1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 trace_zonefs_zone_mgmt(inode, op); 39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 41 if (ret) { 42 zonefs_err(inode->i_sb, 43 "Zone management operation %s at %llu failed %d\n", 44 blk_op_str(op), zi->i_zsector, ret); 45 return ret; 46 } 47 48 return 0; 49 } 50 51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 52 { 53 struct zonefs_inode_info *zi = ZONEFS_I(inode); 54 55 i_size_write(inode, isize); 56 /* 57 * A full zone is no longer open/active and does not need 58 * explicit closing. 59 */ 60 if (isize >= zi->i_max_size) 61 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 62 } 63 64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 65 unsigned int flags, struct iomap *iomap, 66 struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct super_block *sb = inode->i_sb; 70 loff_t isize; 71 72 /* All I/Os should always be within the file maximum size */ 73 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 74 return -EIO; 75 76 /* 77 * Sequential zones can only accept direct writes. This is already 78 * checked when writes are issued, so warn if we see a page writeback 79 * operation. 80 */ 81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 isize = i_size_read(inode); 92 if (offset >= isize) 93 iomap->type = IOMAP_UNWRITTEN; 94 else 95 iomap->type = IOMAP_MAPPED; 96 if (flags & IOMAP_WRITE) 97 length = zi->i_max_size - offset; 98 else 99 length = min(length, isize - offset); 100 mutex_unlock(&zi->i_truncate_mutex); 101 102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 104 iomap->bdev = inode->i_sb->s_bdev; 105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 106 107 trace_zonefs_iomap_begin(inode, iomap); 108 109 return 0; 110 } 111 112 static const struct iomap_ops zonefs_iomap_ops = { 113 .iomap_begin = zonefs_iomap_begin, 114 }; 115 116 static int zonefs_readpage(struct file *unused, struct page *page) 117 { 118 return iomap_readpage(page, &zonefs_iomap_ops); 119 } 120 121 static void zonefs_readahead(struct readahead_control *rac) 122 { 123 iomap_readahead(rac, &zonefs_iomap_ops); 124 } 125 126 /* 127 * Map blocks for page writeback. This is used only on conventional zone files, 128 * which implies that the page range can only be within the fixed inode size. 129 */ 130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 131 struct inode *inode, loff_t offset) 132 { 133 struct zonefs_inode_info *zi = ZONEFS_I(inode); 134 135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 136 return -EIO; 137 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 138 return -EIO; 139 140 /* If the mapping is already OK, nothing needs to be done */ 141 if (offset >= wpc->iomap.offset && 142 offset < wpc->iomap.offset + wpc->iomap.length) 143 return 0; 144 145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 146 IOMAP_WRITE, &wpc->iomap, NULL); 147 } 148 149 static const struct iomap_writeback_ops zonefs_writeback_ops = { 150 .map_blocks = zonefs_map_blocks, 151 }; 152 153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_writepages(struct address_space *mapping, 161 struct writeback_control *wbc) 162 { 163 struct iomap_writepage_ctx wpc = { }; 164 165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 166 } 167 168 static int zonefs_swap_activate(struct swap_info_struct *sis, 169 struct file *swap_file, sector_t *span) 170 { 171 struct inode *inode = file_inode(swap_file); 172 struct zonefs_inode_info *zi = ZONEFS_I(inode); 173 174 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 175 zonefs_err(inode->i_sb, 176 "swap file: not a conventional zone file\n"); 177 return -EINVAL; 178 } 179 180 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops); 181 } 182 183 static const struct address_space_operations zonefs_file_aops = { 184 .readpage = zonefs_readpage, 185 .readahead = zonefs_readahead, 186 .writepage = zonefs_writepage, 187 .writepages = zonefs_writepages, 188 .set_page_dirty = iomap_set_page_dirty, 189 .releasepage = iomap_releasepage, 190 .invalidatepage = iomap_invalidatepage, 191 .migratepage = iomap_migrate_page, 192 .is_partially_uptodate = iomap_is_partially_uptodate, 193 .error_remove_page = generic_error_remove_page, 194 .direct_IO = noop_direct_IO, 195 .swap_activate = zonefs_swap_activate, 196 }; 197 198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 199 { 200 struct super_block *sb = inode->i_sb; 201 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 202 loff_t old_isize = i_size_read(inode); 203 loff_t nr_blocks; 204 205 if (new_isize == old_isize) 206 return; 207 208 spin_lock(&sbi->s_lock); 209 210 /* 211 * This may be called for an update after an IO error. 212 * So beware of the values seen. 213 */ 214 if (new_isize < old_isize) { 215 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 216 if (sbi->s_used_blocks > nr_blocks) 217 sbi->s_used_blocks -= nr_blocks; 218 else 219 sbi->s_used_blocks = 0; 220 } else { 221 sbi->s_used_blocks += 222 (new_isize - old_isize) >> sb->s_blocksize_bits; 223 if (sbi->s_used_blocks > sbi->s_blocks) 224 sbi->s_used_blocks = sbi->s_blocks; 225 } 226 227 spin_unlock(&sbi->s_lock); 228 } 229 230 /* 231 * Check a zone condition and adjust its file inode access permissions for 232 * offline and readonly zones. Return the inode size corresponding to the 233 * amount of readable data in the zone. 234 */ 235 static loff_t zonefs_check_zone_condition(struct inode *inode, 236 struct blk_zone *zone, bool warn, 237 bool mount) 238 { 239 struct zonefs_inode_info *zi = ZONEFS_I(inode); 240 241 switch (zone->cond) { 242 case BLK_ZONE_COND_OFFLINE: 243 /* 244 * Dead zone: make the inode immutable, disable all accesses 245 * and set the file size to 0 (zone wp set to zone start). 246 */ 247 if (warn) 248 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 249 inode->i_ino); 250 inode->i_flags |= S_IMMUTABLE; 251 inode->i_mode &= ~0777; 252 zone->wp = zone->start; 253 return 0; 254 case BLK_ZONE_COND_READONLY: 255 /* 256 * The write pointer of read-only zones is invalid. If such a 257 * zone is found during mount, the file size cannot be retrieved 258 * so we treat the zone as offline (mount == true case). 