -EFBIG; 724 725 if (iocb->ki_flags & IOCB_DIRECT) 726 return zonefs_file_dio_write(iocb, from); 727 728 return zonefs_file_buffered_write(iocb, from); 729 } 730 731 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 732 int error, unsigned int flags) 733 { 734 if (error) { 735 zonefs_io_error(file_inode(iocb->ki_filp), false); 736 return error; 737 } 738 739 return 0; 740 } 741 742 static const struct iomap_dio_ops zonefs_read_dio_ops = { 743 .end_io = zonefs_file_read_dio_end_io, 744 }; 745 746 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 747 { 748 struct inode *inode = file_inode(iocb->ki_filp); 749 struct zonefs_inode_info *zi = ZONEFS_I(inode); 750 struct super_block *sb = inode->i_sb; 751 loff_t isize; 752 ssize_t ret; 753 754 /* Offline zones cannot be read */ 755 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 756 return -EPERM; 757 758 if (iocb->ki_pos >= zi->i_max_size) 759 return 0; 760 761 if (iocb->ki_flags & IOCB_NOWAIT) { 762 if (!inode_trylock_shared(inode)) 763 return -EAGAIN; 764 } else { 765 inode_lock_shared(inode); 766 } 767 768 /* Limit read operations to written data */ 769 mutex_lock(&zi->i_truncate_mutex); 770 isize = i_size_read(inode); 771 if (iocb->ki_pos >= isize) { 772 mutex_unlock(&zi->i_truncate_mutex); 773 ret = 0; 774 goto inode_unlock; 775 } 776 iov_iter_truncate(to, isize - iocb->ki_pos); 777 mutex_unlock(&zi->i_truncate_mutex); 778 779 if (iocb->ki_flags & IOCB_DIRECT) { 780 size_t count = iov_iter_count(to); 781 782 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 783 ret = -EINVAL; 784 goto inode_unlock; 785 } 786 file_accessed(iocb->ki_filp); 787 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 788 &zonefs_read_dio_ops, is_sync_kiocb(iocb)); 789 } else { 790 ret = generic_file_read_iter(iocb, to); 791 if (ret == -EIO) 792 zonefs_io_error(inode, false); 793 } 794 795 inode_unlock: 796 inode_unlock_shared(inode); 797 798 return ret; 799 } 800 801 static const struct file_operations zonefs_file_operations = { 802 .open = generic_file_open, 803 .fsync = zonefs_file_fsync, 804 .mmap = zonefs_file_mmap, 805 .llseek = zonefs_file_llseek, 806 .read_iter = zonefs_file_read_iter, 807 .write_iter = zonefs_file_write_iter, 808 .splice_read = generic_file_splice_read, 809 .splice_write = iter_file_splice_write, 810 .iopoll = iomap_dio_iopoll, 811 }; 812 813 static struct kmem_cache *zonefs_inode_cachep; 814 815 static struct inode *zonefs_alloc_inode(struct super_block *sb) 816 { 817 struct zonefs_inode_info *zi; 818 819 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 820 if (!zi) 821 return NULL; 822 823 inode_init_once(&zi->i_vnode); 824 mutex_init(&zi->i_truncate_mutex); 825 init_rwsem(&zi->i_mmap_sem); 826 827 return &zi->i_vnode; 828 } 829 830 static void zonefs_free_inode(struct inode *inode) 831 { 832 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 833 } 834 835 /* 836 * File system stat. 837 */ 838 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 839 { 840 struct super_block *sb = dentry->d_sb; 841 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 842 enum zonefs_ztype t; 843 u64 fsid; 844 845 buf->f_type = ZONEFS_MAGIC; 846 buf->f_bsize = sb->s_blocksize; 847 buf->f_namelen = ZONEFS_NAME_MAX; 848 849 spin_lock(&sbi->s_lock); 850 851 buf->f_blocks = sbi->s_blocks; 852 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 853 buf->f_bfree = 0; 854 else 855 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 856 buf->f_bavail = buf->f_bfree; 857 858 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 859 if (sbi->s_nr_files[t]) 860 buf->f_files += sbi->s_nr_files[t] + 1; 861 } 862 buf->f_ffree = 0; 863 864 spin_unlock(&sbi->s_lock); 865 866 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 867 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 868 buf->f_fsid.val[0] = (u32)fsid; 869 buf->f_fsid.val[1] = (u32)(fsid >> 32); 870 871 return 0; 872 } 873 874 enum { 875 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 