1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 trace_zonefs_zone_mgmt(inode, op); 39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 41 if (ret) { 42 zonefs_err(inode->i_sb, 43 "Zone management operation %s at %llu failed %d\n", 44 blk_op_str(op), zi->i_zsector, ret); 45 return ret; 46 } 47 48 return 0; 49 } 50 51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 52 { 53 struct zonefs_inode_info *zi = ZONEFS_I(inode); 54 55 i_size_write(inode, isize); 56 /* 57 * A full zone is no longer open/active and does not need 58 * explicit closing. 59 */ 60 if (isize >= zi->i_max_size) 61 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 62 } 63 64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 65 unsigned int flags, struct iomap *iomap, 66 struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct super_block *sb = inode->i_sb; 70 loff_t isize; 71 72 /* All I/Os should always be within the file maximum size */ 73 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 74 return -EIO; 75 76 /* 77 * Sequential zones can only accept direct writes. This is already 78 * checked when writes are issued, so warn if we see a page writeback 79 * operation. 80 */ 81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 isize = i_size_read(inode); 92 if (offset >= isize) 93 iomap->type = IOMAP_UNWRITTEN; 94 else 95 iomap->type = IOMAP_MAPPED; 96 if (flags & IOMAP_WRITE) 97 length = zi->i_max_size - offset; 98 else 99 length = min(length, isize - offset); 100 mutex_unlock(&zi->i_truncate_mutex); 101 102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 104 iomap->bdev = inode->i_sb->s_bdev; 105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 106 107 trace_zonefs_iomap_begin(inode, iomap); 108 109 return 0; 110 } 111 112 static const struct iomap_ops zonefs_iomap_ops = { 113 .iomap_begin = zonefs_iomap_begin, 114 }; 115 116 static int zonefs_readpage(struct file *unused, struct page *page) 117 { 118 return iomap_readpage(page, &zonefs_iomap_ops); 119 } 120 121 static void zonefs_readahead(struct readahead_control *rac) 122 { 123 iomap_readahead(rac, &zonefs_iomap_ops); 124 } 125 126 /* 127 * Map blocks for page writeback. This is used only on conventional zone files, 128 * which implies that the page range can only be within the fixed inode size. 129 */ 130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 131 struct inode *inode, loff_t offset) 132 { 133 struct zonefs_inode_info *zi = ZONEFS_I(inode); 134 135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 136 return -EIO; 137 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 138 return -EIO; 139 140 /* If the mapping is already OK, nothing needs to be done */ 141 if (offset >= wpc->iomap.offset && 142 offset < wpc->iomap.offset + wpc->iomap.length) 143 return 0; 144 145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 146 IOMAP_WRITE, &wpc->iomap, NULL); 147 } 148 149 static const struct iomap_writeback_ops zonefs_writeback_ops = { 150 .map_blocks = zonefs_map_blocks, 151 }; 152 153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_writepages(struct address_space *mapping, 161 struct writeback_control *wbc) 162 { 163 struct iomap_writepage_ctx wpc = { }; 164 165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 166 } 167 168 static const struct address_space_operations zonefs_file_aops = { 169 .readpage = zonefs_readpage, 170 .readahead = zonefs_readahead, 171 .writepage = zonefs_writepage, 172 .writepages = zonefs_writepages, 173 .set_page_dirty = iomap_set_page_dirty, 174 .releasepage = iomap_releasepage, 175 .invalidatepage = iomap_invalidatepage, 176 .migratepage = iomap_migrate_page, 177 .is_partially_uptodate = iomap_is_partially_uptodate, 178 .error_remove_page = generic_error_remove_page, 179 .direct_IO = noop_direct_IO, 180 }; 181 182 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 183 { 184 struct super_block *sb = inode->i_sb; 185 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 186 loff_t old_isize = i_size_read(inode); 187 loff_t nr_blocks; 188 189 if (new_isize == old_isize) 190 return; 191 192 spin_lock(&sbi->s_lock); 193 194 /* 195 * This may be called for an update after an IO error. 196 * So beware of the values seen. 197 */ 198 if (new_isize < old_isize) { 199 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 200 if (sbi->s_used_blocks > nr_blocks) 201 sbi->s_used_blocks -= nr_blocks; 202 else 203 sbi->s_used_blocks = 0; 204 } else { 205 sbi->s_used_blocks += 206 (new_isize - old_isize) >> sb->s_blocksize_bits; 207 if (sbi->s_used_blocks > sbi->s_blocks) 208 sbi->s_used_blocks = sbi->s_blocks; 209 } 210 211 spin_unlock(&sbi->s_lock); 212 } 213 214 /* 215 * Check a zone condition and adjust its file inode access permissions for 216 * offline and readonly zones. Return the inode size corresponding to the 217 * amount of readable data in the zone. 218 */ 219 static loff_t zonefs_check_zone_condition(struct inode *inode, 220 struct blk_zone *zone, bool warn, 221 bool mount) 222 { 223 struct zonefs_inode_info *zi = ZONEFS_I(inode); 224 225 switch (zone->cond) { 226 case BLK_ZONE_COND_OFFLINE: 227 /* 228 * Dead zone: make the inode immutable, disable all accesses 229 * and set the file size to 0 (zone wp set to zone start). 230 */ 231 if (warn) 232 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 233 inode->i_ino); 234 inode->i_flags |= S_IMMUTABLE; 235 inode->i_mode &= ~0777; 236 zone->wp = zone->start; 237 return 0; 238 case BLK_ZONE_COND_READONLY: 239 /* 240 * The write pointer of read-only zones is invalid. If such a 241 * zone is found during mount, the file size cannot be retrieved 242 * so we treat the zone as offline (mount == true case). 