1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 static inline int zonefs_zone_mgmt(struct inode *inode, 31 enum req_opf op) 32 { 33 struct zonefs_inode_info *zi = ZONEFS_I(inode); 34 int ret; 35 36 lockdep_assert_held(&zi->i_truncate_mutex); 37 38 trace_zonefs_zone_mgmt(inode, op); 39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 41 if (ret) { 42 zonefs_err(inode->i_sb, 43 "Zone management operation %s at %llu failed %d\n", 44 blk_op_str(op), zi->i_zsector, ret); 45 return ret; 46 } 47 48 return 0; 49 } 50 51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 52 { 53 struct zonefs_inode_info *zi = ZONEFS_I(inode); 54 55 i_size_write(inode, isize); 56 /* 57 * A full zone is no longer open/active and does not need 58 * explicit closing. 59 */ 60 if (isize >= zi->i_max_size) 61 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 62 } 63 64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 65 unsigned int flags, struct iomap *iomap, 66 struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct super_block *sb = inode->i_sb; 70 loff_t isize; 71 72 /* All I/Os should always be within the file maximum size */ 73 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 74 return -EIO; 75 76 /* 77 * Sequential zones can only accept direct writes. This is already 78 * checked when writes are issued, so warn if we see a page writeback 79 * operation. 80 */ 81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 isize = i_size_read(inode); 92 if (offset >= isize) 93 iomap->type = IOMAP_UNWRITTEN; 94 else 95 iomap->type = IOMAP_MAPPED; 96 if (flags & IOMAP_WRITE) 97 length = zi->i_max_size - offset; 98 else 99 length = min(length, isize - offset); 100 mutex_unlock(&zi->i_truncate_mutex); 101 102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 104 iomap->bdev = inode->i_sb->s_bdev; 105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 106 107 trace_zonefs_iomap_begin(inode, iomap); 108 109 return 0; 110 } 111 112 static const struct iomap_ops zonefs_iomap_ops = { 113 .iomap_begin = zonefs_iomap_begin, 114 }; 115 116 static int zonefs_readpage(struct file *unused, struct page *page) 117 { 118 return iomap_readpage(page, &zonefs_iomap_ops); 119 } 120 121 static void zonefs_readahead(struct readahead_control *rac) 122 { 123 iomap_readahead(rac, &zonefs_iomap_ops); 124 } 125 126 /* 127 * Map blocks for page writeback. This is used only on conventional zone files, 128 * which implies that the page range can only be within the fixed inode size. 129 */ 130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 131 struct inode *inode, loff_t offset) 132 { 133 struct zonefs_inode_info *zi = ZONEFS_I(inode); 134 135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 136 return -EIO; 137 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 138 return -EIO; 139 140 /* If the mapping is already OK, nothing needs to be done */ 141 if (offset >= wpc->iomap.offset && 142 offset < wpc->iomap.offset + wpc->iomap.length) 143 return 0; 144 145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 146 IOMAP_WRITE, &wpc->iomap, NULL); 147 } 148 149 static const struct iomap_writeback_ops zonefs_writeback_ops = { 150 .map_blocks = zonefs_map_blocks, 151 }; 152 153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 154 { 155 struct iomap_writepage_ctx wpc = { }; 156 157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 158 } 159 160 static int zonefs_writepages(struct address_space *mapping, 161 struct writeback_control *wbc) 162 { 163 struct iomap_writepage_ctx wpc = { }; 164 165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 166 } 167 168 static int zonefs_swap_activate(struct swap_info_struct *sis, 169 struct file *swap_file, sector_t *span) 170 { 171 struct inode *inode = file_inode(swap_file); 172 struct zonefs_inode_info *zi = ZONEFS_I(inode); 173 174 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 175 zonefs_err(inode->i_sb, 176 "swap file: not a conventional zone file\n"); 177 return -EINVAL; 178 } 179 180 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops); 181 } 182 183 static const struct address_space_operations zonefs_file_aops = { 184 .readpage = zonefs_readpage, 185 .readahead = zonefs_readahead, 186 .writepage = zonefs_writepage, 187 .writepages = zonefs_writepages, 188 .set_page_dirty = __set_page_dirty_nobuffers, 189 .releasepage = iomap_releasepage, 190 .invalidatepage = iomap_invalidatepage, 191 .migratepage = iomap_migrate_page, 192 .is_partially_uptodate = iomap_is_partially_uptodate, 193 .error_remove_page = generic_error_remove_page, 194 .direct_IO = noop_direct_IO, 195 .swap_activate = zonefs_swap_activate, 196 }; 197 198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 199 { 200 struct super_block *sb = inode->i_sb; 201 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 202 loff_t old_isize = i_size_read(inode); 203 loff_t nr_blocks; 204 205 if (new_isize == old_isize) 206 return; 207 208 spin_lock(&sbi->s_lock); 209 210 /* 211 * This may be called for an update after an IO error. 