259 * Otherwise, keep the file size as it was when last updated 260 * so that the user can recover data. In both cases, writes are 261 * always disabled for the zone. 262 */ 263 if (warn) 264 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 265 inode->i_ino); 266 inode->i_flags |= S_IMMUTABLE; 267 if (mount) { 268 zone->cond = BLK_ZONE_COND_OFFLINE; 269 inode->i_mode &= ~0777; 270 zone->wp = zone->start; 271 return 0; 272 } 273 inode->i_mode &= ~0222; 274 return i_size_read(inode); 275 case BLK_ZONE_COND_FULL: 276 /* The write pointer of full zones is invalid. */ 277 return zi->i_max_size; 278 default: 279 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 280 return zi->i_max_size; 281 return (zone->wp - zone->start) << SECTOR_SHIFT; 282 } 283 } 284 285 struct zonefs_ioerr_data { 286 struct inode *inode; 287 bool write; 288 }; 289 290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 291 void *data) 292 { 293 struct zonefs_ioerr_data *err = data; 294 struct inode *inode = err->inode; 295 struct zonefs_inode_info *zi = ZONEFS_I(inode); 296 struct super_block *sb = inode->i_sb; 297 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 298 loff_t isize, data_size; 299 300 /* 301 * Check the zone condition: if the zone is not "bad" (offline or 302 * read-only), read errors are simply signaled to the IO issuer as long 303 * as there is no inconsistency between the inode size and the amount of 304 * data writen in the zone (data_size). 305 */ 306 data_size = zonefs_check_zone_condition(inode, zone, true, false); 307 isize = i_size_read(inode); 308 if (zone->cond != BLK_ZONE_COND_OFFLINE && 309 zone->cond != BLK_ZONE_COND_READONLY && 310 !err->write && isize == data_size) 311 return 0; 312 313 /* 314 * At this point, we detected either a bad zone or an inconsistency 315 * between the inode size and the amount of data written in the zone. 316 * For the latter case, the cause may be a write IO error or an external 317 * action on the device. Two error patterns exist: 318 * 1) The inode size is lower than the amount of data in the zone: 319 * a write operation partially failed and data was writen at the end 320 * of the file. This can happen in the case of a large direct IO 321 * needing several BIOs and/or write requests to be processed. 322 * 2) The inode size is larger than the amount of data in the zone: 323 * this can happen with a deferred write error with the use of the 324 * device side write cache after getting successful write IO 325 * completions. Other possibilities are (a) an external corruption, 326 * e.g. an application reset the zone directly, or (b) the device 327 * has a serious problem (e.g. firmware bug). 328 * 329 * In all cases, warn about inode size inconsistency and handle the 330 * IO error according to the zone condition and to the mount options. 331 */ 332 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 333 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 334 inode->i_ino, isize, data_size); 335 336 /* 337 * First handle bad zones signaled by hardware. The mount options 338 * errors=zone-ro and errors=zone-offline result in changing the 339 * zone condition to read-only and offline respectively, as if the 340 * condition was signaled by the hardware. 341 */ 342 if (zone->cond == BLK_ZONE_COND_OFFLINE || 343 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 344 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 345 inode->i_ino); 346 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 347 zone->cond = BLK_ZONE_COND_OFFLINE; 348 data_size = zonefs_check_zone_condition(inode, zone, 349 false, false); 350 } 351 } else if (zone->cond == BLK_ZONE_COND_READONLY || 352 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 353 zonefs_warn(sb, "inode %lu: write access disabled\n", 354 inode->i_ino); 355 if (zone->cond != BLK_ZONE_COND_READONLY) { 356 zone->cond = BLK_ZONE_COND_READONLY; 357 data_size = zonefs_check_zone_condition(inode, zone, 358 false, false); 359 } 360 } 361 362 /* 363 * If the filesystem is mounted with the explicit-open mount option, we 364 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 365 * the read-only or offline condition, to avoid attempting an explicit 366 * close of the zone when the inode file is closed. 367 */ 368 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 369 (zone->cond == BLK_ZONE_COND_OFFLINE || 370 zone->cond == BLK_ZONE_COND_READONLY)) 371 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 372 373 /* 374 * If error=remount-ro was specified, any error result in remounting 375 * the volume as read-only. 376 */ 377 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 378 zonefs_warn(sb, "remounting filesystem read-only\n"); 379 sb->s_flags |= SB_RDONLY; 380 } 381 382 /* 383 * Update block usage stats and the inode size to prevent access to 384 * invalid data. 385 */ 386 zonefs_update_stats(inode, data_size); 387 zonefs_i_size_write(inode, data_size); 388 zi->i_wpoffset = data_size; 389 390 return 0; 391 } 392 393 /* 394 * When an file IO error occurs, check the file zone to see if there is a change 395 * in the zone condition (e.g. offline or read-only). For a failed write to a 396 * sequential zone, the zone write pointer position must also be checked to 397 * eventually correct the file size and zonefs inode write pointer offset 398 * (which can be out of sync with the drive due to partial write failures). 399 */ 400 static void __zonefs_io_error(struct inode *inode, bool write) 401 { 402 struct zonefs_inode_info *zi = ZONEFS_I(inode); 403 struct super_block *sb = inode->i_sb; 404 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 405 unsigned int noio_flag; 406 unsigned int nr_zones = 407 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 408 struct zonefs_ioerr_data err = { 409 .inode = inode, 410 .write = write, 411 }; 412 int ret; 413 414 /* 415 * Memory allocations in blkdev_report_zones() can trigger a memory 416 * reclaim which may in turn cause a recursion into zonefs as well as 417 * struct request allocations for the same device. The former case may 418 * end up in a deadlock on the inode truncate mutex, while the latter 419 * may prevent IO forward progress. Executing the report zones under 420 * the GFP_NOIO context avoids both problems. 