243 * Otherwise, keep the file size as it was when last updated 244 * so that the user can recover data. In both cases, writes are 245 * always disabled for the zone. 246 */ 247 if (warn) 248 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 249 inode->i_ino); 250 inode->i_flags |= S_IMMUTABLE; 251 if (mount) { 252 zone->cond = BLK_ZONE_COND_OFFLINE; 253 inode->i_mode &= ~0777; 254 zone->wp = zone->start; 255 return 0; 256 } 257 inode->i_mode &= ~0222; 258 return i_size_read(inode); 259 case BLK_ZONE_COND_FULL: 260 /* The write pointer of full zones is invalid. */ 261 return zi->i_max_size; 262 default: 263 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 264 return zi->i_max_size; 265 return (zone->wp - zone->start) << SECTOR_SHIFT; 266 } 267 } 268 269 struct zonefs_ioerr_data { 270 struct inode *inode; 271 bool write; 272 }; 273 274 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 275 void *data) 276 { 277 struct zonefs_ioerr_data *err = data; 278 struct inode *inode = err->inode; 279 struct zonefs_inode_info *zi = ZONEFS_I(inode); 280 struct super_block *sb = inode->i_sb; 281 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 282 loff_t isize, data_size; 283 284 /* 285 * Check the zone condition: if the zone is not "bad" (offline or 286 * read-only), read errors are simply signaled to the IO issuer as long 287 * as there is no inconsistency between the inode size and the amount of 288 * data writen in the zone (data_size). 289 */ 290 data_size = zonefs_check_zone_condition(inode, zone, true, false); 291 isize = i_size_read(inode); 292 if (zone->cond != BLK_ZONE_COND_OFFLINE && 293 zone->cond != BLK_ZONE_COND_READONLY && 294 !err->write && isize == data_size) 295 return 0; 296 297 /* 298 * At this point, we detected either a bad zone or an inconsistency 299 * between the inode size and the amount of data written in the zone. 300 * For the latter case, the cause may be a write IO error or an external 301 * action on the device. Two error patterns exist: 302 * 1) The inode size is lower than the amount of data in the zone: 303 * a write operation partially failed and data was writen at the end 304 * of the file. This can happen in the case of a large direct IO 305 * needing several BIOs and/or write requests to be processed. 306 * 2) The inode size is larger than the amount of data in the zone: 307 * this can happen with a deferred write error with the use of the 308 * device side write cache after getting successful write IO 309 * completions. Other possibilities are (a) an external corruption, 310 * e.g. an application reset the zone directly, or (b) the device 311 * has a serious problem (e.g. firmware bug). 312 * 313 * In all cases, warn about inode size inconsistency and handle the 314 * IO error according to the zone condition and to the mount options. 315 */ 316 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 317 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 318 inode->i_ino, isize, data_size); 319 320 /* 321 * First handle bad zones signaled by hardware. The mount options 322 * errors=zone-ro and errors=zone-offline result in changing the 323 * zone condition to read-only and offline respectively, as if the 324 * condition was signaled by the hardware. 325 */ 326 if (zone->cond == BLK_ZONE_COND_OFFLINE || 327 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 328 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 329 inode->i_ino); 330 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 331 zone->cond = BLK_ZONE_COND_OFFLINE; 332 data_size = zonefs_check_zone_condition(inode, zone, 333 false, false); 334 } 335 } else if (zone->cond == BLK_ZONE_COND_READONLY || 336 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 337 zonefs_warn(sb, "inode %lu: write access disabled\n", 338 inode->i_ino); 339 if (zone->cond != BLK_ZONE_COND_READONLY) { 340 zone->cond = BLK_ZONE_COND_READONLY; 341 data_size = zonefs_check_zone_condition(inode, zone, 342 false, false); 343 } 344 } 345 346 /* 347 * If the filesystem is mounted with the explicit-open mount option, we 348 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 349 * the read-only or offline condition, to avoid attempting an explicit 350 * close of the zone when the inode file is closed. 351 */ 352 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 353 (zone->cond == BLK_ZONE_COND_OFFLINE || 354 zone->cond == BLK_ZONE_COND_READONLY)) 355 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 356 357 /* 358 * If error=remount-ro was specified, any error result in remounting 359 * the volume as read-only. 360 */ 361 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 362 zonefs_warn(sb, "remounting filesystem read-only\n"); 363 sb->s_flags |= SB_RDONLY; 364 } 365 366 /* 367 * Update block usage stats and the inode size to prevent access to 368 * invalid data. 369 */ 370 zonefs_update_stats(inode, data_size); 371 zonefs_i_size_write(inode, data_size); 372 zi->i_wpoffset = data_size; 373 374 return 0; 375 } 376 377 /* 378 * When an file IO error occurs, check the file zone to see if there is a change 379 * in the zone condition (e.g. offline or read-only). For a failed write to a 380 * sequential zone, the zone write pointer position must also be checked to 381 * eventually correct the file size and zonefs inode write pointer offset 382 * (which can be out of sync with the drive due to partial write failures). 383 */ 384 static void __zonefs_io_error(struct inode *inode, bool write) 385 { 386 struct zonefs_inode_info *zi = ZONEFS_I(inode); 387 struct super_block *sb = inode->i_sb; 388 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 389 unsigned int noio_flag; 390 unsigned int nr_zones = 391 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 392 struct zonefs_ioerr_data err = { 393 .inode = inode, 394 .write = write, 395 }; 396 int ret; 397 398 /* 399 * Memory allocations in blkdev_report_zones() can trigger a memory 400 * reclaim which may in turn cause a recursion into zonefs as well as 401 * struct request allocations for the same device. The former case may 402 * end up in a deadlock on the inode truncate mutex, while the latter 403 * may prevent IO forward progress. Executing the report zones under 404 * the GFP_NOIO context avoids both problems. 