212 * So beware of the values seen. 213 */ 214 if (new_isize < old_isize) { 215 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 216 if (sbi->s_used_blocks > nr_blocks) 217 sbi->s_used_blocks -= nr_blocks; 218 else 219 sbi->s_used_blocks = 0; 220 } else { 221 sbi->s_used_blocks += 222 (new_isize - old_isize) >> sb->s_blocksize_bits; 223 if (sbi->s_used_blocks > sbi->s_blocks) 224 sbi->s_used_blocks = sbi->s_blocks; 225 } 226 227 spin_unlock(&sbi->s_lock); 228 } 229 230 /* 231 * Check a zone condition and adjust its file inode access permissions for 232 * offline and readonly zones. Return the inode size corresponding to the 233 * amount of readable data in the zone. 234 */ 235 static loff_t zonefs_check_zone_condition(struct inode *inode, 236 struct blk_zone *zone, bool warn, 237 bool mount) 238 { 239 struct zonefs_inode_info *zi = ZONEFS_I(inode); 240 241 switch (zone->cond) { 242 case BLK_ZONE_COND_OFFLINE: 243 /* 244 * Dead zone: make the inode immutable, disable all accesses 245 * and set the file size to 0 (zone wp set to zone start). 246 */ 247 if (warn) 248 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 249 inode->i_ino); 250 inode->i_flags |= S_IMMUTABLE; 251 inode->i_mode &= ~0777; 252 zone->wp = zone->start; 253 return 0; 254 case BLK_ZONE_COND_READONLY: 255 /* 256 * The write pointer of read-only zones is invalid. If such a 257 * zone is found during mount, the file size cannot be retrieved 258 * so we treat the zone as offline (mount == true case). 259 * Otherwise, keep the file size as it was when last updated 260 * so that the user can recover data. In both cases, writes are 261 * always disabled for the zone. 262 */ 263 if (warn) 264 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 265 inode->i_ino); 266 inode->i_flags |= S_IMMUTABLE; 267 if (mount) { 268 zone->cond = BLK_ZONE_COND_OFFLINE; 269 inode->i_mode &= ~0777; 270 zone->wp = zone->start; 271 return 0; 272 } 273 inode->i_mode &= ~0222; 274 return i_size_read(inode); 275 case BLK_ZONE_COND_FULL: 276 /* The write pointer of full zones is invalid. */ 277 return zi->i_max_size; 278 default: 279 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 280 return zi->i_max_size; 281 return (zone->wp - zone->start) << SECTOR_SHIFT; 282 } 283 } 284 285 struct zonefs_ioerr_data { 286 struct inode *inode; 287 bool write; 288 }; 289 290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 291 void *data) 292 { 293 struct zonefs_ioerr_data *err = data; 294 struct inode *inode = err->inode; 295 struct zonefs_inode_info *zi = ZONEFS_I(inode); 296 struct super_block *sb = inode->i_sb; 297 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 298 loff_t isize, data_size; 299 300 /* 301 * Check the zone condition: if the zone is not "bad" (offline or 302 * read-only), read errors are simply signaled to the IO issuer as long 303 * as there is no inconsistency between the inode size and the amount of 304 * data writen in the zone (data_size). 305 */ 306 data_size = zonefs_check_zone_condition(inode, zone, true, false); 307 isize = i_size_read(inode); 308 if (zone->cond != BLK_ZONE_COND_OFFLINE && 309 zone->cond != BLK_ZONE_COND_READONLY && 310 !err->write && isize == data_size) 311 return 0; 312 313 /* 314 * At this point, we detected either a bad zone or an inconsistency 315 * between the inode size and the amount of data written in the zone. 316 * For the latter case, the cause may be a write IO error or an external 317 * action on the device. Two error patterns exist: 318 * 1) The inode size is lower than the amount of data in the zone: 319 * a write operation partially failed and data was writen at the end 320 * of the file. This can happen in the case of a large direct IO 321 * needing several BIOs and/or write requests to be processed. 