1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 /* 31 * Manage the active zone count. Called with zi->i_truncate_mutex held. 32 */ 33 static void zonefs_account_active(struct inode *inode) 34 { 35 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 36 struct zonefs_inode_info *zi = ZONEFS_I(inode); 37 38 lockdep_assert_held(&zi->i_truncate_mutex); 39 40 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 41 return; 42 43 /* 44 * For zones that transitioned to the offline or readonly condition, 45 * we only need to clear the active state. 46 */ 47 if (zi->i_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY)) 48 goto out; 49 50 /* 51 * If the zone is active, that is, if it is explicitly open or 52 * partially written, check if it was already accounted as active. 53 */ 54 if ((zi->i_flags & ZONEFS_ZONE_OPEN) || 55 (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) { 56 if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) { 57 zi->i_flags |= ZONEFS_ZONE_ACTIVE; 58 atomic_inc(&sbi->s_active_seq_files); 59 } 60 return; 61 } 62 63 out: 64 /* The zone is not active. If it was, update the active count */ 65 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) { 66 zi->i_flags &= ~ZONEFS_ZONE_ACTIVE; 67 atomic_dec(&sbi->s_active_seq_files); 68 } 69 } 70 71 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op) 72 { 73 struct zonefs_inode_info *zi = ZONEFS_I(inode); 74 int ret; 75 76 lockdep_assert_held(&zi->i_truncate_mutex); 77 78 /* 79 * With ZNS drives, closing an explicitly open zone that has not been 80 * written will change the zone state to "closed", that is, the zone 81 * will remain active. Since this can then cause failure of explicit 82 * open operation on other zones if the drive active zone resources 83 * are exceeded, make sure that the zone does not remain active by 84 * resetting it. 85 */ 86 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset) 87 op = REQ_OP_ZONE_RESET; 88 89 trace_zonefs_zone_mgmt(inode, op); 90 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 91 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 92 if (ret) { 93 zonefs_err(inode->i_sb, 94 "Zone management operation %s at %llu failed %d\n", 95 blk_op_str(op), zi->i_zsector, ret); 96 return ret; 97 } 98 99 return 0; 100 } 101 102 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 103 { 104 struct zonefs_inode_info *zi = ZONEFS_I(inode); 105 106 i_size_write(inode, isize); 107 /* 108 * A full zone is no longer open/active and does not need 109 * explicit closing. 110 */ 111 if (isize >= zi->i_max_size) { 112 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 113 114 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) 115 atomic_dec(&sbi->s_active_seq_files); 116 zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE); 117 } 118 } 119 120 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 121 loff_t length, unsigned int flags, 122 struct iomap *iomap, struct iomap *srcmap) 123 { 124 struct zonefs_inode_info *zi = ZONEFS_I(inode); 125 struct super_block *sb = inode->i_sb; 126 loff_t isize; 127 128 /* 129 * All blocks are always mapped below EOF. If reading past EOF, 130 * act as if there is a hole up to the file maximum size. 131 */ 132 mutex_lock(&zi->i_truncate_mutex); 133 iomap->bdev = inode->i_sb->s_bdev; 134 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 135 isize = i_size_read(inode); 136 if (iomap->offset >= isize) { 137 iomap->type = IOMAP_HOLE; 138 iomap->addr = IOMAP_NULL_ADDR; 139 iomap->length = length; 140 } else { 141 iomap->type = IOMAP_MAPPED; 142 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 143 iomap->length = isize - iomap->offset; 144 } 145 mutex_unlock(&zi->i_truncate_mutex); 146 147 trace_zonefs_iomap_begin(inode, iomap); 148 149 return 0; 150 } 151 152 static const struct iomap_ops zonefs_read_iomap_ops = { 153 .iomap_begin = zonefs_read_iomap_begin, 154 }; 155 156 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 157 loff_t length, unsigned int flags, 158 struct iomap *iomap, struct iomap *srcmap) 159 { 160 struct zonefs_inode_info *zi = ZONEFS_I(inode); 161 struct super_block *sb = inode->i_sb; 162 loff_t isize; 163 164 /* All write I/Os should always be within the file maximum size */ 165 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 166 return -EIO; 167 168 /* 169 * Sequential zones can only accept direct writes. This is already 170 * checked when writes are issued, so warn if we see a page writeback 171 * operation. 172 */ 173 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 174 !(flags & IOMAP_DIRECT))) 175 return -EIO; 176 177 /* 178 * For conventional zones, all blocks are always mapped. For sequential 179 * zones, all blocks after always mapped below the inode size (zone 180 * write pointer) and unwriten beyond. 181 */ 182 mutex_lock(&zi->i_truncate_mutex); 183 iomap->bdev = inode->i_sb->s_bdev; 184 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 185 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 186 isize = i_size_read(inode); 187 if (iomap->offset >= isize) { 188 iomap->type = IOMAP_UNWRITTEN; 189 iomap->length = zi->i_max_size - iomap->offset; 190 } else { 191 iomap->type = IOMAP_MAPPED; 192 iomap->length = isize - iomap->offset; 193 } 194 mutex_unlock(&zi->i_truncate_mutex); 195 196 trace_zonefs_iomap_begin(inode, iomap); 197 198 return 0; 199 } 200 201 static const struct iomap_ops zonefs_write_iomap_ops = { 202 .iomap_begin = zonefs_write_iomap_begin, 203 }; 204 205 static int zonefs_read_folio(struct file *unused, struct folio *folio) 206 { 207 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 208 } 209 210 static void zonefs_readahead(struct readahead_control *rac) 211 { 212 iomap_readahead(rac, &zonefs_read_iomap_ops); 213 } 214 215 /* 216 * Map blocks for page writeback. This is used only on conventional zone files, 217 * which implies that the page range can only be within the fixed inode size. 218 */ 219 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 220 struct inode *inode, loff_t offset) 221 { 222 struct zonefs_inode_info *zi = ZONEFS_I(inode); 223 224 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 225 return -EIO; 226 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 227 return -EIO; 228 229 /* If the mapping is already OK, nothing needs to be done */ 230 if (offset >= wpc->iomap.offset && 231 offset < wpc->iomap.offset + wpc->iomap.length) 232 return 0; 233 234 return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset, 235 IOMAP_WRITE, &wpc->iomap, NULL); 236 } 237 238 static const struct iomap_writeback_ops zonefs_writeback_ops = { 239 .map_blocks = zonefs_write_map_blocks, 240 }; 241 242 static int zonefs_writepages(struct address_space *mapping, 243 struct writeback_control *wbc) 244 { 245 struct iomap_writepage_ctx wpc = { }; 246 247 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 248 } 249 250 static int zonefs_swap_activate(struct swap_info_struct *sis, 251 struct file *swap_file, sector_t *span) 252 { 253 struct inode *inode = file_inode(swap_file); 254 struct zonefs_inode_info *zi = ZONEFS_I(inode); 255 256 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 257 zonefs_err(inode->i_sb, 258 "swap