405 */ 406 noio_flag = memalloc_noio_save(); 407 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 408 zonefs_io_error_cb, &err); 409 if (ret != nr_zones) 410 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 411 inode->i_ino, ret); 412 memalloc_noio_restore(noio_flag); 413 } 414 415 static void zonefs_io_error(struct inode *inode, bool write) 416 { 417 struct zonefs_inode_info *zi = ZONEFS_I(inode); 418 419 mutex_lock(&zi->i_truncate_mutex); 420 __zonefs_io_error(inode, write); 421 mutex_unlock(&zi->i_truncate_mutex); 422 } 423 424 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 425 { 426 struct zonefs_inode_info *zi = ZONEFS_I(inode); 427 loff_t old_isize; 428 enum req_opf op; 429 int ret = 0; 430 431 /* 432 * Only sequential zone files can be truncated and truncation is allowed 433 * only down to a 0 size, which is equivalent to a zone reset, and to 434 * the maximum file size, which is equivalent to a zone finish. 435 */ 436 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 437 return -EPERM; 438 439 if (!isize) 440 op = REQ_OP_ZONE_RESET; 441 else if (isize == zi->i_max_size) 442 op = REQ_OP_ZONE_FINISH; 443 else 444 return -EPERM; 445 446 inode_dio_wait(inode); 447 448 /* Serialize against page faults */ 449 down_write(&zi->i_mmap_sem); 450 451 /* Serialize against zonefs_iomap_begin() */ 452 mutex_lock(&zi->i_truncate_mutex); 453 454 old_isize = i_size_read(inode); 455 if (isize == old_isize) 456 goto unlock; 457 458 ret = zonefs_zone_mgmt(inode, op); 459 if (ret) 460 goto unlock; 461 462 /* 463 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 464 * take care of open zones. 465 */ 466 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 467 /* 468 * Truncating a zone to EMPTY or FULL is the equivalent of 469 * closing the zone. For a truncation to 0, we need to 470 * re-open the zone to ensure new writes can be processed. 471 * For a truncation to the maximum file size, the zone is 472 * closed and writes cannot be accepted anymore, so clear 473 * the open flag. 474 */ 475 if (!isize) 476 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 477 else 478 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 479 } 480 481 zonefs_update_stats(inode, isize); 482 truncate_setsize(inode, isize); 483 zi->i_wpoffset = isize; 484 485 unlock: 486 mutex_unlock(&zi->i_truncate_mutex); 487 up_write(&zi->i_mmap_sem); 488 489 return ret; 490 } 491 492 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 493 struct dentry *dentry, struct iattr *iattr) 494 { 495 struct inode *inode = d_inode(dentry); 496 int ret; 497 498 if (unlikely(IS_IMMUTABLE(inode))) 499 return -EPERM; 500 501 ret = setattr_prepare(&init_user_ns, dentry, iattr); 502 if (ret) 503 return ret; 504 505 /* 506 * Since files and directories cannot be created nor deleted, do not 507 * allow setting any write attributes on the sub-directories grouping 508 * files by zone type. 509 */ 510 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 511 (iattr->ia_mode & 0222)) 512 return -EPERM; 513 514 if (((iattr->ia_valid & ATTR_UID) && 515 !uid_eq(iattr->ia_uid, inode->i_uid)) || 516 ((iattr->ia_valid & ATTR_GID) && 517 !gid_eq(iattr->ia_gid, inode->i_gid))) { 518 ret = dquot_transfer(inode, iattr); 519 if (ret) 520 return ret; 521 } 522 523 if (iattr->ia_valid & ATTR_SIZE) { 524 ret = zonefs_file_truncate(inode, iattr->ia_size); 525 if (ret) 526 return ret; 527 } 528 529 setattr_copy(&init_user_ns, inode, iattr); 530 531 return 0; 532 } 533 534 static const struct inode_operations zonefs_file_inode_operations = { 535 .setattr = zonefs_inode_setattr, 536 }; 537 538 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 539 int datasync) 540 { 541 struct inode *inode = file_inode(file); 542 int ret = 0; 543 544 if (unlikely(IS_IMMUTABLE(inode))) 545 return -EPERM; 546 547 /* 548 * Since only direct writes are allowed in sequential files, page cache 549 * flush is needed only for conventional zone files. 550 */ 551 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 552 ret = file_write_and_wait_range(file, start, end); 553 if (!ret) 554 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 555 556 if (ret) 557 zonefs_io_error(inode, true); 558 559 return ret; 560 } 561 562 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 563 { 564 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 565 vm_fault_t ret; 566 567 down_read(&zi->i_mmap_sem); 568 ret = filemap_fault(vmf); 569 up_read(&zi->i_mmap_sem); 570 571 return ret; 572 } 573 574 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 575 { 576 struct inode *inode = file_inode(vmf->vma->vm_file); 577 struct zonefs_inode_info *zi = ZONEFS_I(inode); 578 vm_fault_t ret; 579 580 if (unlikely(IS_IMMUTABLE(inode))) 581 return VM_FAULT_SIGBUS; 582 583 /* 584 * Sanity check: only conventional zone files can have shared 585 * writeable mappings. 586 */ 587 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 588 return VM_FAULT_NOPAGE; 589 590 sb_start_pagefault(inode->i_sb); 591 file_update_time(vmf->vma->vm_file); 592 593 /* Serialize against truncates */ 594 down_read(&zi->i_mmap_sem); 595 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 596 up_read(&zi->i_mmap_sem); 597 598 sb_end_pagefault(inode->i_sb); 599 return ret; 600 } 601 602 static const struct vm_operations_struct zonefs_file_vm_ops = { 603 .fault = zonefs_filemap_fault, 604 .map_pages = filemap_map_pages, 605 .page_mkwrite = zonefs_filemap_page_mkwrite, 606 }; 607 608 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 609 { 610 /* 611 * Conventional zones accept random writes, so their files can support 612 * shared writable mappings. For sequential zone files, only read 613 * mappings are possible since there are no guarantees for write 614 * ordering between msync() and page cache writeback. 