421 */ 422 noio_flag = memalloc_noio_save(); 423 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 424 zonefs_io_error_cb, &err); 425 if (ret != nr_zones) 426 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 427 inode->i_ino, ret); 428 memalloc_noio_restore(noio_flag); 429 } 430 431 static void zonefs_io_error(struct inode *inode, bool write) 432 { 433 struct zonefs_inode_info *zi = ZONEFS_I(inode); 434 435 mutex_lock(&zi->i_truncate_mutex); 436 __zonefs_io_error(inode, write); 437 mutex_unlock(&zi->i_truncate_mutex); 438 } 439 440 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 441 { 442 struct zonefs_inode_info *zi = ZONEFS_I(inode); 443 loff_t old_isize; 444 enum req_opf op; 445 int ret = 0; 446 447 /* 448 * Only sequential zone files can be truncated and truncation is allowed 449 * only down to a 0 size, which is equivalent to a zone reset, and to 450 * the maximum file size, which is equivalent to a zone finish. 451 */ 452 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 453 return -EPERM; 454 455 if (!isize) 456 op = REQ_OP_ZONE_RESET; 457 else if (isize == zi->i_max_size) 458 op = REQ_OP_ZONE_FINISH; 459 else 460 return -EPERM; 461 462 inode_dio_wait(inode); 463 464 /* Serialize against page faults */ 465 down_write(&zi->i_mmap_sem); 466 467 /* Serialize against zonefs_iomap_begin() */ 468 mutex_lock(&zi->i_truncate_mutex); 469 470 old_isize = i_size_read(inode); 471 if (isize == old_isize) 472 goto unlock; 473 474 ret = zonefs_zone_mgmt(inode, op); 475 if (ret) 476 goto unlock; 477 478 /* 479 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 480 * take care of open zones. 481 */ 482 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 483 /* 484 * Truncating a zone to EMPTY or FULL is the equivalent of 485 * closing the zone. For a truncation to 0, we need to 486 * re-open the zone to ensure new writes can be processed. 487 * For a truncation to the maximum file size, the zone is 488 * closed and writes cannot be accepted anymore, so clear 489 * the open flag. 490 */ 491 if (!isize) 492 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 493 else 494 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 495 } 496 497 zonefs_update_stats(inode, isize); 498 truncate_setsize(inode, isize); 499 zi->i_wpoffset = isize; 500 501 unlock: 502 mutex_unlock(&zi->i_truncate_mutex); 503 up_write(&zi->i_mmap_sem); 504 505 return ret; 506 } 507 508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 509 struct dentry *dentry, struct iattr *iattr) 510 { 511 struct inode *inode = d_inode(dentry); 512 int ret; 513 514 if (unlikely(IS_IMMUTABLE(inode))) 515 return -EPERM; 516 517 ret = setattr_prepare(&init_user_ns, dentry, iattr); 518 if (ret) 519 return ret; 520 521 /* 522 * Since files and directories cannot be created nor deleted, do not 523 * allow setting any write attributes on the sub-directories grouping 524 * files by zone type. 525 */ 526 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 527 (iattr->ia_mode & 0222)) 528 return -EPERM; 529 530 if (((iattr->ia_valid & ATTR_UID) && 531 !uid_eq(iattr->ia_uid, inode->i_uid)) || 532 ((iattr->ia_valid & ATTR_GID) && 533 !gid_eq(iattr->ia_gid, inode->i_gid))) { 534 ret = dquot_transfer(inode, iattr); 535 if (ret) 536 return ret; 537 } 538 539 if (iattr->ia_valid & ATTR_SIZE) { 540 ret = zonefs_file_truncate(inode, iattr->ia_size); 541 if (ret) 542 return ret; 543 } 544 545 setattr_copy(&init_user_ns, inode, iattr); 546 547 return 0; 548 } 549 550 static const struct inode_operations zonefs_file_inode_operations = { 551 .setattr = zonefs_inode_setattr, 552 }; 553 554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 555 int datasync) 556 { 557 struct inode *inode = file_inode(file); 558 int ret = 0; 559 560 if (unlikely(IS_IMMUTABLE(inode))) 561 return -EPERM; 562 563 /* 564 * Since only direct writes are allowed in sequential files, page cache 565 * flush is needed only for conventional zone files. 566 */ 567 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 568 ret = file_write_and_wait_range(file, start, end); 569 if (!ret) 570 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 571 572 if (ret) 573 zonefs_io_error(inode, true); 574 575 return ret; 576 } 577 578 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 579 { 580 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 581 vm_fault_t ret; 582 583 down_read(&zi->i_mmap_sem); 584 ret = filemap_fault(vmf); 585 up_read(&zi->i_mmap_sem); 586 587 return ret; 588 } 589 590 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 591 { 592 struct inode *inode = file_inode(vmf->vma->vm_file); 593 struct zonefs_inode_info *zi = ZONEFS_I(inode); 594 vm_fault_t ret; 595 596 if (unlikely(IS_IMMUTABLE(inode))) 597 return VM_FAULT_SIGBUS; 598 599 /* 600 * Sanity check: only conventional zone files can have shared 601 * writeable mappings. 602 */ 603 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 604 return VM_FAULT_NOPAGE; 605 606 sb_start_pagefault(inode->i_sb); 607 file_update_time(vmf->vma->vm_file); 608 609 /* Serialize against truncates */ 610 down_read(&zi->i_mmap_sem); 611 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 612 up_read(&zi->i_mmap_sem); 613 614 sb_end_pagefault(inode->i_sb); 615 return ret; 616 } 617 618 static const struct vm_operations_struct zonefs_file_vm_ops = { 619 .fault = zonefs_filemap_fault, 620 .map_pages = filemap_map_pages, 621 .page_mkwrite = zonefs_filemap_page_mkwrite, 622 }; 623 624 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 625 { 626 /* 627 * Conventional zones accept random writes, so their files can support 628 * shared writable mappings. For sequential zone files, only read 629 * mappings are possible since there are no guarantees for write 630 * ordering between msync() and page cache writeback. 631 */ 632 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 633 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 634 return -EINVAL; 635 636 file_accessed(file); 637 vma->vm_ops = &zonefs_file_vm_ops; 638 639 return 0; 640 } 641 642 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 643 { 644 loff_t isize = i_size_read(file_inode(file)); 645 646 /* 647 * Seeks are limited to below the zone size for conventional zones 648 * and below the zone write pointer for sequential zones. In both 649 * cases, this limit is the inode size. 650 */ 651 return generic_file_llseek_size(file, offset, whence, isize, isize); 652 } 653 654 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 655 int error, unsigned int flags) 656 { 657 struct inode *inode = file_inode(iocb->ki_filp); 658 struct zonefs_inode_info *zi = ZONEFS_I(inode); 659 660 if (error) { 661 zonefs_io_error(inode, true); 662 return error; 663 } 664 665 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 666 /* 667 * Note that we may be seeing completions out of order, 668 * but that is not a problem since a write completed 669 * successfully necessarily means that all preceding writes 670 * were also successful. So we can safely increase the inode 671 * size to the write end location. 