file: not a conventional zone file\n"); 259 return -EINVAL; 260 } 261 262 return iomap_swapfile_activate(sis, swap_file, span, 263 &zonefs_read_iomap_ops); 264 } 265 266 static const struct address_space_operations zonefs_file_aops = { 267 .read_folio = zonefs_read_folio, 268 .readahead = zonefs_readahead, 269 .writepages = zonefs_writepages, 270 .dirty_folio = filemap_dirty_folio, 271 .release_folio = iomap_release_folio, 272 .invalidate_folio = iomap_invalidate_folio, 273 .migrate_folio = filemap_migrate_folio, 274 .is_partially_uptodate = iomap_is_partially_uptodate, 275 .error_remove_page = generic_error_remove_page, 276 .direct_IO = noop_direct_IO, 277 .swap_activate = zonefs_swap_activate, 278 }; 279 280 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 281 { 282 struct super_block *sb = inode->i_sb; 283 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 284 loff_t old_isize = i_size_read(inode); 285 loff_t nr_blocks; 286 287 if (new_isize == old_isize) 288 return; 289 290 spin_lock(&sbi->s_lock); 291 292 /* 293 * This may be called for an update after an IO error. 294 * So beware of the values seen. 295 */ 296 if (new_isize < old_isize) { 297 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 298 if (sbi->s_used_blocks > nr_blocks) 299 sbi->s_used_blocks -= nr_blocks; 300 else 301 sbi->s_used_blocks = 0; 302 } else { 303 sbi->s_used_blocks += 304 (new_isize - old_isize) >> sb->s_blocksize_bits; 305 if (sbi->s_used_blocks > sbi->s_blocks) 306 sbi->s_used_blocks = sbi->s_blocks; 307 } 308 309 spin_unlock(&sbi->s_lock); 310 } 311 312 /* 313 * Check a zone condition and adjust its file inode access permissions for 314 * offline and readonly zones. Return the inode size corresponding to the 315 * amount of readable data in the zone. 316 */ 317 static loff_t zonefs_check_zone_condition(struct inode *inode, 318 struct blk_zone *zone, bool warn, 319 bool mount) 320 { 321 struct zonefs_inode_info *zi = ZONEFS_I(inode); 322 323 switch (zone->cond) { 324 case BLK_ZONE_COND_OFFLINE: 325 /* 326 * Dead zone: make the inode immutable, disable all accesses 327 * and set the file size to 0 (zone wp set to zone start). 328 */ 329 if (warn) 330 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 331 inode->i_ino); 332 inode->i_flags |= S_IMMUTABLE; 333 inode->i_mode &= ~0777; 334 zone->wp = zone->start; 335 zi->i_flags |= ZONEFS_ZONE_OFFLINE; 336 return 0; 337 case BLK_ZONE_COND_READONLY: 338 /* 339 * The write pointer of read-only zones is invalid. If such a 340 * zone is found during mount, the file size cannot be retrieved 341 * so we treat the zone as offline (mount == true case). 342 * Otherwise, keep the file size as it was when last updated 343 * so that the user can recover data. In both cases, writes are 344 * always disabled for the zone. 345 */ 346 if (warn) 347 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 348 inode->i_ino); 349 inode->i_flags |= S_IMMUTABLE; 350 if (mount) { 351 zone->cond = BLK_ZONE_COND_OFFLINE; 352 inode->i_mode &= ~0777; 353 zone->wp = zone->start; 354 zi->i_flags |= ZONEFS_ZONE_OFFLINE; 355 return 0; 356 } 357 zi->i_flags |= ZONEFS_ZONE_READONLY; 358 inode->i_mode &= ~0222; 359 return i_size_read(inode); 360 case BLK_ZONE_COND_FULL: 361 /* The write pointer of full zones is invalid. */ 362 return zi->i_max_size; 363 default: 364 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 365 return zi->i_max_size; 366 return (zone->wp - zone->start) << SECTOR_SHIFT; 367 } 368 } 369 370 struct zonefs_ioerr_data { 371 struct inode *inode; 372 bool write; 373 }; 374 375 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 376 void *data) 377 { 378 struct zonefs_ioerr_data *err = data; 379 struct inode *inode = err->inode; 380 struct zonefs_inode_info *zi = ZONEFS_I(inode); 381 struct super_block *sb = inode->i_sb; 382 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 383 loff_t isize, data_size; 384 385 /* 386 * Check the zone condition: if the zone is not "bad" (offline or 387 * read-only), read errors are simply signaled to the IO issuer as long 388 * as there is no inconsistency between the inode size and the amount of 389 * data writen in the zone (data_size). 390 */ 391 data_size = zonefs_check_zone_condition(inode, zone, true, false); 392 isize = i_size_read(inode); 393 if (zone->cond != BLK_ZONE_COND_OFFLINE && 394 zone->cond != BLK_ZONE_COND_READONLY && 395 !err->write && isize == data_size) 396 return 0; 397 398 /* 399 * At this point, we detected either a bad zone or an inconsistency 400 * between the inode size and the amount of data written in the zone. 401 * For the latter case, the cause may be a write IO error or an external 402 * action on the device. Two error patterns exist: 403 * 1) The inode size is lower than the amount of data in the zone: 404 * a write operation partially failed and data was writen at the end 405 * of the file. This can happen in the case of a large direct IO 406 * needing several BIOs and/or write requests to be processed. 407 * 2) The inode size is larger than the amount of data in the zone: 408 * this can happen with a deferred write error with the use of the 409 * device side write cache after getting successful write IO 410 * completions. Other possibilities are (a) an external corruption, 411 * e.g. an application reset the zone directly, or (b) the device 412 * has a serious problem (e.g. firmware bug). 413 * 414 * In all cases, warn about inode size inconsistency and handle the 415 * IO error according to the zone condition and to the mount options. 416 */ 417 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 418 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 419 inode->i_ino, isize, data_size); 420 421 /* 422 * First handle bad zones signaled by hardware. The mount options 423 * errors=zone-ro and errors=zone-offline result in changing the 424 * zone condition to read-only and offline respectively, as if the 425 * condition was signaled by the hardware. 426 */ 427 if (zone->cond == BLK_ZONE_COND_OFFLINE || 428 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 429 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 430 inode->i_ino); 431 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 432 zone->cond = BLK_ZONE_COND_OFFLINE; 433 data_size = zonefs_check_zone_condition(inode, zone, 434 false, false); 435 } 436 } else if (zone->cond == BLK_ZONE_COND_READONLY || 437 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 438 zonefs_warn(sb, "inode %lu: write access disabled\n", 439 inode->i_ino); 440 if (zone->cond != BLK_ZONE_COND_READONLY) { 441 zone->cond = BLK_ZONE_COND_READONLY; 442 data_size = zonefs_check_zone_condition(inode, zone, 443 false, false); 444 } 445 } else if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO && 446 data_size > isize) { 447 /* Do not expose garbage data */ 448 data_size = isize; 449 } 450 451 /* 452 * If the filesystem is mounted with the explicit-open mount option, we 453 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 454 * the read-only or offline condition, to avoid attempting an explicit 455 * close of the zone when the inode file is closed. 