876 Opt_err, 877 }; 878 879 static const match_table_t tokens = { 880 { Opt_errors_ro, "errors=remount-ro"}, 881 { Opt_errors_zro, "errors=zone-ro"}, 882 { Opt_errors_zol, "errors=zone-offline"}, 883 { Opt_errors_repair, "errors=repair"}, 884 { Opt_err, NULL} 885 }; 886 887 static int zonefs_parse_options(struct super_block *sb, char *options) 888 { 889 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 890 substring_t args[MAX_OPT_ARGS]; 891 char *p; 892 893 if (!options) 894 return 0; 895 896 while ((p = strsep(&options, ",")) != NULL) { 897 int token; 898 899 if (!*p) 900 continue; 901 902 token = match_token(p, tokens, args); 903 switch (token) { 904 case Opt_errors_ro: 905 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 906 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 907 break; 908 case Opt_errors_zro: 909 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 910 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 911 break; 912 case Opt_errors_zol: 913 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 914 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 915 break; 916 case Opt_errors_repair: 917 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 918 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 919 break; 920 default: 921 return -EINVAL; 922 } 923 } 924 925 return 0; 926 } 927 928 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 929 { 930 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 931 932 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 933 seq_puts(seq, ",errors=remount-ro"); 934 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 935 seq_puts(seq, ",errors=zone-ro"); 936 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 937 seq_puts(seq, ",errors=zone-offline"); 938 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 939 seq_puts(seq, ",errors=repair"); 940 941 return 0; 942 } 943 944 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 945 { 946 sync_filesystem(sb); 947 948 return zonefs_parse_options(sb, data); 949 } 950 951 static const struct super_operations zonefs_sops = { 952 .alloc_inode = zonefs_alloc_inode, 953 .free_inode = zonefs_free_inode, 954 .statfs = zonefs_statfs, 955 .remount_fs = zonefs_remount, 956 .show_options = zonefs_show_options, 957 }; 958 959 static const struct inode_operations zonefs_dir_inode_operations = { 960 .lookup = simple_lookup, 961 .setattr = zonefs_inode_setattr, 962 }; 963 964 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 965 enum zonefs_ztype type) 966 { 967 struct super_block *sb = parent->i_sb; 968 969 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 970 inode_init_owner(inode, parent, S_IFDIR | 0555); 971 inode->i_op = &zonefs_dir_inode_operations; 972 inode->i_fop = &simple_dir_operations; 973 set_nlink(inode, 2); 974 inc_nlink(parent); 975 } 976 977 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 978 enum zonefs_ztype type) 979 { 980 struct super_block *sb = inode->i_sb; 981 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 982 struct zonefs_inode_info *zi = ZONEFS_I(inode); 983 984 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 985 inode->i_mode = S_IFREG | sbi->s_perm; 986 987 zi->i_ztype = type; 988 zi->i_zsector = zone->start; 989 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 990 zone->len << SECTOR_SHIFT); 991 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 992 993 inode->i_uid = sbi->s_uid; 994 inode->i_gid = sbi->s_gid; 995 inode->i_size = zi->i_wpoffset; 996 inode->i_blocks = zone->len; 997 998 inode->i_op = &zonefs_file_inode_operations; 999 inode->i_fop = &zonefs_file_operations; 1000 inode->i_mapping->a_ops = &zonefs_file_aops; 1001 1002 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1003 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1004 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1005 } 1006 1007 static struct dentry *zonefs_create_inode(struct dentry *parent, 