672 */ 673 mutex_lock(&zi->i_truncate_mutex); 674 if (i_size_read(inode) < iocb->ki_pos + size) { 675 zonefs_update_stats(inode, iocb->ki_pos + size); 676 zonefs_i_size_write(inode, iocb->ki_pos + size); 677 } 678 mutex_unlock(&zi->i_truncate_mutex); 679 } 680 681 return 0; 682 } 683 684 static const struct iomap_dio_ops zonefs_write_dio_ops = { 685 .end_io = zonefs_file_write_dio_end_io, 686 }; 687 688 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 689 { 690 struct inode *inode = file_inode(iocb->ki_filp); 691 struct zonefs_inode_info *zi = ZONEFS_I(inode); 692 struct block_device *bdev = inode->i_sb->s_bdev; 693 unsigned int max; 694 struct bio *bio; 695 ssize_t size; 696 int nr_pages; 697 ssize_t ret; 698 699 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 700 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 701 iov_iter_truncate(from, max); 702 703 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 704 if (!nr_pages) 705 return 0; 706 707 bio = bio_alloc(GFP_NOFS, nr_pages); 708 if (!bio) 709 return -ENOMEM; 710 711 bio_set_dev(bio, bdev); 712 bio->bi_iter.bi_sector = zi->i_zsector; 713 bio->bi_write_hint = iocb->ki_hint; 714 bio->bi_ioprio = iocb->ki_ioprio; 715 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE; 716 if (iocb->ki_flags & IOCB_DSYNC) 717 bio->bi_opf |= REQ_FUA; 718 719 ret = bio_iov_iter_get_pages(bio, from); 720 if (unlikely(ret)) 721 goto out_release; 722 723 size = bio->bi_iter.bi_size; 724 task_io_account_write(size); 725 726 if (iocb->ki_flags & IOCB_HIPRI) 727 bio_set_polled(bio, iocb); 728 729 ret = submit_bio_wait(bio); 730 731 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 732 trace_zonefs_file_dio_append(inode, size, ret); 733 734 out_release: 735 bio_release_pages(bio, false); 736 bio_put(bio); 737 738 if (ret >= 0) { 739 iocb->ki_pos += size; 740 return size; 741 } 742 743 return ret; 744 } 745 746 /* 747 * Do not exceed the LFS limits nor the file zone size. If pos is under the 748 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 749 */ 750 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 751 loff_t count) 752 { 753 struct inode *inode = file_inode(file); 754 struct zonefs_inode_info *zi = ZONEFS_I(inode); 755 loff_t limit = rlimit(RLIMIT_FSIZE); 756 loff_t max_size = zi->i_max_size; 757 758 if (limit != RLIM_INFINITY) { 759 if (pos >= limit) { 760 send_sig(SIGXFSZ, current, 0); 761 return -EFBIG; 762 } 763 count = min(count, limit - pos); 764 } 765 766 if (!(file->f_flags & O_LARGEFILE)) 767 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 768 769 if (unlikely(pos >= max_size)) 770 return -EFBIG; 771 772 return min(count, max_size - pos); 773 } 774 775 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 776 { 777 struct file *file = iocb->ki_filp; 778 struct inode *inode = file_inode(file); 779 struct zonefs_inode_info *zi = ZONEFS_I(inode); 780 loff_t count; 781 782 if (IS_SWAPFILE(inode)) 783 return -ETXTBSY; 784 785 if (!iov_iter_count(from)) 786 return 0; 787 788 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 789 return -EINVAL; 790 791 if (iocb->ki_flags & IOCB_APPEND) { 792 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 793 return -EINVAL; 794 mutex_lock(&zi->i_truncate_mutex); 795 iocb->ki_pos = zi->i_wpoffset; 796 mutex_unlock(&zi->i_truncate_mutex); 797 } 798 799 count = zonefs_write_check_limits(file, iocb->ki_pos, 800 iov_iter_count(from)); 801 if (count < 0) 802 return count; 803 804 iov_iter_truncate(from, count); 805 return iov_iter_count(from); 806 } 807 808 /* 809 * Handle direct writes. For sequential zone files, this is the only possible 810 * write path. For these files, check that the user is issuing writes 811 * sequentially from the end of the file. This code assumes that the block layer 812 * delivers write requests to the device in sequential order. This is always the 813 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 814 * elevator feature is being used (e.g. mq-deadline). The block layer always 815 * automatically select such an elevator for zoned block devices during the 816 * device initialization. 817 */ 818 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 819 { 820 struct inode *inode = file_inode(iocb->ki_filp); 821 struct zonefs_inode_info *zi = ZONEFS_I(inode); 822 struct super_block *sb = inode->i_sb; 823 bool sync = is_sync_kiocb(iocb); 824 bool append = false; 825 ssize_t ret, count; 826 827 /* 828 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 829 * as this can cause write reordering (e.g. the first aio gets EAGAIN 830 * on the inode lock but the second goes through but is now unaligned). 831 */ 832 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 833 (iocb->ki_flags & IOCB_NOWAIT)) 834 return -EOPNOTSUPP; 835 836 if (iocb->ki_flags & IOCB_NOWAIT) { 837 if (!inode_trylock(inode)) 838 return -EAGAIN; 839 } else { 840 inode_lock(inode); 841 } 842 843 count = zonefs_write_checks(iocb, from); 844 if (count <= 0) { 845 ret = count; 846 goto inode_unlock; 847 } 848 849 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 850 ret = -EINVAL; 851 goto inode_unlock; 852 } 853 854 /* Enforce sequential writes (append only) in sequential zones */ 855 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 856 mutex_lock(&zi->i_truncate_mutex); 857 if (iocb->ki_pos != zi->i_wpoffset) { 858 mutex_unlock(&zi->i_truncate_mutex); 859 ret = -EINVAL; 860 goto inode_unlock; 861 } 862 mutex_unlock(&zi->i_truncate_mutex); 863 append = sync; 864 } 865 866 if (append) 867 ret = zonefs_file_dio_append(iocb, from); 868 else 869 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 870 &zonefs_write_dio_ops, 0); 871 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 872 (ret > 0 || ret == -EIOCBQUEUED)) { 873 if (ret > 0) 874 count = ret; 875 mutex_lock(&zi->i_truncate_mutex); 876 zi->i_wpoffset += count; 877 mutex_unlock(&zi->i_truncate_mutex); 878 } 879 880 inode_unlock: 881 inode_unlock(inode); 882 883 return ret; 884 } 885 886 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 887 struct iov_iter *from) 888 { 889 struct inode *inode = file_inode(iocb->ki_filp); 890 struct zonefs_inode_info *zi = ZONEFS_I(inode); 891 ssize_t ret; 892 893 /* 894 * Direct IO writes are mandatory for sequential zone files so that the 895 * write IO issuing order is preserved. 