456 */ 457 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 458 (zone->cond == BLK_ZONE_COND_OFFLINE || 459 zone->cond == BLK_ZONE_COND_READONLY)) 460 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 461 462 /* 463 * If error=remount-ro was specified, any error result in remounting 464 * the volume as read-only. 465 */ 466 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 467 zonefs_warn(sb, "remounting filesystem read-only\n"); 468 sb->s_flags |= SB_RDONLY; 469 } 470 471 /* 472 * Update block usage stats and the inode size to prevent access to 473 * invalid data. 474 */ 475 zonefs_update_stats(inode, data_size); 476 zonefs_i_size_write(inode, data_size); 477 zi->i_wpoffset = data_size; 478 zonefs_account_active(inode); 479 480 return 0; 481 } 482 483 /* 484 * When an file IO error occurs, check the file zone to see if there is a change 485 * in the zone condition (e.g. offline or read-only). For a failed write to a 486 * sequential zone, the zone write pointer position must also be checked to 487 * eventually correct the file size and zonefs inode write pointer offset 488 * (which can be out of sync with the drive due to partial write failures). 489 */ 490 static void __zonefs_io_error(struct inode *inode, bool write) 491 { 492 struct zonefs_inode_info *zi = ZONEFS_I(inode); 493 struct super_block *sb = inode->i_sb; 494 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 495 unsigned int noio_flag; 496 unsigned int nr_zones = 1; 497 struct zonefs_ioerr_data err = { 498 .inode = inode, 499 .write = write, 500 }; 501 int ret; 502 503 /* 504 * The only files that have more than one zone are conventional zone 505 * files with aggregated conventional zones, for which the inode zone 506 * size is always larger than the device zone size. 507 */ 508 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev)) 509 nr_zones = zi->i_zone_size >> 510 (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 511 512 /* 513 * Memory allocations in blkdev_report_zones() can trigger a memory 514 * reclaim which may in turn cause a recursion into zonefs as well as 515 * struct request allocations for the same device. The former case may 516 * end up in a deadlock on the inode truncate mutex, while the latter 517 * may prevent IO forward progress. Executing the report zones under 518 * the GFP_NOIO context avoids both problems. 519 */ 520 noio_flag = memalloc_noio_save(); 521 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 522 zonefs_io_error_cb, &err); 523 if (ret != nr_zones) 524 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 525 inode->i_ino, ret); 526 memalloc_noio_restore(noio_flag); 527 } 528 529 static void zonefs_io_error(struct inode *inode, bool write) 530 { 531 struct zonefs_inode_info *zi = ZONEFS_I(inode); 532 533 mutex_lock(&zi->i_truncate_mutex); 534 __zonefs_io_error(inode, write); 535 mutex_unlock(&zi->i_truncate_mutex); 536 } 537 538 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 539 { 540 struct zonefs_inode_info *zi = ZONEFS_I(inode); 541 loff_t old_isize; 542 enum req_op op; 543 int ret = 0; 544 545 /* 546 * Only sequential zone files can be truncated and truncation is allowed 547 * only down to a 0 size, which is equivalent to a zone reset, and to 548 * the maximum file size, which is equivalent to a zone finish. 549 */ 550 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 551 return -EPERM; 552 553 if (!isize) 554 op = REQ_OP_ZONE_RESET; 555 else if (isize == zi->i_max_size) 556 op = REQ_OP_ZONE_FINISH; 557 else 558 return -EPERM; 559 560 inode_dio_wait(inode); 561 562 /* Serialize against page faults */ 563 filemap_invalidate_lock(inode->i_mapping); 564 565 /* Serialize against zonefs_iomap_begin() */ 566 mutex_lock(&zi->i_truncate_mutex); 567 568 old_isize = i_size_read(inode); 569 if (isize == old_isize) 570 goto unlock; 571 572 ret = zonefs_zone_mgmt(inode, op); 573 if (ret) 574 goto unlock; 575 576 /* 577 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 578 * take care of open zones. 579 */ 580 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 581 /* 582 * Truncating a zone to EMPTY or FULL is the equivalent of 583 * closing the zone. For a truncation to 0, we need to 584 * re-open the zone to ensure new writes can be processed. 585 * For a truncation to the maximum file size, the zone is 586 * closed and writes cannot be accepted anymore, so clear 587 * the open flag. 588 */ 589 if (!isize) 590 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 591 else 592 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 593 } 594 595 zonefs_update_stats(inode, isize); 596 truncate_setsize(inode, isize); 597 zi->i_wpoffset = isize; 598 zonefs_account_active(inode); 599 600 unlock: 601 mutex_unlock(&zi->i_truncate_mutex); 602 filemap_invalidate_unlock(inode->i_mapping); 603 604 return ret; 605 } 606 607 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 608 struct dentry *dentry, struct iattr *iattr) 609 { 610 struct inode *inode = d_inode(dentry); 611 int ret; 612 613 if (unlikely(IS_IMMUTABLE(inode))) 614 return -EPERM; 615 616 ret = setattr_prepare(&init_user_ns, dentry, iattr); 617 if (ret) 618 return ret; 619 620 /* 621 * Since files and directories cannot be created nor deleted, do not 622 * allow setting any write attributes on the sub-directories grouping 623 * files by zone type. 624 */ 625 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 626 (iattr->ia_mode & 0222)) 627 return -EPERM; 628 629 if (((iattr->ia_valid & ATTR_UID) && 630 !uid_eq(iattr->ia_uid, inode->i_uid)) || 631 ((iattr->ia_valid & ATTR_GID) && 632 !gid_eq(iattr->ia_gid, inode->i_gid))) { 633 ret = dquot_transfer(mnt_userns, inode, iattr); 634 if (ret) 635 return ret; 636 } 637 638 if (iattr->ia_valid & ATTR_SIZE) { 639 ret = zonefs_file_truncate(inode, iattr->ia_size); 640 if (ret) 641 return ret; 642 } 643 644 setattr_copy(&init_user_ns, inode, iattr); 645 646 return 0; 647 } 648 649 static const struct inode_operations zonefs_file_inode_operations = { 650 .setattr = zonefs_inode_setattr, 651 }; 652 653 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 654 int datasync) 655 { 656 struct inode *inode = file_inode(file); 657 int ret = 0; 658 659 if (unlikely(IS_IMMUTABLE(inode))) 660 return -EPERM; 661 662 /* 663 * Since only direct writes are allowed in sequential files, page cache 664 * flush is needed only for conventional zone files. 665 */ 666 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 667 ret = file_write_and_wait_range(file, start, end); 668 if (!ret) 669 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 670 671 if (ret) 672 zonefs_io_error(inode, true); 673 674 return ret; 675 } 676 677 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 678 { 679 struct inode *inode = file_inode(vmf->vma->vm_file); 680 struct zonefs_inode_info *zi = ZONEFS_I(inode); 681 vm_fault_t ret; 682 683 if (unlikely(IS_IMMUTABLE(inode))) 684 return VM_FAULT_SIGBUS; 685 686 /* 687 * Sanity check: only conventional zone files can have shared 688 * writeable mappings. 