1008 const char *name, struct blk_zone *zone, 1009 enum zonefs_ztype type) 1010 { 1011 struct inode *dir = d_inode(parent); 1012 struct dentry *dentry; 1013 struct inode *inode; 1014 1015 dentry = d_alloc_name(parent, name); 1016 if (!dentry) 1017 return NULL; 1018 1019 inode = new_inode(parent->d_sb); 1020 if (!inode) 1021 goto dput; 1022 1023 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1024 if (zone) 1025 zonefs_init_file_inode(inode, zone, type); 1026 else 1027 zonefs_init_dir_inode(dir, inode, type); 1028 d_add(dentry, inode); 1029 dir->i_size++; 1030 1031 return dentry; 1032 1033 dput: 1034 dput(dentry); 1035 1036 return NULL; 1037 } 1038 1039 struct zonefs_zone_data { 1040 struct super_block *sb; 1041 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1042 struct blk_zone *zones; 1043 }; 1044 1045 /* 1046 * Create a zone group and populate it with zone files. 1047 */ 1048 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1049 enum zonefs_ztype type) 1050 { 1051 struct super_block *sb = zd->sb; 1052 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1053 struct blk_zone *zone, *next, *end; 1054 const char *zgroup_name; 1055 char *file_name; 1056 struct dentry *dir; 1057 unsigned int n = 0; 1058 int ret = -ENOMEM; 1059 1060 /* If the group is empty, there is nothing to do */ 1061 if (!zd->nr_zones[type]) 1062 return 0; 1063 1064 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1065 if (!file_name) 1066 return -ENOMEM; 1067 1068 if (type == ZONEFS_ZTYPE_CNV) 1069 zgroup_name = "cnv"; 1070 else 1071 zgroup_name = "seq"; 1072 1073 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1074 if (!dir) 1075 goto free; 1076 1077 /* 1078 * The first zone contains the super block: skip it. 1079 */ 1080 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1081 for (zone = &zd->zones[1]; zone < end; zone = next) { 1082 1083 next = zone + 1; 1084 if (zonefs_zone_type(zone) != type) 1085 continue; 1086 1087 /* 1088 * For conventional zones, contiguous zones can be aggregated 1089 * together to form larger files. Note that this overwrites the 1090 * length of the first zone of the set of contiguous zones 1091 * aggregated together. If one offline or read-only zone is 1092 * found, assume that all zones aggregated have the same 1093 * condition. 1094 */ 1095 if (type == ZONEFS_ZTYPE_CNV && 1096 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1097 for (; next < end; next++) { 1098 if (zonefs_zone_type(next) != type) 1099 break; 1100 zone->len += next->len; 1101 if (next->cond == BLK_ZONE_COND_READONLY && 1102 zone->cond != BLK_ZONE_COND_OFFLINE) 1103 zone->cond = BLK_ZONE_COND_READONLY; 1104 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1105 zone->cond = BLK_ZONE_COND_OFFLINE; 1106 } 1107 } 1108 1109 /* 1110 * Use the file number within its group as file name. 1111 */ 1112 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1113 if (!zonefs_create_inode(dir, file_name, zone, type)) 1114 goto free; 1115 1116 n++; 1117 } 1118 1119 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1120 zgroup_name, n, n > 1 ? "s" : ""); 1121 1122 sbi->s_nr_files[type] = n; 1123 ret = 0; 1124 1125 free: 1126 kfree(file_name); 1127 1128 return ret; 1129 } 1130 1131 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1132 void *data) 1133 { 1134 struct zonefs_zone_data *zd = data; 1135 1136 /* 1137 * Count the number of usable zones: the first zone at index 0 contains 1138 * the super block and is ignored. 