615 */ 616 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 617 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 618 return -EINVAL; 619 620 file_accessed(file); 621 vma->vm_ops = &zonefs_file_vm_ops; 622 623 return 0; 624 } 625 626 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 627 { 628 loff_t isize = i_size_read(file_inode(file)); 629 630 /* 631 * Seeks are limited to below the zone size for conventional zones 632 * and below the zone write pointer for sequential zones. In both 633 * cases, this limit is the inode size. 634 */ 635 return generic_file_llseek_size(file, offset, whence, isize, isize); 636 } 637 638 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 639 int error, unsigned int flags) 640 { 641 struct inode *inode = file_inode(iocb->ki_filp); 642 struct zonefs_inode_info *zi = ZONEFS_I(inode); 643 644 if (error) { 645 zonefs_io_error(inode, true); 646 return error; 647 } 648 649 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 650 /* 651 * Note that we may be seeing completions out of order, 652 * but that is not a problem since a write completed 653 * successfully necessarily means that all preceding writes 654 * were also successful. So we can safely increase the inode 655 * size to the write end location. 656 */ 657 mutex_lock(&zi->i_truncate_mutex); 658 if (i_size_read(inode) < iocb->ki_pos + size) { 659 zonefs_update_stats(inode, iocb->ki_pos + size); 660 zonefs_i_size_write(inode, iocb->ki_pos + size); 661 } 662 mutex_unlock(&zi->i_truncate_mutex); 663 } 664 665 return 0; 666 } 667 668 static const struct iomap_dio_ops zonefs_write_dio_ops = { 669 .end_io = zonefs_file_write_dio_end_io, 670 }; 671 672 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 673 { 674 struct inode *inode = file_inode(iocb->ki_filp); 675 struct zonefs_inode_info *zi = ZONEFS_I(inode); 676 struct block_device *bdev = inode->i_sb->s_bdev; 677 unsigned int max; 678 struct bio *bio; 679 ssize_t size; 680 int nr_pages; 681 ssize_t ret; 682 683 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 684 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 685 iov_iter_truncate(from, max); 686 687 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 688 if (!nr_pages) 689 return 0; 690 691 bio = bio_alloc(GFP_NOFS, nr_pages); 692 if (!bio) 693 return -ENOMEM; 694 695 bio_set_dev(bio, bdev); 696 bio->bi_iter.bi_sector = zi->i_zsector; 697 bio->bi_write_hint = iocb->ki_hint; 698 bio->bi_ioprio = iocb->ki_ioprio; 699 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE; 700 if (iocb->ki_flags & IOCB_DSYNC) 701 bio->bi_opf |= REQ_FUA; 702 703 ret = bio_iov_iter_get_pages(bio, from); 704 if (unlikely(ret)) 705 goto out_release; 706 707 size = bio->bi_iter.bi_size; 708 task_io_account_write(size); 709 710 if (iocb->ki_flags & IOCB_HIPRI) 711 bio_set_polled(bio, iocb); 712 713 ret = submit_bio_wait(bio); 714 715 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 716 trace_zonefs_file_dio_append(inode, size, ret); 717 718 out_release: 719 bio_release_pages(bio, false); 720 bio_put(bio); 721 722 if (ret >= 0) { 723 iocb->ki_pos += size; 724 return size; 725 } 726 727 return ret; 728 } 729 730 /* 731 * Handle direct writes. For sequential zone files, this is the only possible 732 * write path. For these files, check that the user is issuing writes 733 * sequentially from the end of the file. This code assumes that the block layer 734 * delivers write requests to the device in sequential order. This is always the 735 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 736 * elevator feature is being used (e.g. mq-deadline). The block layer always 737 * automatically select such an elevator for zoned block devices during the 738 * device initialization. 739 */ 740 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 741 { 742 struct inode *inode = file_inode(iocb->ki_filp); 743 struct zonefs_inode_info *zi = ZONEFS_I(inode); 744 struct super_block *sb = inode->i_sb; 745 bool sync = is_sync_kiocb(iocb); 746 bool append = false; 747 size_t count; 748 ssize_t ret; 749 750 /* 751 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 752 * as this can cause write reordering (e.g. the first aio gets EAGAIN 753 * on the inode lock but the second goes through but is now unaligned). 754 */ 755 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 756 (iocb->ki_flags & IOCB_NOWAIT)) 757 return -EOPNOTSUPP; 758 759 if (iocb->ki_flags & IOCB_NOWAIT) { 760 if (!inode_trylock(inode)) 761 return -EAGAIN; 762 } else { 763 inode_lock(inode); 764 } 765 766 ret = generic_write_checks(iocb, from); 767 if (ret <= 0) 768 goto inode_unlock; 769 770 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 771 count = iov_iter_count(from); 772 773 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 774 ret = -EINVAL; 775 goto inode_unlock; 776 } 777 778 /* Enforce sequential writes (append only) in sequential zones */ 779 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 780 mutex_lock(&zi->i_truncate_mutex); 781 if (iocb->ki_pos != zi->i_wpoffset) { 782 mutex_unlock(&zi->i_truncate_mutex); 783 ret = -EINVAL; 784 goto inode_unlock; 785 } 786 mutex_unlock(&zi->i_truncate_mutex); 787 append = sync; 788 } 789 790 if (append) 791 ret = zonefs_file_dio_append(iocb, from); 792 else 793 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 794 &zonefs_write_dio_ops, 0); 795 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 796 (ret > 0 || ret == -EIOCBQUEUED)) { 797 if (ret > 0) 798 count = ret; 799 mutex_lock(&zi->i_truncate_mutex); 800 zi->i_wpoffset += count; 801 mutex_unlock(&zi->i_truncate_mutex); 802 } 803 804 inode_unlock: 805 inode_unlock(inode); 806 807 return ret; 808 } 809 810 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 811 struct iov_iter *from) 812 { 813 struct inode *inode = file_inode(iocb->ki_filp); 814 struct zonefs_inode_info *zi = ZONEFS_I(inode); 815 ssize_t ret; 816 817 /* 818 * Direct IO writes are mandatory for sequential zone files so that the 819 * write IO issuing order is preserved. 