689 */ 690 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 691 return VM_FAULT_NOPAGE; 692 693 sb_start_pagefault(inode->i_sb); 694 file_update_time(vmf->vma->vm_file); 695 696 /* Serialize against truncates */ 697 filemap_invalidate_lock_shared(inode->i_mapping); 698 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 699 filemap_invalidate_unlock_shared(inode->i_mapping); 700 701 sb_end_pagefault(inode->i_sb); 702 return ret; 703 } 704 705 static const struct vm_operations_struct zonefs_file_vm_ops = { 706 .fault = filemap_fault, 707 .map_pages = filemap_map_pages, 708 .page_mkwrite = zonefs_filemap_page_mkwrite, 709 }; 710 711 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 712 { 713 /* 714 * Conventional zones accept random writes, so their files can support 715 * shared writable mappings. For sequential zone files, only read 716 * mappings are possible since there are no guarantees for write 717 * ordering between msync() and page cache writeback. 718 */ 719 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 720 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 721 return -EINVAL; 722 723 file_accessed(file); 724 vma->vm_ops = &zonefs_file_vm_ops; 725 726 return 0; 727 } 728 729 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 730 { 731 loff_t isize = i_size_read(file_inode(file)); 732 733 /* 734 * Seeks are limited to below the zone size for conventional zones 735 * and below the zone write pointer for sequential zones. In both 736 * cases, this limit is the inode size. 737 */ 738 return generic_file_llseek_size(file, offset, whence, isize, isize); 739 } 740 741 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 742 int error, unsigned int flags) 743 { 744 struct inode *inode = file_inode(iocb->ki_filp); 745 struct zonefs_inode_info *zi = ZONEFS_I(inode); 746 747 if (error) { 748 zonefs_io_error(inode, true); 749 return error; 750 } 751 752 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 753 /* 754 * Note that we may be seeing completions out of order, 755 * but that is not a problem since a write completed 756 * successfully necessarily means that all preceding writes 757 * were also successful. So we can safely increase the inode 758 * size to the write end location. 759 */ 760 mutex_lock(&zi->i_truncate_mutex); 761 if (i_size_read(inode) < iocb->ki_pos + size) { 762 zonefs_update_stats(inode, iocb->ki_pos + size); 763 zonefs_i_size_write(inode, iocb->ki_pos + size); 764 } 765 mutex_unlock(&zi->i_truncate_mutex); 766 } 767 768 return 0; 769 } 770 771 static const struct iomap_dio_ops zonefs_write_dio_ops = { 772 .end_io = zonefs_file_write_dio_end_io, 773 }; 774 775 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 776 { 777 struct inode *inode = file_inode(iocb->ki_filp); 778 struct zonefs_inode_info *zi = ZONEFS_I(inode); 779 struct block_device *bdev = inode->i_sb->s_bdev; 780 unsigned int max = bdev_max_zone_append_sectors(bdev); 781 struct bio *bio; 782 ssize_t size; 783 int nr_pages; 784 ssize_t ret; 785 786 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 787 iov_iter_truncate(from, max); 788 789 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 790 if (!nr_pages) 791 return 0; 792 793 bio = bio_alloc(bdev, nr_pages, 794 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 795 bio->bi_iter.bi_sector = zi->i_zsector; 796 bio->bi_ioprio = iocb->ki_ioprio; 797 if (iocb_is_dsync(iocb)) 798 bio->bi_opf |= REQ_FUA; 799 800 ret = bio_iov_iter_get_pages(bio, from); 801 if (unlikely(ret)) 802 goto out_release; 803 804 size = bio->bi_iter.bi_size; 805 task_io_account_write(size); 806 807 if (iocb->ki_flags & IOCB_HIPRI) 808 bio_set_polled(bio, iocb); 809 810 ret = submit_bio_wait(bio); 811 812 /* 813 * If the file zone was written underneath the file system, the zone 814 * write pointer may not be where we expect it to be, but the zone 815 * append write can still succeed. So check manually that we wrote where 816 * we intended to, that is, at zi->i_wpoffset. 817 */ 818 if (!ret) { 819 sector_t wpsector = 820 zi->i_zsector + (zi->i_wpoffset >> SECTOR_SHIFT); 821 822 if (bio->bi_iter.bi_sector != wpsector) { 823 zonefs_warn(inode->i_sb, 824 "Corrupted write pointer %llu for zone at %llu\n", 825 wpsector, zi->i_zsector); 826 ret = -EIO; 827 } 828 } 829 830 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 831 trace_zonefs_file_dio_append(inode, size, ret); 832 833 out_release: 834 bio_release_pages(bio, false); 835 bio_put(bio); 836 837 if (ret >= 0) { 838 iocb->ki_pos += size; 839 return size; 840 } 841 842 return ret; 843 } 844 845 /* 846 * Do not exceed the LFS limits nor the file zone size. If pos is under the 847 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 848 */ 849 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 850 loff_t count) 851 { 852 struct inode *inode = file_inode(file); 853 struct zonefs_inode_info *zi = ZONEFS_I(inode); 854 loff_t limit = rlimit(RLIMIT_FSIZE); 855 loff_t max_size = zi->i_max_size; 856 857 if (limit != RLIM_INFINITY) { 858 if (pos >= limit) { 859 send_sig(SIGXFSZ, current, 0); 860 return -EFBIG; 861 } 862 count = min(count, limit - pos); 863 } 864 865 if (!(file->f_flags & O_LARGEFILE)) 866 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 867 868 if (unlikely(pos >= max_size)) 869 return -EFBIG; 870 871 return min(count, max_size - pos); 872 } 873 874 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 875 { 876 struct file *file = iocb->ki_filp; 877 struct inode *inode = file_inode(file); 878 struct zonefs_inode_info *zi = ZONEFS_I(inode); 879 loff_t count; 880 881 if (IS_SWAPFILE(inode)) 882 return -ETXTBSY; 883 884 if (!iov_iter_count(from)) 885 return 0; 886 887 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 888 return -EINVAL; 889 890 if (iocb->ki_flags & IOCB_APPEND) { 891 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 892 return -EINVAL; 893 mutex_lock(&zi->i_truncate_mutex); 894 iocb->ki_pos = zi->i_wpoffset; 895 mutex_unlock(&zi->i_truncate_mutex); 896 } 897 898 count = zonefs_write_check_limits(file, iocb->ki_pos, 899 iov_iter_count(from)); 900 if (count < 0) 901 return count; 902 903 iov_iter_truncate(from, count); 904 return iov_iter_count(from); 905 } 906 907 /* 908 * Handle direct writes. For sequential zone files, this is the only possible 909 * write path. For these files, check that the user is issuing writes 910 * sequentially from the end of the file. This code assumes that the block layer 911 * delivers write requests to the device in sequential order. This is always the 912 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 913 * elevator feature is being used (e.g. mq-deadline). The block layer always 914 * automatically select such an elevator for zoned block devices during the 915 * device initialization. 916 */ 917 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 918 { 919 struct inode *inode = file_inode(iocb->ki_filp); 920 struct zonefs_inode_info *zi = ZONEFS_I(inode); 921 struct super_block *sb = inode->i_sb; 922 bool sync = is_sync_kiocb(iocb); 923 bool append = false; 924 ssize_t ret, count; 925 926 /* 927 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 928 * as this can cause write reordering (e.g. the first aio gets EAGAIN 929 * on the inode lock but the second goes through but is now unaligned). 