1139 */ 1140 switch (zone->type) { 1141 case BLK_ZONE_TYPE_CONVENTIONAL: 1142 zone->wp = zone->start + zone->len; 1143 if (idx) 1144 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1145 break; 1146 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1147 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1148 if (idx) 1149 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1150 break; 1151 default: 1152 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1153 zone->type); 1154 return -EIO; 1155 } 1156 1157 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1158 1159 return 0; 1160 } 1161 1162 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1163 { 1164 struct block_device *bdev = zd->sb->s_bdev; 1165 int ret; 1166 1167 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1168 sizeof(struct blk_zone), GFP_KERNEL); 1169 if (!zd->zones) 1170 return -ENOMEM; 1171 1172 /* Get zones information from the device */ 1173 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1174 zonefs_get_zone_info_cb, zd); 1175 if (ret < 0) { 1176 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1177 return ret; 1178 } 1179 1180 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1181 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1182 ret, blkdev_nr_zones(bdev->bd_disk)); 1183 return -EIO; 1184 } 1185 1186 return 0; 1187 } 1188 1189 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1190 { 1191 kvfree(zd->zones); 1192 } 1193 1194 /* 1195 * Read super block information from the device. 1196 */ 1197 static int zonefs_read_super(struct super_block *sb) 1198 { 1199 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1200 struct zonefs_super *super; 1201 u32 crc, stored_crc; 1202 struct page *page; 1203 struct bio_vec bio_vec; 1204 struct bio bio; 1205 int ret; 1206 1207 page = alloc_page(GFP_KERNEL); 1208 if (!page) 1209 return -ENOMEM; 1210 1211 bio_init(&bio, &bio_vec, 1); 1212 bio.bi_iter.bi_sector = 0; 1213 bio.bi_opf = REQ_OP_READ; 1214 bio_set_dev(&bio, sb->s_bdev); 1215 bio_add_page(&bio, page, PAGE_SIZE, 0); 1216 1217 ret = submit_bio_wait(&bio); 1218 if (ret) 1219 goto free_page; 1220 1221 super = kmap(page); 1222 1223 ret = -EINVAL; 1224 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1225 goto unmap; 1226 1227 stored_crc = le32_to_cpu(super->s_crc); 1228 super->s_crc = 0; 1229 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1230 if (crc != stored_crc) { 1231 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1232 crc, stored_crc); 1233 goto unmap; 1234 } 1235 1236 sbi->s_features = le64_to_cpu(super->s_features); 1237 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1238 zonefs_err(sb, "Unknown features set 0x%llx\n", 1239 sbi->s_features); 1240 goto unmap; 1241 } 1242 1243 if (sbi->s_features & ZONEFS_F_UID) { 1244 sbi->s_uid = make_kuid(current_user_ns(), 1245 le32_to_cpu(super->s_uid)); 1246 if (!uid_valid(sbi->s_uid)) { 1247 zonefs_err(sb, "Invalid UID feature\n"); 1248 goto unmap; 1249 } 1250 } 1251 1252 if (sbi->s_features & ZONEFS_F_GID) { 1253 sbi->s_gid = make_kgid(current_user_ns(), 1254 le32_to_cpu(super->s_gid)); 1255 if (!gid_valid(sbi->s_gid)) { 1256 zonefs_err(sb, "Invalid GID feature\n"); 1257 goto unmap; 1258 } 1259 } 1260 1261 if (sbi->s_features & ZONEFS_F_PERM) 1262 sbi->s_perm = le32_to_cpu(super->s_perm); 1263 1264 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1265 zonefs_err(sb, "Reserved area is being used\n"); 1266 goto unmap; 1267 } 1268 1269 uuid_copy(&sbi->s_uuid, (uuid_t *)super->s_uuid); 1270 ret = 0; 1271 1272 unmap: 1273 kunmap(page); 1274 free_page: 1275 __free_page(page); 1276 1277 return ret; 1278 } 1279 1280 /* 1281 * Check that the device is zoned. If it is, get the list of zones and create 1282 * sub-directories and files according to the device zone configuration and 1283 * format options. 1284 */ 1285 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1286 { 1287 struct zonefs_zone_data zd; 1288 struct zonefs_sb_info *sbi; 1289 struct inode *inode; 1290 enum zonefs_ztype t; 1291 int ret; 1292 1293 if (!bdev_is_zoned(sb->s_bdev)) { 1294 zonefs_err(sb, "Not a zoned block device\n"); 1295 return -EINVAL; 1296 } 1297 1298 /* 1299 * Initialize super block information: the maximum file size is updated 1300 * when the zone files are created so that the format option 1301 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1302 * beyond the zone size is taken into account. 