896 */ 897 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 898 return -EIO; 899 900 if (iocb->ki_flags & IOCB_NOWAIT) { 901 if (!inode_trylock(inode)) 902 return -EAGAIN; 903 } else { 904 inode_lock(inode); 905 } 906 907 ret = zonefs_write_checks(iocb, from); 908 if (ret <= 0) 909 goto inode_unlock; 910 911 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 912 if (ret > 0) 913 iocb->ki_pos += ret; 914 else if (ret == -EIO) 915 zonefs_io_error(inode, true); 916 917 inode_unlock: 918 inode_unlock(inode); 919 if (ret > 0) 920 ret = generic_write_sync(iocb, ret); 921 922 return ret; 923 } 924 925 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 926 { 927 struct inode *inode = file_inode(iocb->ki_filp); 928 929 if (unlikely(IS_IMMUTABLE(inode))) 930 return -EPERM; 931 932 if (sb_rdonly(inode->i_sb)) 933 return -EROFS; 934 935 /* Write operations beyond the zone size are not allowed */ 936 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 937 return -EFBIG; 938 939 if (iocb->ki_flags & IOCB_DIRECT) { 940 ssize_t ret = zonefs_file_dio_write(iocb, from); 941 if (ret != -ENOTBLK) 942 return ret; 943 } 944 945 return zonefs_file_buffered_write(iocb, from); 946 } 947 948 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 949 int error, unsigned int flags) 950 { 951 if (error) { 952 zonefs_io_error(file_inode(iocb->ki_filp), false); 953 return error; 954 } 955 956 return 0; 957 } 958 959 static const struct iomap_dio_ops zonefs_read_dio_ops = { 960 .end_io = zonefs_file_read_dio_end_io, 961 }; 962 963 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 964 { 965 struct inode *inode = file_inode(iocb->ki_filp); 966 struct zonefs_inode_info *zi = ZONEFS_I(inode); 967 struct super_block *sb = inode->i_sb; 968 loff_t isize; 969 ssize_t ret; 970 971 /* Offline zones cannot be read */ 972 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 973 return -EPERM; 974 975 if (iocb->ki_pos >= zi->i_max_size) 976 return 0; 977 978 if (iocb->ki_flags & IOCB_NOWAIT) { 979 if (!inode_trylock_shared(inode)) 980 return -EAGAIN; 981 } else { 982 inode_lock_shared(inode); 983 } 984 985 /* Limit read operations to written data */ 986 mutex_lock(&zi->i_truncate_mutex); 987 isize = i_size_read(inode); 988 if (iocb->ki_pos >= isize) { 989 mutex_unlock(&zi->i_truncate_mutex); 990 ret = 0; 991 goto inode_unlock; 992 } 993 iov_iter_truncate(to, isize - iocb->ki_pos); 994 mutex_unlock(&zi->i_truncate_mutex); 995 996 if (iocb->ki_flags & IOCB_DIRECT) { 997 size_t count = iov_iter_count(to); 998 999 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 1000 ret = -EINVAL; 1001 goto inode_unlock; 1002 } 1003 file_accessed(iocb->ki_filp); 1004 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 1005 &zonefs_read_dio_ops, 0); 1006 } else { 1007 ret = generic_file_read_iter(iocb, to); 1008 if (ret == -EIO) 1009 zonefs_io_error(inode, false); 1010 } 1011 1012 inode_unlock: 1013 inode_unlock_shared(inode); 1014 1015 return ret; 1016 } 1017 1018 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 1019 { 1020 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1021 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1022 1023 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 1024 return false; 1025 1026 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1027 return false; 1028 1029 if (!(file->f_mode & FMODE_WRITE)) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 static int zonefs_open_zone(struct inode *inode) 1036 { 1037 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1038 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1039 int ret = 0; 1040 1041 mutex_lock(&zi->i_truncate_mutex); 1042 1043 if (!zi->i_wr_refcnt) { 1044 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 1045 atomic_dec(&sbi->s_open_zones); 1046 ret = -EBUSY; 1047 goto unlock; 1048 } 1049 1050 if (i_size_read(inode) < zi->i_max_size) { 1051 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1052 if (ret) { 1053 atomic_dec(&sbi->s_open_zones); 1054 goto unlock; 1055 } 1056 zi->i_flags |= ZONEFS_ZONE_OPEN; 1057 } 1058 } 1059 1060 zi->i_wr_refcnt++; 1061 1062 unlock: 1063 mutex_unlock(&zi->i_truncate_mutex); 1064 1065 return ret; 1066 } 1067 1068 static int zonefs_file_open(struct inode *inode, struct file *file) 1069 { 1070 int ret; 1071 1072 ret = generic_file_open(inode, file); 1073 if (ret) 1074 return ret; 1075 1076 if (zonefs_file_use_exp_open(inode, file)) 1077 return zonefs_open_zone(inode); 1078 1079 return 0; 1080 } 1081 1082 static void zonefs_close_zone(struct inode *inode) 1083 { 1084 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1085 int ret = 0; 1086 1087 mutex_lock(&zi->i_truncate_mutex); 1088 zi->i_wr_refcnt--; 1089 if (!zi->i_wr_refcnt) { 1090 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1091 struct super_block *sb = inode->i_sb; 1092 1093 /* 1094 * If the file zone is full, it is not open anymore and we only 1095 * need to decrement the open count. 1096 */ 1097 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1098 goto dec; 1099 1100 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1101 if (ret) { 1102 __zonefs_io_error(inode, false); 1103 /* 1104 * Leaving zones explicitly open may lead to a state 1105 * where most zones cannot be written (zone resources 1106 * exhausted). So take preventive action by remounting 1107 * read-only. 1108 */ 1109 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1110 !(sb->s_flags & SB_RDONLY)) { 1111 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1112 sb->s_flags |= SB_RDONLY; 1113 } 1114 } 1115 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1116 dec: 1117 atomic_dec(&sbi->s_open_zones); 1118 } 1119 mutex_unlock(&zi->i_truncate_mutex); 1120 } 1121 1122 static int zonefs_file_release(struct inode *inode, struct file *file) 1123 { 1124 /* 1125 * If we explicitly open a zone we must close it again as well, but the 1126 * zone management operation can fail (either due to an IO error or as 1127 * the zone has gone offline or read-only). Make sure we don't fail the 1128 * close(2) for user-space. 