820 */ 821 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 822 return -EIO; 823 824 if (iocb->ki_flags & IOCB_NOWAIT) { 825 if (!inode_trylock(inode)) 826 return -EAGAIN; 827 } else { 828 inode_lock(inode); 829 } 830 831 ret = generic_write_checks(iocb, from); 832 if (ret <= 0) 833 goto inode_unlock; 834 835 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 836 837 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 838 if (ret > 0) 839 iocb->ki_pos += ret; 840 else if (ret == -EIO) 841 zonefs_io_error(inode, true); 842 843 inode_unlock: 844 inode_unlock(inode); 845 if (ret > 0) 846 ret = generic_write_sync(iocb, ret); 847 848 return ret; 849 } 850 851 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 852 { 853 struct inode *inode = file_inode(iocb->ki_filp); 854 855 if (unlikely(IS_IMMUTABLE(inode))) 856 return -EPERM; 857 858 if (sb_rdonly(inode->i_sb)) 859 return -EROFS; 860 861 /* Write operations beyond the zone size are not allowed */ 862 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 863 return -EFBIG; 864 865 if (iocb->ki_flags & IOCB_DIRECT) { 866 ssize_t ret = zonefs_file_dio_write(iocb, from); 867 if (ret != -ENOTBLK) 868 return ret; 869 } 870 871 return zonefs_file_buffered_write(iocb, from); 872 } 873 874 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 875 int error, unsigned int flags) 876 { 877 if (error) { 878 zonefs_io_error(file_inode(iocb->ki_filp), false); 879 return error; 880 } 881 882 return 0; 883 } 884 885 static const struct iomap_dio_ops zonefs_read_dio_ops = { 886 .end_io = zonefs_file_read_dio_end_io, 887 }; 888 889 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 890 { 891 struct inode *inode = file_inode(iocb->ki_filp); 892 struct zonefs_inode_info *zi = ZONEFS_I(inode); 893 struct super_block *sb = inode->i_sb; 894 loff_t isize; 895 ssize_t ret; 896 897 /* Offline zones cannot be read */ 898 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 899 return -EPERM; 900 901 if (iocb->ki_pos >= zi->i_max_size) 902 return 0; 903 904 if (iocb->ki_flags & IOCB_NOWAIT) { 905 if (!inode_trylock_shared(inode)) 906 return -EAGAIN; 907 } else { 908 inode_lock_shared(inode); 909 } 910 911 /* Limit read operations to written data */ 912 mutex_lock(&zi->i_truncate_mutex); 913 isize = i_size_read(inode); 914 if (iocb->ki_pos >= isize) { 915 mutex_unlock(&zi->i_truncate_mutex); 916 ret = 0; 917 goto inode_unlock; 918 } 919 iov_iter_truncate(to, isize - iocb->ki_pos); 920 mutex_unlock(&zi->i_truncate_mutex); 921 922 if (iocb->ki_flags & IOCB_DIRECT) { 923 size_t count = iov_iter_count(to); 924 925 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 926 ret = -EINVAL; 927 goto inode_unlock; 928 } 929 file_accessed(iocb->ki_filp); 930 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 931 &zonefs_read_dio_ops, 0); 932 } else { 933 ret = generic_file_read_iter(iocb, to); 934 if (ret == -EIO) 935 zonefs_io_error(inode, false); 936 } 937 938 inode_unlock: 939 inode_unlock_shared(inode); 940 941 return ret; 942 } 943 944 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 945 { 946 struct zonefs_inode_info *zi = ZONEFS_I(inode); 947 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 948 949 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 950 return false; 951 952 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 953 return false; 954 955 if (!(file->f_mode & FMODE_WRITE)) 956 return false; 957 958 return true; 959 } 960 961 static int zonefs_open_zone(struct inode *inode) 962 { 963 struct zonefs_inode_info *zi = ZONEFS_I(inode); 964 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 965 int ret = 0; 966 967 mutex_lock(&zi->i_truncate_mutex); 968 969 zi->i_wr_refcnt++; 970 if (zi->i_wr_refcnt == 1) { 971 972 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 973 atomic_dec(&sbi->s_open_zones); 974 ret = -EBUSY; 975 goto unlock; 976 } 977 978 if (i_size_read(inode) < zi->i_max_size) { 979 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 980 if (ret) { 981 zi->i_wr_refcnt--; 982 atomic_dec(&sbi->s_open_zones); 983 goto unlock; 984 } 985 zi->i_flags |= ZONEFS_ZONE_OPEN; 986 } 987 } 988 989 unlock: 990 mutex_unlock(&zi->i_truncate_mutex); 991 992 return ret; 993 } 994 995 static int zonefs_file_open(struct inode *inode, struct file *file) 996 { 997 int ret; 998 999 ret = generic_file_open(inode, file); 1000 if (ret) 1001 return ret; 1002 1003 if (zonefs_file_use_exp_open(inode, file)) 1004 return zonefs_open_zone(inode); 1005 1006 return 0; 1007 } 1008 1009 static void zonefs_close_zone(struct inode *inode) 1010 { 1011 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1012 int ret = 0; 1013 1014 mutex_lock(&zi->i_truncate_mutex); 1015 zi->i_wr_refcnt--; 1016 if (!zi->i_wr_refcnt) { 1017 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1018 struct super_block *sb = inode->i_sb; 1019 1020 /* 1021 * If the file zone is full, it is not open anymore and we only 1022 * need to decrement the open count. 1023 */ 1024 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1025 goto dec; 1026 1027 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1028 if (ret) { 1029 __zonefs_io_error(inode, false); 1030 /* 1031 * Leaving zones explicitly open may lead to a state 1032 * where most zones cannot be written (zone resources 1033 * exhausted). So take preventive action by remounting 1034 * read-only. 1035 */ 1036 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1037 !(sb->s_flags & SB_RDONLY)) { 1038 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1039 sb->s_flags |= SB_RDONLY; 1040 } 1041 } 1042 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1043 dec: 1044 atomic_dec(&sbi->s_open_zones); 1045 } 1046 mutex_unlock(&zi->i_truncate_mutex); 1047 } 1048 1049 static int zonefs_file_release(struct inode *inode, struct file *file) 1050 { 1051 /* 1052 * If we explicitly open a zone we must close it again as well, but the 1053 * zone management operation can fail (either due to an IO error or as 1054 * the zone has gone offline or read-only). Make sure we don't fail the 1055 * close(2) for user-space. 