322 * 2) The inode size is larger than the amount of data in the zone: 323 * this can happen with a deferred write error with the use of the 324 * device side write cache after getting successful write IO 325 * completions. Other possibilities are (a) an external corruption, 326 * e.g. an application reset the zone directly, or (b) the device 327 * has a serious problem (e.g. firmware bug). 328 * 329 * In all cases, warn about inode size inconsistency and handle the 330 * IO error according to the zone condition and to the mount options. 331 */ 332 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 333 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 334 inode->i_ino, isize, data_size); 335 336 /* 337 * First handle bad zones signaled by hardware. The mount options 338 * errors=zone-ro and errors=zone-offline result in changing the 339 * zone condition to read-only and offline respectively, as if the 340 * condition was signaled by the hardware. 341 */ 342 if (zone->cond == BLK_ZONE_COND_OFFLINE || 343 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 344 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 345 inode->i_ino); 346 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 347 zone->cond = BLK_ZONE_COND_OFFLINE; 348 data_size = zonefs_check_zone_condition(inode, zone, 349 false, false); 350 } 351 } else if (zone->cond == BLK_ZONE_COND_READONLY || 352 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 353 zonefs_warn(sb, "inode %lu: write access disabled\n", 354 inode->i_ino); 355 if (zone->cond != BLK_ZONE_COND_READONLY) { 356 zone->cond = BLK_ZONE_COND_READONLY; 357 data_size = zonefs_check_zone_condition(inode, zone, 358 false, false); 359 } 360 } 361 362 /* 363 * If the filesystem is mounted with the explicit-open mount option, we 364 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 365 * the read-only or offline condition, to avoid attempting an explicit 366 * close of the zone when the inode file is closed. 367 */ 368 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 369 (zone->cond == BLK_ZONE_COND_OFFLINE || 370 zone->cond == BLK_ZONE_COND_READONLY)) 371 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 372 373 /* 374 * If error=remount-ro was specified, any error result in remounting 375 * the volume as read-only. 376 */ 377 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 378 zonefs_warn(sb, "remounting filesystem read-only\n"); 379 sb->s_flags |= SB_RDONLY; 380 } 381 382 /* 383 * Update block usage stats and the inode size to prevent access to 384 * invalid data. 385 */ 386 zonefs_update_stats(inode, data_size); 387 zonefs_i_size_write(inode, data_size); 388 zi->i_wpoffset = data_size; 389 390 return 0; 391 } 392 393 /* 394 * When an file IO error occurs, check the file zone to see if there is a change 395 * in the zone condition (e.g. offline or read-only). For a failed write to a 396 * sequential zone, the zone write pointer position must also be checked to 397 * eventually correct the file size and zonefs inode write pointer offset 398 * (which can be out of sync with the drive due to partial write failures). 399 */ 400 static void __zonefs_io_error(struct inode *inode, bool write) 401 { 402 struct zonefs_inode_info *zi = ZONEFS_I(inode); 403 struct super_block *sb = inode->i_sb; 404 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 405 unsigned int noio_flag; 406 unsigned int nr_zones = 407 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 408 struct zonefs_ioerr_data err = { 409 .inode = inode, 410 .write = write, 411 }; 412 int ret; 413 414 /* 415 * Memory allocations in blkdev_report_zones() can trigger a memory 416 * reclaim which may in turn cause a recursion into zonefs as well as 417 * struct request allocations for the same device. The former case may 418 * end up in a deadlock on the inode truncate mutex, while the latter 419 * may prevent IO forward progress. Executing the report zones under 420 * the GFP_NOIO context avoids both problems. 