1129 */ 1130 if (zonefs_file_use_exp_open(inode, file)) 1131 zonefs_close_zone(inode); 1132 1133 return 0; 1134 } 1135 1136 static const struct file_operations zonefs_file_operations = { 1137 .open = zonefs_file_open, 1138 .release = zonefs_file_release, 1139 .fsync = zonefs_file_fsync, 1140 .mmap = zonefs_file_mmap, 1141 .llseek = zonefs_file_llseek, 1142 .read_iter = zonefs_file_read_iter, 1143 .write_iter = zonefs_file_write_iter, 1144 .splice_read = generic_file_splice_read, 1145 .splice_write = iter_file_splice_write, 1146 .iopoll = iomap_dio_iopoll, 1147 }; 1148 1149 static struct kmem_cache *zonefs_inode_cachep; 1150 1151 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1152 { 1153 struct zonefs_inode_info *zi; 1154 1155 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 1156 if (!zi) 1157 return NULL; 1158 1159 inode_init_once(&zi->i_vnode); 1160 mutex_init(&zi->i_truncate_mutex); 1161 init_rwsem(&zi->i_mmap_sem); 1162 zi->i_wr_refcnt = 0; 1163 1164 return &zi->i_vnode; 1165 } 1166 1167 static void zonefs_free_inode(struct inode *inode) 1168 { 1169 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1170 } 1171 1172 /* 1173 * File system stat. 1174 */ 1175 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1176 { 1177 struct super_block *sb = dentry->d_sb; 1178 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1179 enum zonefs_ztype t; 1180 1181 buf->f_type = ZONEFS_MAGIC; 1182 buf->f_bsize = sb->s_blocksize; 1183 buf->f_namelen = ZONEFS_NAME_MAX; 1184 1185 spin_lock(&sbi->s_lock); 1186 1187 buf->f_blocks = sbi->s_blocks; 1188 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1189 buf->f_bfree = 0; 1190 else 1191 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1192 buf->f_bavail = buf->f_bfree; 1193 1194 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1195 if (sbi->s_nr_files[t]) 1196 buf->f_files += sbi->s_nr_files[t] + 1; 1197 } 1198 buf->f_ffree = 0; 1199 1200 spin_unlock(&sbi->s_lock); 1201 1202 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1203 1204 return 0; 1205 } 1206 1207 enum { 1208 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1209 Opt_explicit_open, Opt_err, 1210 }; 1211 1212 static const match_table_t tokens = { 1213 { Opt_errors_ro, "errors=remount-ro"}, 1214 { Opt_errors_zro, "errors=zone-ro"}, 1215 { Opt_errors_zol, "errors=zone-offline"}, 1216 { Opt_errors_repair, "errors=repair"}, 1217 { Opt_explicit_open, "explicit-open" }, 1218 { Opt_err, NULL} 1219 }; 1220 1221 static int zonefs_parse_options(struct super_block *sb, char *options) 1222 { 1223 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1224 substring_t args[MAX_OPT_ARGS]; 1225 char *p; 1226 1227 if (!options) 1228 return 0; 1229 1230 while ((p = strsep(&options, ",")) != NULL) { 1231 int token; 1232 1233 if (!*p) 1234 continue; 1235 1236 token = match_token(p, tokens, args); 1237 switch (token) { 1238 case Opt_errors_ro: 1239 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1240 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1241 break; 1242 case Opt_errors_zro: 1243 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1244 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1245 break; 1246 case Opt_errors_zol: 1247 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1248 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1249 break; 1250 case Opt_errors_repair: 1251 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1252 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1253 break; 1254 case Opt_explicit_open: 1255 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1256 break; 1257 default: 1258 return -EINVAL; 1259 } 1260 } 1261 1262 return 0; 1263 } 1264 1265 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1266 { 1267 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1268 1269 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1270 seq_puts(seq, ",errors=remount-ro"); 1271 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1272 seq_puts(seq, ",errors=zone-ro"); 1273 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1274 seq_puts(seq, ",errors=zone-offline"); 1275 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1276 seq_puts(seq, ",errors=repair"); 1277 1278 return 0; 1279 } 1280 1281 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1282 { 1283 sync_filesystem(sb); 1284 1285 return zonefs_parse_options(sb, data); 1286 } 1287 1288 static const struct super_operations zonefs_sops = { 1289 .alloc_inode = zonefs_alloc_inode, 1290 .free_inode = zonefs_free_inode, 1291 .statfs = zonefs_statfs, 1292 .remount_fs = zonefs_remount, 1293 .show_options = zonefs_show_options, 1294 }; 1295 1296 static const struct inode_operations zonefs_dir_inode_operations = { 1297 .lookup = simple_lookup, 1298 .setattr = zonefs_inode_setattr, 1299 }; 1300 1301 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1302 enum zonefs_ztype type) 1303 { 1304 struct super_block *sb = parent->i_sb; 1305 1306 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1307 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1308 inode->i_op = &zonefs_dir_inode_operations; 1309 inode->i_fop = &simple_dir_operations; 1310 set_nlink(inode, 2); 1311 inc_nlink(parent); 1312 } 1313 1314 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1315 enum zonefs_ztype type) 1316 { 1317 struct super_block *sb = inode->i_sb; 1318 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1319 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1320 1321 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1322 inode->i_mode = S_IFREG | sbi->s_perm; 1323 1324 zi->i_ztype = type; 1325 zi->i_zsector = zone->start; 1326 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1327 1328 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1329 zone->capacity << SECTOR_SHIFT); 1330 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1331 1332 inode->i_uid = sbi->s_uid; 1333 inode->i_gid = sbi->s_gid; 1334 inode->i_size = zi->i_wpoffset; 1335 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1336 1337 inode->i_op = &zonefs_file_inode_operations; 1338 