1303 */ 1304 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1305 if (!sbi) 1306 return -ENOMEM; 1307 1308 spin_lock_init(&sbi->s_lock); 1309 sb->s_fs_info = sbi; 1310 sb->s_magic = ZONEFS_MAGIC; 1311 sb->s_maxbytes = 0; 1312 sb->s_op = &zonefs_sops; 1313 sb->s_time_gran = 1; 1314 1315 /* 1316 * The block size is set to the device physical sector size to ensure 1317 * that write operations on 512e devices (512B logical block and 4KB 1318 * physical block) are always aligned to the device physical blocks, 1319 * as mandated by the ZBC/ZAC specifications. 1320 */ 1321 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev)); 1322 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1323 sbi->s_uid = GLOBAL_ROOT_UID; 1324 sbi->s_gid = GLOBAL_ROOT_GID; 1325 sbi->s_perm = 0640; 1326 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1327 1328 ret = zonefs_read_super(sb); 1329 if (ret) 1330 return ret; 1331 1332 ret = zonefs_parse_options(sb, data); 1333 if (ret) 1334 return ret; 1335 1336 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1337 zd.sb = sb; 1338 ret = zonefs_get_zone_info(&zd); 1339 if (ret) 1340 goto cleanup; 1341 1342 zonefs_info(sb, "Mounting %u zones", 1343 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1344 1345 /* Create root directory inode */ 1346 ret = -ENOMEM; 1347 inode = new_inode(sb); 1348 if (!inode) 1349 goto cleanup; 1350 1351 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1352 inode->i_mode = S_IFDIR | 0555; 1353 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1354 inode->i_op = &zonefs_dir_inode_operations; 1355 inode->i_fop = &simple_dir_operations; 1356 set_nlink(inode, 2); 1357 1358 sb->s_root = d_make_root(inode); 1359 if (!sb->s_root) 1360 goto cleanup; 1361 1362 /* Create and populate files in zone groups directories */ 1363 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1364 ret = zonefs_create_zgroup(&zd, t); 1365 if (ret) 1366 break; 1367 } 1368 1369 cleanup: 1370 zonefs_cleanup_zone_info(&zd); 1371 1372 return ret; 1373 } 1374 1375 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1376 int flags, const char *dev_name, void *data) 1377 { 1378 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1379 } 1380 1381 static void zonefs_kill_super(struct super_block *sb) 1382 { 1383 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1384 1385 if (sb->s_root) 1386 d_genocide(sb->s_root); 1387 kill_block_super(sb); 1388 kfree(sbi); 1389 } 1390 1391 /* 1392 * File system definition and registration. 1393 */ 1394 static struct file_system_type zonefs_type = { 1395 .owner = THIS_MODULE, 1396 .name = "zonefs", 1397 .mount = zonefs_mount, 1398 .kill_sb = zonefs_kill_super, 1399 .fs_flags = FS_REQUIRES_DEV, 1400 }; 1401 1402 static int __init zonefs_init_inodecache(void) 1403 { 1404 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1405 sizeof(struct zonefs_inode_info), 0, 1406 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1407 NULL); 1408 if (zonefs_inode_cachep == NULL) 1409 return -ENOMEM; 1410 return 0; 1411 } 1412 1413 static void zonefs_destroy_inodecache(void) 1414 { 1415 /* 1416 * Make sure all delayed rcu free inodes are flushed before we 1417 * destroy the inode cache. 1418 */ 1419 rcu_barrier(); 1420 kmem_cache_destroy(zonefs_inode_cachep); 1421 } 1422 1423 static int __init zonefs_init(void) 1424 { 1425 int ret; 1426 1427 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1428 1429 ret = zonefs_init_inodecache(); 1430 if (ret) 1431 return ret; 1432 1433 ret = register_filesystem(&zonefs_type); 1434 if (ret) { 1435 zonefs_destroy_inodecache(); 1436 return ret; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static void __exit zonefs_exit(void) 1443 { 1444 zonefs_destroy_inodecache(); 1445 unregister_filesystem(&zonefs_type); 1446 } 1447 1448 MODULE_AUTHOR("Damien Le Moal"); 1449 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1450 MODULE_LICENSE("GPL"); 1451 module_init(zonefs_init); 1452 module_exit(zonefs_exit); 1453