930 */ 931 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 932 (iocb->ki_flags & IOCB_NOWAIT)) 933 return -EOPNOTSUPP; 934 935 if (iocb->ki_flags & IOCB_NOWAIT) { 936 if (!inode_trylock(inode)) 937 return -EAGAIN; 938 } else { 939 inode_lock(inode); 940 } 941 942 count = zonefs_write_checks(iocb, from); 943 if (count <= 0) { 944 ret = count; 945 goto inode_unlock; 946 } 947 948 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 949 ret = -EINVAL; 950 goto inode_unlock; 951 } 952 953 /* Enforce sequential writes (append only) in sequential zones */ 954 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 955 mutex_lock(&zi->i_truncate_mutex); 956 if (iocb->ki_pos != zi->i_wpoffset) { 957 mutex_unlock(&zi->i_truncate_mutex); 958 ret = -EINVAL; 959 goto inode_unlock; 960 } 961 mutex_unlock(&zi->i_truncate_mutex); 962 append = sync; 963 } 964 965 if (append) 966 ret = zonefs_file_dio_append(iocb, from); 967 else 968 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 969 &zonefs_write_dio_ops, 0, NULL, 0); 970 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 971 (ret > 0 || ret == -EIOCBQUEUED)) { 972 if (ret > 0) 973 count = ret; 974 975 /* 976 * Update the zone write pointer offset assuming the write 977 * operation succeeded. If it did not, the error recovery path 978 * will correct it. Also do active seq file accounting. 979 */ 980 mutex_lock(&zi->i_truncate_mutex); 981 zi->i_wpoffset += count; 982 zonefs_account_active(inode); 983 mutex_unlock(&zi->i_truncate_mutex); 984 } 985 986 inode_unlock: 987 inode_unlock(inode); 988 989 return ret; 990 } 991 992 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 993 struct iov_iter *from) 994 { 995 struct inode *inode = file_inode(iocb->ki_filp); 996 struct zonefs_inode_info *zi = ZONEFS_I(inode); 997 ssize_t ret; 998 999 /* 1000 * Direct IO writes are mandatory for sequential zone files so that the 1001 * write IO issuing order is preserved. 1002 */ 1003 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 1004 return -EIO; 1005 1006 if (iocb->ki_flags & IOCB_NOWAIT) { 1007 if (!inode_trylock(inode)) 1008 return -EAGAIN; 1009 } else { 1010 inode_lock(inode); 1011 } 1012 1013 ret = zonefs_write_checks(iocb, from); 1014 if (ret <= 0) 1015 goto inode_unlock; 1016 1017 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 1018 if (ret > 0) 1019 iocb->ki_pos += ret; 1020 else if (ret == -EIO) 1021 zonefs_io_error(inode, true); 1022 1023 inode_unlock: 1024 inode_unlock(inode); 1025 if (ret > 0) 1026 ret = generic_write_sync(iocb, ret); 1027 1028 return ret; 1029 } 1030 1031 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1032 { 1033 struct inode *inode = file_inode(iocb->ki_filp); 1034 1035 if (unlikely(IS_IMMUTABLE(inode))) 1036 return -EPERM; 1037 1038 if (sb_rdonly(inode->i_sb)) 1039 return -EROFS; 1040 1041 /* Write operations beyond the zone size are not allowed */ 1042 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 1043 return -EFBIG; 1044 1045 if (iocb->ki_flags & IOCB_DIRECT) { 1046 ssize_t ret = zonefs_file_dio_write(iocb, from); 1047 if (ret != -ENOTBLK) 1048 return ret; 1049 } 1050 1051 return zonefs_file_buffered_write(iocb, from); 1052 } 1053 1054 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 1055 int error, unsigned int flags) 1056 { 1057 if (error) { 1058 zonefs_io_error(file_inode(iocb->ki_filp), false); 1059 return error; 1060 } 1061 1062 return 0; 1063 } 1064 1065 static const struct iomap_dio_ops zonefs_read_dio_ops = { 1066 .end_io = zonefs_file_read_dio_end_io, 1067 }; 1068 1069 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1070 { 1071 struct inode *inode = file_inode(iocb->ki_filp); 1072 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1073 struct super_block *sb = inode->i_sb; 1074 loff_t isize; 1075 ssize_t ret; 1076 1077 /* Offline zones cannot be read */ 1078 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 1079 return -EPERM; 1080 1081 if (iocb->ki_pos >= zi->i_max_size) 1082 return 0; 1083 1084 if (iocb->ki_flags & IOCB_NOWAIT) { 1085 if (!inode_trylock_shared(inode)) 1086 return -EAGAIN; 1087 } else { 1088 inode_lock_shared(inode); 1089 } 1090 1091 /* Limit read operations to written data */ 1092 mutex_lock(&zi->i_truncate_mutex); 1093 isize = i_size_read(inode); 1094 if (iocb->ki_pos >= isize) { 1095 mutex_unlock(&zi->i_truncate_mutex); 1096 ret = 0; 1097 goto inode_unlock; 1098 } 1099 iov_iter_truncate(to, isize - iocb->ki_pos); 1100 mutex_unlock(&zi->i_truncate_mutex); 1101 1102 if (iocb->ki_flags & IOCB_DIRECT) { 1103 size_t count = iov_iter_count(to); 1104 1105 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 1106 ret = -EINVAL; 1107 goto inode_unlock; 1108 } 1109 file_accessed(iocb->ki_filp); 1110 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 1111 &zonefs_read_dio_ops, 0, NULL, 0); 1112 } else { 1113 ret = generic_file_read_iter(iocb, to); 1114 if (ret == -EIO) 1115 zonefs_io_error(inode, false); 1116 } 1117 1118 inode_unlock: 1119 inode_unlock_shared(inode); 1120 1121 return ret; 1122 } 1123 1124 /* 1125 * Write open accounting is done only for sequential files. 1126 */ 1127 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 1128 struct file *file) 1129 { 1130 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1131 1132 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1133 return false; 1134 1135 if (!(file->f_mode & FMODE_WRITE)) 1136 return false; 1137 1138 return true; 1139 } 1140 1141 static int zonefs_seq_file_write_open(struct inode *inode) 1142 { 1143 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1144 int ret = 0; 1145 1146 mutex_lock(&zi->i_truncate_mutex); 1147 1148 if (!zi->i_wr_refcnt) { 1149 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1150 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 1151 1152 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1153 1154 if (sbi->s_max_wro_seq_files 1155 && wro > sbi->s_max_wro_seq_files) { 1156 atomic_dec(&sbi->s_wro_seq_files); 1157 ret = -EBUSY; 1158 goto unlock; 1159 } 1160 1161 if (i_size_read(inode) < zi->i_max_size) { 1162 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1163 if (ret) { 1164 atomic_dec(&sbi->s_wro_seq_files); 1165 goto unlock; 1166 } 1167 zi->i_flags |= ZONEFS_ZONE_OPEN; 1168 zonefs_account_active(inode); 1169 } 1170 } 1171 } 1172 1173 zi->i_wr_refcnt++; 1174 1175 unlock: 1176 mutex_unlock(&zi->i_truncate_mutex); 1177 1178 return ret; 1179 } 1180 1181 static int zonefs_file_open(struct inode *inode, struct file *file) 1182 { 1183 int ret; 1184 1185 ret = generic_file_open(inode, file); 1186 if (ret) 1187 return ret; 1188 1189 if (zonefs_seq_file_need_wro(inode, file)) 1190 return zonefs_seq_file_write_open(inode); 1191 1192 return 0; 1193 } 1194 1195 static void zonefs_seq_file_write_close(struct inode *inode) 1196 { 1197 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1198 struct super_block *sb = inode->i_sb; 1199 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1200 int ret = 0; 1201 1202 mutex_lock(&zi->i_truncate_mutex); 1203 1204 zi->i_wr_refcnt--; 1205 if (zi->i_wr_refcnt) 1206 goto unlock; 1207 1208 /* 1209 * The file zone may not be open anymore (e.g. the file was truncated to 1210 * its maximum size or it was fully written). For this case, we only 1211 * need to decrement the write open count. 