1056 */ 1057 if (zonefs_file_use_exp_open(inode, file)) 1058 zonefs_close_zone(inode); 1059 1060 return 0; 1061 } 1062 1063 static const struct file_operations zonefs_file_operations = { 1064 .open = zonefs_file_open, 1065 .release = zonefs_file_release, 1066 .fsync = zonefs_file_fsync, 1067 .mmap = zonefs_file_mmap, 1068 .llseek = zonefs_file_llseek, 1069 .read_iter = zonefs_file_read_iter, 1070 .write_iter = zonefs_file_write_iter, 1071 .splice_read = generic_file_splice_read, 1072 .splice_write = iter_file_splice_write, 1073 .iopoll = iomap_dio_iopoll, 1074 }; 1075 1076 static struct kmem_cache *zonefs_inode_cachep; 1077 1078 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1079 { 1080 struct zonefs_inode_info *zi; 1081 1082 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 1083 if (!zi) 1084 return NULL; 1085 1086 inode_init_once(&zi->i_vnode); 1087 mutex_init(&zi->i_truncate_mutex); 1088 init_rwsem(&zi->i_mmap_sem); 1089 zi->i_wr_refcnt = 0; 1090 1091 return &zi->i_vnode; 1092 } 1093 1094 static void zonefs_free_inode(struct inode *inode) 1095 { 1096 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1097 } 1098 1099 /* 1100 * File system stat. 1101 */ 1102 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1103 { 1104 struct super_block *sb = dentry->d_sb; 1105 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1106 enum zonefs_ztype t; 1107 u64 fsid; 1108 1109 buf->f_type = ZONEFS_MAGIC; 1110 buf->f_bsize = sb->s_blocksize; 1111 buf->f_namelen = ZONEFS_NAME_MAX; 1112 1113 spin_lock(&sbi->s_lock); 1114 1115 buf->f_blocks = sbi->s_blocks; 1116 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1117 buf->f_bfree = 0; 1118 else 1119 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1120 buf->f_bavail = buf->f_bfree; 1121 1122 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1123 if (sbi->s_nr_files[t]) 1124 buf->f_files += sbi->s_nr_files[t] + 1; 1125 } 1126 buf->f_ffree = 0; 1127 1128 spin_unlock(&sbi->s_lock); 1129 1130 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 1131 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 1132 buf->f_fsid = u64_to_fsid(fsid); 1133 1134 return 0; 1135 } 1136 1137 enum { 1138 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1139 Opt_explicit_open, Opt_err, 1140 }; 1141 1142 static const match_table_t tokens = { 1143 { Opt_errors_ro, "errors=remount-ro"}, 1144 { Opt_errors_zro, "errors=zone-ro"}, 1145 { Opt_errors_zol, "errors=zone-offline"}, 1146 { Opt_errors_repair, "errors=repair"}, 1147 { Opt_explicit_open, "explicit-open" }, 1148 { Opt_err, NULL} 1149 }; 1150 1151 static int zonefs_parse_options(struct super_block *sb, char *options) 1152 { 1153 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1154 substring_t args[MAX_OPT_ARGS]; 1155 char *p; 1156 1157 if (!options) 1158 return 0; 1159 1160 while ((p = strsep(&options, ",")) != NULL) { 1161 int token; 1162 1163 if (!*p) 1164 continue; 1165 1166 token = match_token(p, tokens, args); 1167 switch (token) { 1168 case Opt_errors_ro: 1169 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1170 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1171 break; 1172 case Opt_errors_zro: 1173 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1174 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1175 break; 1176 case Opt_errors_zol: 1177 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1178 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1179 break; 1180 case Opt_errors_repair: 1181 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1182 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1183 break; 1184 case Opt_explicit_open: 1185 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1186 break; 1187 default: 1188 return -EINVAL; 1189 } 1190 } 1191 1192 return 0; 1193 } 1194 1195 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1196 { 1197 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1198 1199 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1200 seq_puts(seq, ",errors=remount-ro"); 1201 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1202 seq_puts(seq, ",errors=zone-ro"); 1203 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1204 seq_puts(seq, ",errors=zone-offline"); 1205 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1206 seq_puts(seq, ",errors=repair"); 1207 1208 return 0; 1209 } 1210 1211 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1212 { 1213 sync_filesystem(sb); 1214 1215 return zonefs_parse_options(sb, data); 1216 } 1217 1218 static const struct super_operations zonefs_sops = { 1219 .alloc_inode = zonefs_alloc_inode, 1220 .free_inode = zonefs_free_inode, 1221 .statfs = zonefs_statfs, 1222 .remount_fs = zonefs_remount, 1223 .show_options = zonefs_show_options, 1224 }; 1225 1226 static const struct inode_operations zonefs_dir_inode_operations = { 1227 .lookup = simple_lookup, 1228 .setattr = zonefs_inode_setattr, 1229 }; 1230 1231 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1232 enum zonefs_ztype type) 1233 { 1234 struct super_block *sb = parent->i_sb; 1235 1236 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1237 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1238 inode->i_op = &zonefs_dir_inode_operations; 1239 inode->i_fop = &simple_dir_operations; 1240 set_nlink(inode, 2); 1241 inc_nlink(parent); 1242 } 1243 1244 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1245 enum zonefs_ztype type) 1246 { 1247 struct super_block *sb = inode->i_sb; 1248 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1249 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1250 1251 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1252 inode->i_mode = S_IFREG | sbi->s_perm; 1253 1254 zi->i_ztype = type; 1255 zi->i_zsector = zone->start; 1256 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1257 1258 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1259 zone->capacity << SECTOR_SHIFT); 1260 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1261 1262 inode->i_uid = sbi->s_uid; 1263 inode->i_gid = sbi->s_gid; 1264 inode->i_size = zi->i_wpoffset; 1265 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1266 1267 inode->i_op = &zonefs_file_inode_operations; 1268 inode->i_fop = &zonefs_file_operations; 1269 inode->i_mapping->a_ops = &zonefs_file_aops; 1270 1271 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1272 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1273 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1274 } 1275 1276 static struct dentry *zonefs_create_inode(struct dentry *parent, 1277 const char *name, struct blk_zone *zone, 1278 enum zonefs_ztype type) 1279 { 1280 struct inode *dir = d_inode(parent); 1281 struct dentry *dentry; 1282 struct inode *inode; 1283 1284 dentry = d_alloc_name(parent, name); 1285 if (!dentry) 1286 return NULL; 1287 1288 inode = new_inode(parent->d_sb); 1289 if (!inode) 1290 goto dput; 1291 1292 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1293 if (zone) 1294 zonefs_init_file_inode(inode, zone, type); 1295 else 1296 zonefs_init_dir_inode(dir, inode, type); 1297 d_add(dentry, inode); 1298 dir->i_size++; 1299 1300 return dentry; 1301 1302 dput: 1303 dput(dentry); 1304 1305 return NULL; 1306 } 1307 1308 struct zonefs_zone_data { 1309 struct super_block *sb; 1310 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1311 struct blk_zone *zones; 1312 }; 1313 1314 /* 1315 * Create a zone group and populate it with zone files. 