inode->i_fop = &zonefs_file_operations; 1339 inode->i_mapping->a_ops = &zonefs_file_aops; 1340 1341 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1342 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1343 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1344 } 1345 1346 static struct dentry *zonefs_create_inode(struct dentry *parent, 1347 const char *name, struct blk_zone *zone, 1348 enum zonefs_ztype type) 1349 { 1350 struct inode *dir = d_inode(parent); 1351 struct dentry *dentry; 1352 struct inode *inode; 1353 1354 dentry = d_alloc_name(parent, name); 1355 if (!dentry) 1356 return NULL; 1357 1358 inode = new_inode(parent->d_sb); 1359 if (!inode) 1360 goto dput; 1361 1362 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1363 if (zone) 1364 zonefs_init_file_inode(inode, zone, type); 1365 else 1366 zonefs_init_dir_inode(dir, inode, type); 1367 d_add(dentry, inode); 1368 dir->i_size++; 1369 1370 return dentry; 1371 1372 dput: 1373 dput(dentry); 1374 1375 return NULL; 1376 } 1377 1378 struct zonefs_zone_data { 1379 struct super_block *sb; 1380 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1381 struct blk_zone *zones; 1382 }; 1383 1384 /* 1385 * Create a zone group and populate it with zone files. 1386 */ 1387 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1388 enum zonefs_ztype type) 1389 { 1390 struct super_block *sb = zd->sb; 1391 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1392 struct blk_zone *zone, *next, *end; 1393 const char *zgroup_name; 1394 char *file_name; 1395 struct dentry *dir; 1396 unsigned int n = 0; 1397 int ret; 1398 1399 /* If the group is empty, there is nothing to do */ 1400 if (!zd->nr_zones[type]) 1401 return 0; 1402 1403 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1404 if (!file_name) 1405 return -ENOMEM; 1406 1407 if (type == ZONEFS_ZTYPE_CNV) 1408 zgroup_name = "cnv"; 1409 else 1410 zgroup_name = "seq"; 1411 1412 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1413 if (!dir) { 1414 ret = -ENOMEM; 1415 goto free; 1416 } 1417 1418 /* 1419 * The first zone contains the super block: skip it. 1420 */ 1421 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1422 for (zone = &zd->zones[1]; zone < end; zone = next) { 1423 1424 next = zone + 1; 1425 if (zonefs_zone_type(zone) != type) 1426 continue; 1427 1428 /* 1429 * For conventional zones, contiguous zones can be aggregated 1430 * together to form larger files. Note that this overwrites the 1431 * length of the first zone of the set of contiguous zones 1432 * aggregated together. If one offline or read-only zone is 1433 * found, assume that all zones aggregated have the same 1434 * condition. 1435 */ 1436 if (type == ZONEFS_ZTYPE_CNV && 1437 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1438 for (; next < end; next++) { 1439 if (zonefs_zone_type(next) != type) 1440 break; 1441 zone->len += next->len; 1442 zone->capacity += next->capacity; 1443 if (next->cond == BLK_ZONE_COND_READONLY && 1444 zone->cond != BLK_ZONE_COND_OFFLINE) 1445 zone->cond = BLK_ZONE_COND_READONLY; 1446 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1447 zone->cond = BLK_ZONE_COND_OFFLINE; 1448 } 1449 if (zone->capacity != zone->len) { 1450 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1451 ret = -EINVAL; 1452 goto free; 1453 } 1454 } 1455 1456 /* 1457 * Use the file number within its group as file name. 1458 */ 1459 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1460 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1461 ret = -ENOMEM; 1462 goto free; 1463 } 1464 1465 n++; 1466 } 1467 1468 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1469 zgroup_name, n, n > 1 ? "s" : ""); 1470 1471 sbi->s_nr_files[type] = n; 1472 ret = 0; 1473 1474 free: 1475 kfree(file_name); 1476 1477 return ret; 1478 } 1479 1480 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1481 void *data) 1482 { 1483 struct zonefs_zone_data *zd = data; 1484 1485 /* 1486 * Count the number of usable zones: the first zone at index 0 contains 1487 * the super block and is ignored. 1488 */ 1489 switch (zone->type) { 1490 case BLK_ZONE_TYPE_CONVENTIONAL: 1491 zone->wp = zone->start + zone->len; 1492 if (idx) 1493 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1494 break; 1495 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1496 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1497 if (idx) 1498 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1499 break; 1500 default: 1501 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1502 zone->type); 1503 return -EIO; 1504 } 1505 1506 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1507 1508 return 0; 1509 } 1510 1511 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1512 { 1513 struct block_device *bdev = zd->sb->s_bdev; 1514 int ret; 1515 1516 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1517 sizeof(struct blk_zone), GFP_KERNEL); 1518 if (!zd->zones) 1519 return -ENOMEM; 1520 1521 /* Get zones information from the device */ 1522 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1523 zonefs_get_zone_info_cb, zd); 1524 if (ret < 0) { 1525 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1526 return ret; 1527 } 1528 1529 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1530 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1531 ret, blkdev_nr_zones(bdev->bd_disk)); 1532 return -EIO; 1533 } 1534 1535 return 0; 1536 } 1537 1538 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1539 { 1540 kvfree(zd->zones); 1541 } 1542 1543 /* 1544 * Read super block information from the device. 