1212 */ 1213 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 1214 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1215 if (ret) { 1216 __zonefs_io_error(inode, false); 1217 /* 1218 * Leaving zones explicitly open may lead to a state 1219 * where most zones cannot be written (zone resources 1220 * exhausted). So take preventive action by remounting 1221 * read-only. 1222 */ 1223 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1224 !(sb->s_flags & SB_RDONLY)) { 1225 zonefs_warn(sb, 1226 "closing zone at %llu failed %d\n", 1227 zi->i_zsector, ret); 1228 zonefs_warn(sb, 1229 "remounting filesystem read-only\n"); 1230 sb->s_flags |= SB_RDONLY; 1231 } 1232 goto unlock; 1233 } 1234 1235 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1236 zonefs_account_active(inode); 1237 } 1238 1239 atomic_dec(&sbi->s_wro_seq_files); 1240 1241 unlock: 1242 mutex_unlock(&zi->i_truncate_mutex); 1243 } 1244 1245 static int zonefs_file_release(struct inode *inode, struct file *file) 1246 { 1247 /* 1248 * If we explicitly open a zone we must close it again as well, but the 1249 * zone management operation can fail (either due to an IO error or as 1250 * the zone has gone offline or read-only). Make sure we don't fail the 1251 * close(2) for user-space. 1252 */ 1253 if (zonefs_seq_file_need_wro(inode, file)) 1254 zonefs_seq_file_write_close(inode); 1255 1256 return 0; 1257 } 1258 1259 static const struct file_operations zonefs_file_operations = { 1260 .open = zonefs_file_open, 1261 .release = zonefs_file_release, 1262 .fsync = zonefs_file_fsync, 1263 .mmap = zonefs_file_mmap, 1264 .llseek = zonefs_file_llseek, 1265 .read_iter = zonefs_file_read_iter, 1266 .write_iter = zonefs_file_write_iter, 1267 .splice_read = generic_file_splice_read, 1268 .splice_write = iter_file_splice_write, 1269 .iopoll = iocb_bio_iopoll, 1270 }; 1271 1272 static struct kmem_cache *zonefs_inode_cachep; 1273 1274 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1275 { 1276 struct zonefs_inode_info *zi; 1277 1278 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1279 if (!zi) 1280 return NULL; 1281 1282 inode_init_once(&zi->i_vnode); 1283 mutex_init(&zi->i_truncate_mutex); 1284 zi->i_wr_refcnt = 0; 1285 zi->i_flags = 0; 1286 1287 return &zi->i_vnode; 1288 } 1289 1290 static void zonefs_free_inode(struct inode *inode) 1291 { 1292 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1293 } 1294 1295 /* 1296 * File system stat. 1297 */ 1298 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1299 { 1300 struct super_block *sb = dentry->d_sb; 1301 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1302 enum zonefs_ztype t; 1303 1304 buf->f_type = ZONEFS_MAGIC; 1305 buf->f_bsize = sb->s_blocksize; 1306 buf->f_namelen = ZONEFS_NAME_MAX; 1307 1308 spin_lock(&sbi->s_lock); 1309 1310 buf->f_blocks = sbi->s_blocks; 1311 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1312 buf->f_bfree = 0; 1313 else 1314 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1315 buf->f_bavail = buf->f_bfree; 1316 1317 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1318 if (sbi->s_nr_files[t]) 1319 buf->f_files += sbi->s_nr_files[t] + 1; 1320 } 1321 buf->f_ffree = 0; 1322 1323 spin_unlock(&sbi->s_lock); 1324 1325 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1326 1327 return 0; 1328 } 1329 1330 enum { 1331 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1332 Opt_explicit_open, Opt_err, 1333 }; 1334 1335 static const match_table_t tokens = { 1336 { Opt_errors_ro, "errors=remount-ro"}, 1337 { Opt_errors_zro, "errors=zone-ro"}, 1338 { Opt_errors_zol, "errors=zone-offline"}, 1339 { Opt_errors_repair, "errors=repair"}, 1340 { Opt_explicit_open, "explicit-open" }, 1341 { Opt_err, NULL} 1342 }; 1343 1344 static int zonefs_parse_options(struct super_block *sb, char *options) 1345 { 1346 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1347 substring_t args[MAX_OPT_ARGS]; 1348 char *p; 1349 1350 if (!options) 1351 return 0; 1352 1353 while ((p = strsep(&options, ",")) != NULL) { 1354 int token; 1355 1356 if (!*p) 1357 continue; 1358 1359 token = match_token(p, tokens, args); 1360 switch (token) { 1361 case Opt_errors_ro: 1362 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1363 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1364 break; 1365 case Opt_errors_zro: 1366 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1367 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1368 break; 1369 case Opt_errors_zol: 1370 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1371 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1372 break; 1373 case Opt_errors_repair: 1374 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1375 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1376 break; 1377 case Opt_explicit_open: 1378 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1379 break; 1380 default: 1381 return -EINVAL; 1382 } 1383 } 1384 1385 return 0; 1386 } 1387 1388 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1389 { 1390 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1391 1392 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1393 seq_puts(seq, ",errors=remount-ro"); 1394 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1395 seq_puts(seq, ",errors=zone-ro"); 1396 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1397 seq_puts(seq, ",errors=zone-offline"); 1398 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1399 seq_puts(seq, ",errors=repair"); 1400 1401 return 0; 1402 } 1403 1404 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1405 { 1406 sync_filesystem(sb); 1407 1408 return zonefs_parse_options(sb, data); 1409 } 1410 1411 static const struct super_operations zonefs_sops = { 1412 .alloc_inode = zonefs_alloc_inode, 1413 .free_inode = zonefs_free_inode, 1414 .statfs = zonefs_statfs, 1415 .remount_fs = zonefs_remount, 1416 .show_options = zonefs_show_options, 1417 }; 1418 1419 static const struct inode_operations zonefs_dir_inode_operations = { 1420 .lookup = simple_lookup, 1421 .setattr = zonefs_inode_setattr, 1422 }; 1423 1424 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1425 enum zonefs_ztype type) 1426 { 1427 struct super_block *sb = parent->i_sb; 1428 1429 inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1; 1430 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1431 inode->i_op = &zonefs_dir_inode_operations; 1432 inode->i_fop = &simple_dir_operations; 1433 set_nlink(inode, 2); 1434 inc_nlink(parent); 1435 } 1436 1437 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1438 enum zonefs_ztype type) 1439 { 1440 struct super_block *sb = inode->i_sb; 1441 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1442 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1443 int ret = 0; 1444 1445 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1446 inode->i_mode = S_IFREG | sbi->s_perm; 1447 1448 zi->i_ztype = type; 1449 zi->i_zsector = zone->start; 1450 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1451 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT && 1452 !