1316 */ 1317 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1318 enum zonefs_ztype type) 1319 { 1320 struct super_block *sb = zd->sb; 1321 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1322 struct blk_zone *zone, *next, *end; 1323 const char *zgroup_name; 1324 char *file_name; 1325 struct dentry *dir; 1326 unsigned int n = 0; 1327 int ret; 1328 1329 /* If the group is empty, there is nothing to do */ 1330 if (!zd->nr_zones[type]) 1331 return 0; 1332 1333 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1334 if (!file_name) 1335 return -ENOMEM; 1336 1337 if (type == ZONEFS_ZTYPE_CNV) 1338 zgroup_name = "cnv"; 1339 else 1340 zgroup_name = "seq"; 1341 1342 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1343 if (!dir) { 1344 ret = -ENOMEM; 1345 goto free; 1346 } 1347 1348 /* 1349 * The first zone contains the super block: skip it. 1350 */ 1351 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1352 for (zone = &zd->zones[1]; zone < end; zone = next) { 1353 1354 next = zone + 1; 1355 if (zonefs_zone_type(zone) != type) 1356 continue; 1357 1358 /* 1359 * For conventional zones, contiguous zones can be aggregated 1360 * together to form larger files. Note that this overwrites the 1361 * length of the first zone of the set of contiguous zones 1362 * aggregated together. If one offline or read-only zone is 1363 * found, assume that all zones aggregated have the same 1364 * condition. 1365 */ 1366 if (type == ZONEFS_ZTYPE_CNV && 1367 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1368 for (; next < end; next++) { 1369 if (zonefs_zone_type(next) != type) 1370 break; 1371 zone->len += next->len; 1372 zone->capacity += next->capacity; 1373 if (next->cond == BLK_ZONE_COND_READONLY && 1374 zone->cond != BLK_ZONE_COND_OFFLINE) 1375 zone->cond = BLK_ZONE_COND_READONLY; 1376 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1377 zone->cond = BLK_ZONE_COND_OFFLINE; 1378 } 1379 if (zone->capacity != zone->len) { 1380 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1381 ret = -EINVAL; 1382 goto free; 1383 } 1384 } 1385 1386 /* 1387 * Use the file number within its group as file name. 1388 */ 1389 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1390 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1391 ret = -ENOMEM; 1392 goto free; 1393 } 1394 1395 n++; 1396 } 1397 1398 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1399 zgroup_name, n, n > 1 ? "s" : ""); 1400 1401 sbi->s_nr_files[type] = n; 1402 ret = 0; 1403 1404 free: 1405 kfree(file_name); 1406 1407 return ret; 1408 } 1409 1410 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1411 void *data) 1412 { 1413 struct zonefs_zone_data *zd = data; 1414 1415 /* 1416 * Count the number of usable zones: the first zone at index 0 contains 1417 * the super block and is ignored. 1418 */ 1419 switch (zone->type) { 1420 case BLK_ZONE_TYPE_CONVENTIONAL: 1421 zone->wp = zone->start + zone->len; 1422 if (idx) 1423 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1424 break; 1425 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1426 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1427 if (idx) 1428 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1429 break; 1430 default: 1431 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1432 zone->type); 1433 return -EIO; 1434 } 1435 1436 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1437 1438 return 0; 1439 } 1440 1441 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1442 { 1443 struct block_device *bdev = zd->sb->s_bdev; 1444 int ret; 1445 1446 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1447 sizeof(struct blk_zone), GFP_KERNEL); 1448 if (!zd->zones) 1449 return -ENOMEM; 1450 1451 /* Get zones information from the device */ 1452 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1453 zonefs_get_zone_info_cb, zd); 1454 if (ret < 0) { 1455 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1456 return ret; 1457 } 1458 1459 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1460 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1461 ret, blkdev_nr_zones(bdev->bd_disk)); 1462 return -EIO; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1469 { 1470 kvfree(zd->zones); 1471 } 1472 1473 /* 1474 * Read super block information from the device. 1475 */ 1476 static int zonefs_read_super(struct super_block *sb) 1477 { 1478 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1479 struct zonefs_super *super; 1480 u32 crc, stored_crc; 1481 struct page *page; 1482 struct bio_vec bio_vec; 1483 struct bio bio; 1484 int ret; 1485 1486 page = alloc_page(GFP_KERNEL); 1487 if (!page) 1488 return -ENOMEM; 1489 1490 bio_init(&bio, &bio_vec, 1); 1491 bio.bi_iter.bi_sector = 0; 1492 bio.bi_opf = REQ_OP_READ; 1493 bio_set_dev(&bio, sb->s_bdev); 1494 bio_add_page(&bio, page, PAGE_SIZE, 0); 1495 1496 ret = submit_bio_wait(&bio); 1497 if (ret) 1498 goto free_page; 1499 1500 super = kmap(page); 1501 1502 ret = -EINVAL; 1503 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1504 goto unmap; 1505 1506 stored_crc = le32_to_cpu(super->s_crc); 1507 super->s_crc = 0; 1508 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1509 if (crc != stored_crc) { 1510 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1511 crc, stored_crc); 1512 goto unmap; 1513 } 1514 1515 