421 */ 422 noio_flag = memalloc_noio_save(); 423 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 424 zonefs_io_error_cb, &err); 425 if (ret != nr_zones) 426 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 427 inode->i_ino, ret); 428 memalloc_noio_restore(noio_flag); 429 } 430 431 static void zonefs_io_error(struct inode *inode, bool write) 432 { 433 struct zonefs_inode_info *zi = ZONEFS_I(inode); 434 435 mutex_lock(&zi->i_truncate_mutex); 436 __zonefs_io_error(inode, write); 437 mutex_unlock(&zi->i_truncate_mutex); 438 } 439 440 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 441 { 442 struct zonefs_inode_info *zi = ZONEFS_I(inode); 443 loff_t old_isize; 444 enum req_opf op; 445 int ret = 0; 446 447 /* 448 * Only sequential zone files can be truncated and truncation is allowed 449 * only down to a 0 size, which is equivalent to a zone reset, and to 450 * the maximum file size, which is equivalent to a zone finish. 451 */ 452 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 453 return -EPERM; 454 455 if (!isize) 456 op = REQ_OP_ZONE_RESET; 457 else if (isize == zi->i_max_size) 458 op = REQ_OP_ZONE_FINISH; 459 else 460 return -EPERM; 461 462 inode_dio_wait(inode); 463 464 /* Serialize against page faults */ 465 filemap_invalidate_lock(inode->i_mapping); 466 467 /* Serialize against zonefs_iomap_begin() */ 468 mutex_lock(&zi->i_truncate_mutex); 469 470 old_isize = i_size_read(inode); 471 if (isize == old_isize) 472 goto unlock; 473 474 ret = zonefs_zone_mgmt(inode, op); 475 if (ret) 476 goto unlock; 477 478 /* 479 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 480 * take care of open zones. 481 */ 482 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 483 /* 484 * Truncating a zone to EMPTY or FULL is the equivalent of 485 * closing the zone. For a truncation to 0, we need to 486 * re-open the zone to ensure new writes can be processed. 487 * For a truncation to the maximum file size, the zone is 488 * closed and writes cannot be accepted anymore, so clear 489 * the open flag. 490 */ 491 if (!isize) 492 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 493 else 494 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 495 } 496 497 zonefs_update_stats(inode, isize); 498 truncate_setsize(inode, isize); 499 zi->i_wpoffset = isize; 500 501 unlock: 502 mutex_unlock(&zi->i_truncate_mutex); 503 filemap_invalidate_unlock(inode->i_mapping); 504 505 return ret; 506 } 507 508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 509 struct dentry *dentry, struct iattr *iattr) 510 { 511 struct inode *inode = d_inode(dentry); 512 int ret; 513 514 if (unlikely(IS_IMMUTABLE(inode))) 515 return -EPERM; 516 517 ret = setattr_prepare(&init_user_ns, dentry, iattr); 518 if (ret) 519 return ret; 520 521 /* 522 * Since files and directories cannot be created nor deleted, do not 523 * allow setting any write attributes on the sub-directories grouping 524 * files by zone type. 525 */ 526 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 527 (iattr->ia_mode & 0222)) 528 return -EPERM; 529 530 if (((iattr->ia_valid & ATTR_UID) && 531 !uid_eq(iattr->ia_uid, inode->i_uid)) || 532 ((iattr->ia_valid & ATTR_GID) && 533 !gid_eq(iattr->ia_gid, inode->i_gid))) { 534 ret = dquot_transfer(inode, iattr); 535 if (ret) 536 return ret; 537 } 538 539 if (iattr->ia_valid & ATTR_SIZE) { 540 ret = zonefs_file_truncate(inode, iattr->ia_size); 541 if (ret) 542 return ret; 543 } 544 545 setattr_copy(&init_user_ns, inode, iattr); 546 547 return 0; 548 } 549 550 static const struct inode_operations zonefs_file_inode_operations = { 551 .setattr = zonefs_inode_setattr, 552 }; 553 554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 555 int datasync) 556 { 557 struct inode *inode = file_inode(file); 558 int ret = 0; 559 560 if (unlikely(IS_IMMUTABLE(inode))) 561 return -EPERM; 562 563 /* 564 * Since only direct writes are allowed in sequential files, page cache 565 * flush is needed only for conventional zone files. 566 */ 567 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 568 ret = file_write_and_wait_range(file, start, end); 569 if (!ret) 570 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 571 572 if (ret) 573 zonefs_io_error(inode, true); 574 575 return ret; 576 } 577 578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 579 { 580 struct inode *inode = file_inode(vmf->vma->vm_file); 581 struct zonefs_inode_info *zi = ZONEFS_I(inode); 582 vm_fault_t ret; 583 584 if (unlikely(IS_IMMUTABLE(inode))) 585 return VM_FAULT_SIGBUS; 586 587 /* 588 * Sanity check: only conventional zone files can have shared 589 * writeable mappings. 