(sbi->s_features & ZONEFS_F_AGGRCNV)) { 1453 zonefs_err(sb, 1454 "zone size %llu doesn't match device's zone sectors %llu\n", 1455 zi->i_zone_size, 1456 bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT); 1457 return -EINVAL; 1458 } 1459 1460 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1461 zone->capacity << SECTOR_SHIFT); 1462 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1463 1464 inode->i_uid = sbi->s_uid; 1465 inode->i_gid = sbi->s_gid; 1466 inode->i_size = zi->i_wpoffset; 1467 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1468 1469 inode->i_op = &zonefs_file_inode_operations; 1470 inode->i_fop = &zonefs_file_operations; 1471 inode->i_mapping->a_ops = &zonefs_file_aops; 1472 1473 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1474 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1475 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1476 1477 mutex_lock(&zi->i_truncate_mutex); 1478 1479 /* 1480 * For sequential zones, make sure that any open zone is closed first 1481 * to ensure that the initial number of open zones is 0, in sync with 1482 * the open zone accounting done when the mount option 1483 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used. 1484 */ 1485 if (type == ZONEFS_ZTYPE_SEQ && 1486 (zone->cond == BLK_ZONE_COND_IMP_OPEN || 1487 zone->cond == BLK_ZONE_COND_EXP_OPEN)) { 1488 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1489 if (ret) 1490 goto unlock; 1491 } 1492 1493 zonefs_account_active(inode); 1494 1495 unlock: 1496 mutex_unlock(&zi->i_truncate_mutex); 1497 1498 return ret; 1499 } 1500 1501 static struct dentry *zonefs_create_inode(struct dentry *parent, 1502 const char *name, struct blk_zone *zone, 1503 enum zonefs_ztype type) 1504 { 1505 struct inode *dir = d_inode(parent); 1506 struct dentry *dentry; 1507 struct inode *inode; 1508 int ret = -ENOMEM; 1509 1510 dentry = d_alloc_name(parent, name); 1511 if (!dentry) 1512 return ERR_PTR(ret); 1513 1514 inode = new_inode(parent->d_sb); 1515 if (!inode) 1516 goto dput; 1517 1518 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1519 if (zone) { 1520 ret = zonefs_init_file_inode(inode, zone, type); 1521 if (ret) { 1522 iput(inode); 1523 goto dput; 1524 } 1525 } else { 1526 zonefs_init_dir_inode(dir, inode, type); 1527 } 1528 1529 d_add(dentry, inode); 1530 dir->i_size++; 1531 1532 return dentry; 1533 1534 dput: 1535 dput(dentry); 1536 1537 return ERR_PTR(ret); 1538 } 1539 1540 struct zonefs_zone_data { 1541 struct super_block *sb; 1542 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1543 struct blk_zone *zones; 1544 }; 1545 1546 /* 1547 * Create a zone group and populate it with zone files. 1548 */ 1549 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1550 enum zonefs_ztype type) 1551 { 1552 struct super_block *sb = zd->sb; 1553 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1554 struct blk_zone *zone, *next, *end; 1555 const char *zgroup_name; 1556 char *file_name; 1557 struct dentry *dir, *dent; 1558 unsigned int n = 0; 1559 int ret; 1560 1561 /* If the group is empty, there is nothing to do */ 1562 if (!zd->nr_zones[type]) 1563 return 0; 1564 1565 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1566 if (!file_name) 1567 return -ENOMEM; 1568 1569 if (type == ZONEFS_ZTYPE_CNV) 1570 zgroup_name = "cnv"; 1571 else 1572 zgroup_name = "seq"; 1573 1574 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1575 if (IS_ERR(dir)) { 1576 ret = PTR_ERR(dir); 1577 goto free; 1578 } 1579 1580 /* 1581 * The first zone contains the super block: skip it. 1582 */ 1583 end = zd->zones + bdev_nr_zones(sb->s_bdev); 1584 for (zone = &zd->zones[1]; zone < end; zone = next) { 1585 1586 next = zone + 1; 1587 if (zonefs_zone_type(zone) != type) 1588 continue; 1589 1590 /* 1591 * For conventional zones, contiguous zones can be aggregated 1592 * together to form larger files. Note that this overwrites the 1593 * length of the first zone of the set of contiguous zones 1594 * aggregated together. If one offline or read-only zone is 1595 * found, assume that all zones aggregated have the same 1596 * condition. 1597 */ 1598 if (type == ZONEFS_ZTYPE_CNV && 1599 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1600 for (; next < end; next++) { 1601 if (zonefs_zone_type(next) != type) 1602 break; 1603 zone->len += next->len; 1604 zone->capacity += next->capacity; 1605 if (next->cond == BLK_ZONE_COND_READONLY && 1606 zone->cond != BLK_ZONE_COND_OFFLINE) 1607 zone->cond = BLK_ZONE_COND_READONLY; 1608 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1609 zone->cond = BLK_ZONE_COND_OFFLINE; 1610 } 1611 if (zone->capacity != zone->len) { 1612 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1613 ret = -EINVAL; 1614 goto free; 1615 } 1616 } 1617 1618 /* 1619 * Use the file number within its group as file name. 1620 */ 1621 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1622 dent = zonefs_create_inode(dir, file_name, zone, type); 1623 if (IS_ERR(dent)) { 1624 ret = PTR_ERR(dent); 1625 goto free; 1626 } 1627 1628 n++; 1629 } 1630 1631 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1632 zgroup_name, n, n > 1 ? "s" : ""); 1633 1634 sbi->s_nr_files[type] = n; 1635 ret = 0; 1636 1637 free: 1638 kfree(file_name); 1639 1640 return ret; 1641 } 1642 1643 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1644 void *data) 1645 { 1646 struct zonefs_zone_data *zd = data; 1647 1648 /* 1649 * Count the number of usable zones: the first zone at index 0 contains 1650 * the super block and is ignored. 1651 */ 1652 switch (zone->type) { 1653 case BLK_ZONE_TYPE_CONVENTIONAL: 1654 zone->wp = zone->start + zone->len; 1655 if (idx) 1656 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1657 break; 1658 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1659 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1660 if (idx) 1661 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1662 break; 1663 default: 1664 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1665 zone->type); 1666 return -EIO; 1667 } 1668 1669 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1670 1671 return 0; 1672 } 1673 1674 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1675 { 1676 struct block_device *bdev = zd->sb->s_bdev; 1677 int ret; 1678 1679 zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone), 1680 GFP_KERNEL); 1681 if (!zd->zones) 1682 return -ENOMEM; 1683 1684 /* Get zones information from the device */ 1685 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1686 zonefs_get_zone_info_cb, zd); 1687 if (ret < 0) { 1688 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1689 return ret; 1690 } 1691 1692 if (ret != bdev_nr_zones(bdev)) { 1693 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1694 ret, bdev_nr_zones(bdev)); 1695 return -EIO; 1696 } 1697 1698 return 0; 1699 } 1700 1701 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1702 { 1703 kvfree(zd->zones); 1704 } 1705 1706 /* 1707 * Read super block information from the device. 