sbi->s_features = le64_to_cpu(super->s_features); 1516 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1517 zonefs_err(sb, "Unknown features set 0x%llx\n", 1518 sbi->s_features); 1519 goto unmap; 1520 } 1521 1522 if (sbi->s_features & ZONEFS_F_UID) { 1523 sbi->s_uid = make_kuid(current_user_ns(), 1524 le32_to_cpu(super->s_uid)); 1525 if (!uid_valid(sbi->s_uid)) { 1526 zonefs_err(sb, "Invalid UID feature\n"); 1527 goto unmap; 1528 } 1529 } 1530 1531 if (sbi->s_features & ZONEFS_F_GID) { 1532 sbi->s_gid = make_kgid(current_user_ns(), 1533 le32_to_cpu(super->s_gid)); 1534 if (!gid_valid(sbi->s_gid)) { 1535 zonefs_err(sb, "Invalid GID feature\n"); 1536 goto unmap; 1537 } 1538 } 1539 1540 if (sbi->s_features & ZONEFS_F_PERM) 1541 sbi->s_perm = le32_to_cpu(super->s_perm); 1542 1543 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1544 zonefs_err(sb, "Reserved area is being used\n"); 1545 goto unmap; 1546 } 1547 1548 import_uuid(&sbi->s_uuid, super->s_uuid); 1549 ret = 0; 1550 1551 unmap: 1552 kunmap(page); 1553 free_page: 1554 __free_page(page); 1555 1556 return ret; 1557 } 1558 1559 /* 1560 * Check that the device is zoned. If it is, get the list of zones and create 1561 * sub-directories and files according to the device zone configuration and 1562 * format options. 1563 */ 1564 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1565 { 1566 struct zonefs_zone_data zd; 1567 struct zonefs_sb_info *sbi; 1568 struct inode *inode; 1569 enum zonefs_ztype t; 1570 int ret; 1571 1572 if (!bdev_is_zoned(sb->s_bdev)) { 1573 zonefs_err(sb, "Not a zoned block device\n"); 1574 return -EINVAL; 1575 } 1576 1577 /* 1578 * Initialize super block information: the maximum file size is updated 1579 * when the zone files are created so that the format option 1580 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1581 * beyond the zone size is taken into account. 1582 */ 1583 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1584 if (!sbi) 1585 return -ENOMEM; 1586 1587 spin_lock_init(&sbi->s_lock); 1588 sb->s_fs_info = sbi; 1589 sb->s_magic = ZONEFS_MAGIC; 1590 sb->s_maxbytes = 0; 1591 sb->s_op = &zonefs_sops; 1592 sb->s_time_gran = 1; 1593 1594 /* 1595 * The block size is set to the device zone write granularity to ensure 1596 * that write operations are always aligned according to the device 1597 * interface constraints. 1598 */ 1599 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1600 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1601 sbi->s_uid = GLOBAL_ROOT_UID; 1602 sbi->s_gid = GLOBAL_ROOT_GID; 1603 sbi->s_perm = 0640; 1604 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1605 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1606 atomic_set(&sbi->s_open_zones, 0); 1607 if (!sbi->s_max_open_zones && 1608 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1609 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1610 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1611 } 1612 1613 ret = zonefs_read_super(sb); 1614 if (ret) 1615 return ret; 1616 1617 ret = zonefs_parse_options(sb, data); 1618 if (ret) 1619 return ret; 1620 1621 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1622 zd.sb = sb; 1623 ret = zonefs_get_zone_info(&zd); 1624 if (ret) 1625 goto cleanup; 1626 1627 zonefs_info(sb, "Mounting %u zones", 1628 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1629 1630 /* Create root directory inode */ 1631 ret = -ENOMEM; 1632 inode = new_inode(sb); 1633 if (!inode) 1634 goto cleanup; 1635 1636 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1637 inode->i_mode = S_IFDIR | 0555; 1638 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1639 inode->i_op = &zonefs_dir_inode_operations; 1640 inode->i_fop = &simple_dir_operations; 1641 set_nlink(inode, 2); 1642 1643 sb->s_root = d_make_root(inode); 1644 if (!sb->s_root) 1645 goto cleanup; 1646 1647 /* Create and populate files in zone groups directories */ 1648 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1649 ret = zonefs_create_zgroup(&zd, t); 1650 if (ret) 1651 break; 1652 } 1653 1654 cleanup: 1655 zonefs_cleanup_zone_info(&zd); 1656 1657 return ret; 1658 } 1659 1660 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1661 int flags, const char *dev_name, void *data) 1662 { 1663 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1664 } 1665 1666 static void zonefs_kill_super(struct super_block *sb) 1667 { 1668 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1669 1670 if (sb->s_root) 1671 d_genocide(sb->s_root); 1672 kill_block_super(sb); 1673 kfree(sbi); 1674 } 1675 1676 /* 1677 * File system definition and registration. 1678 */ 1679 static struct file_system_type zonefs_type = { 1680 .owner = THIS_MODULE, 1681 .name = "zonefs", 1682 .mount = zonefs_mount, 1683 .kill_sb = zonefs_kill_super, 1684 .fs_flags = FS_REQUIRES_DEV, 1685 }; 1686 1687 static int __init zonefs_init_inodecache(void) 1688 { 1689 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1690 sizeof(struct zonefs_inode_info), 0, 1691 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1692 NULL); 1693 if (zonefs_inode_cachep == NULL) 1694 return -ENOMEM; 1695 return 0; 1696 } 1697 1698 static void zonefs_destroy_inodecache(void) 1699 { 1700 /* 1701 * Make sure all delayed rcu free inodes are flushed before we 1702 * destroy the inode cache. 1703 */ 1704 rcu_barrier(); 1705 kmem_cache_destroy(zonefs_inode_cachep); 1706 } 1707 1708 static int __init zonefs_init(void) 1709 { 1710 int ret; 1711 1712 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1713 1714 ret = zonefs_init_inodecache(); 1715 if (ret) 1716 return ret; 1717 1718 ret = register_filesystem(&zonefs_type); 1719 if (ret) { 1720 zonefs_destroy_inodecache(); 1721 return ret; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static void __exit zonefs_exit(void) 1728 { 1729 zonefs_destroy_inodecache(); 1730 unregister_filesystem(&zonefs_type); 1731 } 1732 1733 MODULE_AUTHOR("Damien Le Moal"); 1734 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1735 MODULE_LICENSE("GPL"); 1736 module_init(zonefs_init); 1737 module_exit(zonefs_exit); 1738