590 */ 591 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 592 return VM_FAULT_NOPAGE; 593 594 sb_start_pagefault(inode->i_sb); 595 file_update_time(vmf->vma->vm_file); 596 597 /* Serialize against truncates */ 598 filemap_invalidate_lock_shared(inode->i_mapping); 599 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 600 filemap_invalidate_unlock_shared(inode->i_mapping); 601 602 sb_end_pagefault(inode->i_sb); 603 return ret; 604 } 605 606 static const struct vm_operations_struct zonefs_file_vm_ops = { 607 .fault = filemap_fault, 608 .map_pages = filemap_map_pages, 609 .page_mkwrite = zonefs_filemap_page_mkwrite, 610 }; 611 612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 613 { 614 /* 615 * Conventional zones accept random writes, so their files can support 616 * shared writable mappings. For sequential zone files, only read 617 * mappings are possible since there are no guarantees for write 618 * ordering between msync() and page cache writeback. 619 */ 620 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 621 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 622 return -EINVAL; 623 624 file_accessed(file); 625 vma->vm_ops = &zonefs_file_vm_ops; 626 627 return 0; 628 } 629 630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 631 { 632 loff_t isize = i_size_read(file_inode(file)); 633 634 /* 635 * Seeks are limited to below the zone size for conventional zones 636 * and below the zone write pointer for sequential zones. In both 637 * cases, this limit is the inode size. 638 */ 639 return generic_file_llseek_size(file, offset, whence, isize, isize); 640 } 641 642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 643 int error, unsigned int flags) 644 { 645 struct inode *inode = file_inode(iocb->ki_filp); 646 struct zonefs_inode_info *zi = ZONEFS_I(inode); 647 648 if (error) { 649 zonefs_io_error(inode, true); 650 return error; 651 } 652 653 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 654 /* 655 * Note that we may be seeing completions out of order, 656 * but that is not a problem since a write completed 657 * successfully necessarily means that all preceding writes 658 * were also successful. So we can safely increase the inode 659 * size to the write end location. 660 */ 661 mutex_lock(&zi->i_truncate_mutex); 662 if (i_size_read(inode) < iocb->ki_pos + size) { 663 zonefs_update_stats(inode, iocb->ki_pos + size); 664 zonefs_i_size_write(inode, iocb->ki_pos + size); 665 } 666 mutex_unlock(&zi->i_truncate_mutex); 667 } 668 669 return 0; 670 } 671 672 static const struct iomap_dio_ops zonefs_write_dio_ops = { 673 .end_io = zonefs_file_write_dio_end_io, 674 }; 675 676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 677 { 678 struct inode *inode = file_inode(iocb->ki_filp); 679 struct zonefs_inode_info *zi = ZONEFS_I(inode); 680 struct block_device *bdev = inode->i_sb->s_bdev; 681 unsigned int max; 682 struct bio *bio; 683 ssize_t size; 684 int nr_pages; 685 ssize_t ret; 686 687 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 688 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 689 iov_iter_truncate(from, max); 690 691 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 692 if (!nr_pages) 693 return 0; 694 695 bio = bio_alloc(GFP_NOFS, nr_pages); 696 bio_set_dev(bio, bdev); 697 bio->bi_iter.bi_sector = zi->i_zsector; 698 bio->bi_write_hint = iocb->ki_hint; 699 bio->bi_ioprio = iocb->ki_ioprio; 700 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE; 701 if (iocb->ki_flags & IOCB_DSYNC) 702 bio->bi_opf |= REQ_FUA; 703 704 ret = bio_iov_iter_get_pages(bio, from); 705 if (unlikely(ret)) 706 goto out_release; 707 708 size = bio->bi_iter.bi_size; 709 task_io_account_write(size); 710 711 if (iocb->ki_flags & IOCB_HIPRI) 712 bio_set_polled(bio, iocb); 713 714 ret = submit_bio_wait(bio); 715 716 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 717 trace_zonefs_file_dio_append(inode, size, ret); 718 719 out_release: 720 bio_release_pages(bio, false); 721 bio_put(bio); 722 723 if (ret >= 0) { 724 iocb->ki_pos += size; 725 return size; 726 } 727 728 return ret; 729 } 730 731 /* 732 * Do not exceed the LFS limits nor the file zone size. If pos is under the 733 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 734 */ 735 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 736 loff_t count) 737 { 738 struct inode *inode = file_inode(file); 739 struct zonefs_inode_info *zi = ZONEFS_I(inode); 740 loff_t limit = rlimit(RLIMIT_FSIZE); 741 loff_t max_size = zi->i_max_size; 742 743 if (limit != RLIM_INFINITY) { 744 if (pos >= limit) { 745 send_sig(SIGXFSZ, current, 0); 746 return -EFBIG; 747 } 748 count = min(count, limit - pos); 749 } 750 751 if (!