1708 */ 1709 static int zonefs_read_super(struct super_block *sb) 1710 { 1711 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1712 struct zonefs_super *super; 1713 u32 crc, stored_crc; 1714 struct page *page; 1715 struct bio_vec bio_vec; 1716 struct bio bio; 1717 int ret; 1718 1719 page = alloc_page(GFP_KERNEL); 1720 if (!page) 1721 return -ENOMEM; 1722 1723 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1724 bio.bi_iter.bi_sector = 0; 1725 bio_add_page(&bio, page, PAGE_SIZE, 0); 1726 1727 ret = submit_bio_wait(&bio); 1728 if (ret) 1729 goto free_page; 1730 1731 super = page_address(page); 1732 1733 ret = -EINVAL; 1734 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1735 goto free_page; 1736 1737 stored_crc = le32_to_cpu(super->s_crc); 1738 super->s_crc = 0; 1739 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1740 if (crc != stored_crc) { 1741 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1742 crc, stored_crc); 1743 goto free_page; 1744 } 1745 1746 sbi->s_features = le64_to_cpu(super->s_features); 1747 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1748 zonefs_err(sb, "Unknown features set 0x%llx\n", 1749 sbi->s_features); 1750 goto free_page; 1751 } 1752 1753 if (sbi->s_features & ZONEFS_F_UID) { 1754 sbi->s_uid = make_kuid(current_user_ns(), 1755 le32_to_cpu(super->s_uid)); 1756 if (!uid_valid(sbi->s_uid)) { 1757 zonefs_err(sb, "Invalid UID feature\n"); 1758 goto free_page; 1759 } 1760 } 1761 1762 if (sbi->s_features & ZONEFS_F_GID) { 1763 sbi->s_gid = make_kgid(current_user_ns(), 1764 le32_to_cpu(super->s_gid)); 1765 if (!gid_valid(sbi->s_gid)) { 1766 zonefs_err(sb, "Invalid GID feature\n"); 1767 goto free_page; 1768 } 1769 } 1770 1771 if (sbi->s_features & ZONEFS_F_PERM) 1772 sbi->s_perm = le32_to_cpu(super->s_perm); 1773 1774 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1775 zonefs_err(sb, "Reserved area is being used\n"); 1776 goto free_page; 1777 } 1778 1779 import_uuid(&sbi->s_uuid, super->s_uuid); 1780 ret = 0; 1781 1782 free_page: 1783 __free_page(page); 1784 1785 return ret; 1786 } 1787 1788 /* 1789 * Check that the device is zoned. If it is, get the list of zones and create 1790 * sub-directories and files according to the device zone configuration and 1791 * format options. 1792 */ 1793 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1794 { 1795 struct zonefs_zone_data zd; 1796 struct zonefs_sb_info *sbi; 1797 struct inode *inode; 1798 enum zonefs_ztype t; 1799 int ret; 1800 1801 if (!bdev_is_zoned(sb->s_bdev)) { 1802 zonefs_err(sb, "Not a zoned block device\n"); 1803 return -EINVAL; 1804 } 1805 1806 /* 1807 * Initialize super block information: the maximum file size is updated 1808 * when the zone files are created so that the format option 1809 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1810 * beyond the zone size is taken into account. 1811 */ 1812 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1813 if (!sbi) 1814 return -ENOMEM; 1815 1816 spin_lock_init(&sbi->s_lock); 1817 sb->s_fs_info = sbi; 1818 sb->s_magic = ZONEFS_MAGIC; 1819 sb->s_maxbytes = 0; 1820 sb->s_op = &zonefs_sops; 1821 sb->s_time_gran = 1; 1822 1823 /* 1824 * The block size is set to the device zone write granularity to ensure 1825 * that write operations are always aligned according to the device 1826 * interface constraints. 1827 */ 1828 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1829 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1830 sbi->s_uid = GLOBAL_ROOT_UID; 1831 sbi->s_gid = GLOBAL_ROOT_GID; 1832 sbi->s_perm = 0640; 1833 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1834 1835 atomic_set(&sbi->s_wro_seq_files, 0); 1836 sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev); 1837 atomic_set(&sbi->s_active_seq_files, 0); 1838 sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev); 1839 1840 ret = zonefs_read_super(sb); 1841 if (ret) 1842 return ret; 1843 1844 ret = zonefs_parse_options(sb, data); 1845 if (ret) 1846 return ret; 1847 1848 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1849 zd.sb = sb; 1850 ret = zonefs_get_zone_info(&zd); 1851 if (ret) 1852 goto cleanup; 1853 1854 ret = zonefs_sysfs_register(sb); 1855 if (ret) 1856 goto cleanup; 1857 1858 zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev)); 1859 1860 if (!sbi->s_max_wro_seq_files && 1861 !sbi->s_max_active_seq_files && 1862 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1863 zonefs_info(sb, 1864 "No open and active zone limits. Ignoring explicit_open mount option\n"); 1865 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1866 } 1867 1868 /* Create root directory inode */ 1869 ret = -ENOMEM; 1870 inode = new_inode(sb); 1871 if (!inode) 1872 goto cleanup; 1873 1874 inode->i_ino = bdev_nr_zones(sb->s_bdev); 1875 inode->i_mode = S_IFDIR | 0555; 1876 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1877 inode->i_op = &zonefs_dir_inode_operations; 1878 inode->i_fop = &simple_dir_operations; 1879 set_nlink(inode, 2); 1880 1881 sb->s_root = d_make_root(inode); 1882 if (!sb->s_root) 1883 goto cleanup; 1884 1885 /* Create and populate files in zone groups directories */ 1886 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1887 ret = zonefs_create_zgroup(&zd, t); 1888 if (ret) 1889 break; 1890 } 1891 1892 cleanup: 1893 zonefs_cleanup_zone_info(&zd); 1894 1895 return ret; 1896 } 1897 1898 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1899 int flags, const char *dev_name, void *data) 1900 { 1901 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1902 } 1903 1904 static void zonefs_kill_super(struct super_block *sb) 1905 { 1906 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1907 1908 if (sb->s_root) 1909 d_genocide(sb->s_root); 1910 1911 zonefs_sysfs_unregister(sb); 1912 kill_block_super(sb); 1913 kfree(sbi); 1914 } 1915 1916 /* 1917 * File system definition and registration. 1918 */ 1919 static struct file_system_type zonefs_type = { 1920 .owner = THIS_MODULE, 1921 .name = "zonefs", 1922 .mount = zonefs_mount, 1923 .kill_sb = zonefs_kill_super, 1924 .fs_flags = FS_REQUIRES_DEV, 1925 }; 1926 1927 static int __init zonefs_init_inodecache(void) 1928 { 1929 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1930 sizeof(struct zonefs_inode_info), 0, 1931 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1932 NULL); 1933 if (zonefs_inode_cachep == NULL) 1934 return -ENOMEM; 1935 return 0; 1936 } 1937 1938 static void zonefs_destroy_inodecache(void) 1939 { 1940 /* 1941 * Make sure all delayed rcu free inodes are flushed before we 1942 * destroy the inode cache. 1943 */ 1944 rcu_barrier(); 1945 kmem_cache_destroy(zonefs_inode_cachep); 1946 } 1947 1948 static int __init zonefs_init(void) 1949 { 1950 int ret; 1951 1952 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1953 1954 ret = zonefs_init_inodecache(); 1955 if (ret) 1956 return ret; 1957 1958 ret = zonefs_sysfs_init(); 1959 if (ret) 1960 goto destroy_inodecache; 1961 1962 ret = register_filesystem(&zonefs_type); 1963 if (ret) 1964 goto sysfs_exit; 1965 1966 return 0; 1967 1968 sysfs_exit: 1969 zonefs_sysfs_exit(); 1970 destroy_inodecache: 1971 zonefs_destroy_inodecache(); 1972 1973 return ret; 1974 } 1975 1976 static void __exit zonefs_exit(void) 1977 { 1978 unregister_filesystem(&zonefs_type); 1979 zonefs_sysfs_exit(); 1980 zonefs_destroy_inodecache(); 1981 } 1982 1983 MODULE_AUTHOR("Damien Le Moal"); 1984 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1985 MODULE_LICENSE("GPL"); 1986 MODULE_ALIAS_FS("zonefs"); 1987 module_init(zonefs_init); 1988 module_exit(zonefs_exit); 1989