1545 */ 1546 static int zonefs_read_super(struct super_block *sb) 1547 { 1548 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1549 struct zonefs_super *super; 1550 u32 crc, stored_crc; 1551 struct page *page; 1552 struct bio_vec bio_vec; 1553 struct bio bio; 1554 int ret; 1555 1556 page = alloc_page(GFP_KERNEL); 1557 if (!page) 1558 return -ENOMEM; 1559 1560 bio_init(&bio, &bio_vec, 1); 1561 bio.bi_iter.bi_sector = 0; 1562 bio.bi_opf = REQ_OP_READ; 1563 bio_set_dev(&bio, sb->s_bdev); 1564 bio_add_page(&bio, page, PAGE_SIZE, 0); 1565 1566 ret = submit_bio_wait(&bio); 1567 if (ret) 1568 goto free_page; 1569 1570 super = kmap(page); 1571 1572 ret = -EINVAL; 1573 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1574 goto unmap; 1575 1576 stored_crc = le32_to_cpu(super->s_crc); 1577 super->s_crc = 0; 1578 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1579 if (crc != stored_crc) { 1580 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1581 crc, stored_crc); 1582 goto unmap; 1583 } 1584 1585 sbi->s_features = le64_to_cpu(super->s_features); 1586 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1587 zonefs_err(sb, "Unknown features set 0x%llx\n", 1588 sbi->s_features); 1589 goto unmap; 1590 } 1591 1592 if (sbi->s_features & ZONEFS_F_UID) { 1593 sbi->s_uid = make_kuid(current_user_ns(), 1594 le32_to_cpu(super->s_uid)); 1595 if (!uid_valid(sbi->s_uid)) { 1596 zonefs_err(sb, "Invalid UID feature\n"); 1597 goto unmap; 1598 } 1599 } 1600 1601 if (sbi->s_features & ZONEFS_F_GID) { 1602 sbi->s_gid = make_kgid(current_user_ns(), 1603 le32_to_cpu(super->s_gid)); 1604 if (!gid_valid(sbi->s_gid)) { 1605 zonefs_err(sb, "Invalid GID feature\n"); 1606 goto unmap; 1607 } 1608 } 1609 1610 if (sbi->s_features & ZONEFS_F_PERM) 1611 sbi->s_perm = le32_to_cpu(super->s_perm); 1612 1613 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1614 zonefs_err(sb, "Reserved area is being used\n"); 1615 goto unmap; 1616 } 1617 1618 import_uuid(&sbi->s_uuid, super->s_uuid); 1619 ret = 0; 1620 1621 unmap: 1622 kunmap(page); 1623 free_page: 1624 __free_page(page); 1625 1626 return ret; 1627 } 1628 1629 /* 1630 * Check that the device is zoned. If it is, get the list of zones and create 1631 * sub-directories and files according to the device zone configuration and 1632 * format options. 1633 */ 1634 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1635 { 1636 struct zonefs_zone_data zd; 1637 struct zonefs_sb_info *sbi; 1638 struct inode *inode; 1639 enum zonefs_ztype t; 1640 int ret; 1641 1642 if (!bdev_is_zoned(sb->s_bdev)) { 1643 zonefs_err(sb, "Not a zoned block device\n"); 1644 return -EINVAL; 1645 } 1646 1647 /* 1648 * Initialize super block information: the maximum file size is updated 1649 * when the zone files are created so that the format option 1650 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1651 * beyond the zone size is taken into account. 1652 */ 1653 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1654 if (!sbi) 1655 return -ENOMEM; 1656 1657 spin_lock_init(&sbi->s_lock); 1658 sb->s_fs_info = sbi; 1659 sb->s_magic = ZONEFS_MAGIC; 1660 sb->s_maxbytes = 0; 1661 sb->s_op = &zonefs_sops; 1662 sb->s_time_gran = 1; 1663 1664 /* 1665 * The block size is set to the device zone write granularity to ensure 1666 * that write operations are always aligned according to the device 1667 * interface constraints. 1668 */ 1669 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1670 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1671 sbi->s_uid = GLOBAL_ROOT_UID; 1672 sbi->s_gid = GLOBAL_ROOT_GID; 1673 sbi->s_perm = 0640; 1674 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1675 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1676 atomic_set(&sbi->s_open_zones, 0); 1677 if (!sbi->s_max_open_zones && 1678 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1679 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1680 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1681 } 1682 1683 ret = zonefs_read_super(sb); 1684 if (ret) 1685 return ret; 1686 1687 ret = zonefs_parse_options(sb, data); 1688 if (ret) 1689 return ret; 1690 1691 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1692 zd.sb = sb; 1693 ret = zonefs_get_zone_info(&zd); 1694 if (ret) 1695 goto cleanup; 1696 1697 zonefs_info(sb, "Mounting %u zones", 1698 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1699 1700 /* Create root directory inode */ 1701 ret = -ENOMEM; 1702 inode = new_inode(sb); 1703 if (!inode) 1704 goto cleanup; 1705 1706 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1707 inode->i_mode = S_IFDIR | 0555; 1708 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1709 inode->i_op = &zonefs_dir_inode_operations; 1710 inode->i_fop = &simple_dir_operations; 1711 set_nlink(inode, 2); 1712 1713 sb->s_root = d_make_root(inode); 1714 if (!sb->s_root) 1715 goto cleanup; 1716 1717 /* Create and populate files in zone groups directories */ 1718 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1719 ret = zonefs_create_zgroup(&zd, t); 1720 if (ret) 1721 break; 1722 } 1723 1724 cleanup: 1725 zonefs_cleanup_zone_info(&zd); 1726 1727 return ret; 1728 } 1729 1730 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1731 int flags, const char *dev_name, void *data) 1732 { 1733 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1734 } 1735 1736 static void zonefs_kill_super(struct super_block *sb) 1737 { 1738 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1739 1740 if (sb->s_root) 1741 d_genocide(sb->s_root); 1742 kill_block_super(sb); 1743 kfree(sbi); 1744 } 1745 1746 /* 1747 * File system definition and registration. 1748 */ 1749 static struct file_system_type zonefs_type = { 1750 .owner = THIS_MODULE, 1751 .name = "zonefs", 1752 .mount = zonefs_mount, 1753 .kill_sb = zonefs_kill_super, 1754 .fs_flags = FS_REQUIRES_DEV, 1755 }; 1756 1757 static int __init zonefs_init_inodecache(void) 1758 { 1759 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1760 sizeof(struct zonefs_inode_info), 0, 1761 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1762 NULL); 1763 if (zonefs_inode_cachep == NULL) 1764 return -ENOMEM; 1765 return 0; 1766 } 1767 1768 static void zonefs_destroy_inodecache(void) 1769 { 1770 /* 1771 * Make sure all delayed rcu free inodes are flushed before we 1772 * destroy the inode cache. 1773 */ 1774 rcu_barrier(); 1775 kmem_cache_destroy(zonefs_inode_cachep); 1776 } 1777 1778 static int __init zonefs_init(void) 1779 { 1780 int ret; 1781 1782 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1783 1784 ret = zonefs_init_inodecache(); 1785 if (ret) 1786 return ret; 1787 1788 ret = register_filesystem(&zonefs_type); 1789 if (ret) { 1790 zonefs_destroy_inodecache(); 1791 return ret; 1792 } 1793 1794 return 0; 1795 } 1796 1797 static void __exit zonefs_exit(void) 1798 { 1799 zonefs_destroy_inodecache(); 1800 unregister_filesystem(&zonefs_type); 1801 } 1802 1803 MODULE_AUTHOR("Damien Le Moal"); 1804 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1805 MODULE_LICENSE("GPL"); 1806 module_init(zonefs_init); 1807 module_exit(zonefs_exit); 1808