(file->f_flags & O_LARGEFILE)) 752 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 753 754 if (unlikely(pos >= max_size)) 755 return -EFBIG; 756 757 return min(count, max_size - pos); 758 } 759 760 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 761 { 762 struct file *file = iocb->ki_filp; 763 struct inode *inode = file_inode(file); 764 struct zonefs_inode_info *zi = ZONEFS_I(inode); 765 loff_t count; 766 767 if (IS_SWAPFILE(inode)) 768 return -ETXTBSY; 769 770 if (!iov_iter_count(from)) 771 return 0; 772 773 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 774 return -EINVAL; 775 776 if (iocb->ki_flags & IOCB_APPEND) { 777 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 778 return -EINVAL; 779 mutex_lock(&zi->i_truncate_mutex); 780 iocb->ki_pos = zi->i_wpoffset; 781 mutex_unlock(&zi->i_truncate_mutex); 782 } 783 784 count = zonefs_write_check_limits(file, iocb->ki_pos, 785 iov_iter_count(from)); 786 if (count < 0) 787 return count; 788 789 iov_iter_truncate(from, count); 790 return iov_iter_count(from); 791 } 792 793 /* 794 * Handle direct writes. For sequential zone files, this is the only possible 795 * write path. For these files, check that the user is issuing writes 796 * sequentially from the end of the file. This code assumes that the block layer 797 * delivers write requests to the device in sequential order. This is always the 798 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 799 * elevator feature is being used (e.g. mq-deadline). The block layer always 800 * automatically select such an elevator for zoned block devices during the 801 * device initialization. 802 */ 803 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 804 { 805 struct inode *inode = file_inode(iocb->ki_filp); 806 struct zonefs_inode_info *zi = ZONEFS_I(inode); 807 struct super_block *sb = inode->i_sb; 808 bool sync = is_sync_kiocb(iocb); 809 bool append = false; 810 ssize_t ret, count; 811 812 /* 813 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 814 * as this can cause write reordering (e.g. the first aio gets EAGAIN 815 * on the inode lock but the second goes through but is now unaligned). 816 */ 817 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 818 (iocb->ki_flags & IOCB_NOWAIT)) 819 return -EOPNOTSUPP; 820 821 if (iocb->ki_flags & IOCB_NOWAIT) { 822 if (!inode_trylock(inode)) 823 return -EAGAIN; 824 } else { 825 inode_lock(inode); 826 } 827 828 count = zonefs_write_checks(iocb, from); 829 if (count <= 0) { 830 ret = count; 831 goto inode_unlock; 832 } 833 834 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 835 ret = -EINVAL; 836 goto inode_unlock; 837 } 838 839 /* Enforce sequential writes (append only) in sequential zones */ 840 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 841 mutex_lock(&zi->i_truncate_mutex); 842 if (iocb->ki_pos != zi->i_wpoffset) { 843 mutex_unlock(&zi->i_truncate_mutex); 844 ret = -EINVAL; 845 goto inode_unlock; 846 } 847 mutex_unlock(&zi->i_truncate_mutex); 848 append = sync; 849 } 850 851 if (append) 852 ret = zonefs_file_dio_append(iocb, from); 853 else 854 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 855 &zonefs_write_dio_ops, 0, 0); 856 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 857 (ret > 0 || ret == -EIOCBQUEUED)) { 858 if (ret > 0) 859 count = ret; 860 mutex_lock(&zi->i_truncate_mutex); 861 zi->i_wpoffset += count; 862 mutex_unlock(&zi->i_truncate_mutex); 863 } 864 865 inode_unlock: 866 inode_unlock(inode); 867 868 return ret; 869 } 870 871 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 872 struct iov_iter *from) 873 { 874 struct inode *inode = file_inode(iocb->ki_filp); 875 struct zonefs_inode_info *zi = ZONEFS_I(inode); 876 ssize_t ret; 877 878 /* 879 * Direct IO writes are mandatory for sequential zone files so that the 880 * write IO issuing order is preserved. 881 */ 882 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 883 return -EIO; 884 885 if (iocb->ki_flags & IOCB_NOWAIT) { 886 if (!inode_trylock(inode)) 887 return -EAGAIN; 888 } else { 889 inode_lock(inode); 890 } 891 892 ret = zonefs_write_checks(iocb, from); 893 if (ret <= 0) 894 goto inode_unlock; 895 896 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 897 if (ret > 0) 898 iocb->ki_pos += ret; 899 else if (ret == -EIO) 900 zonefs_io_error(inode, true); 901 902 inode_unlock: 903 inode_unlock(inode); 904 if (ret > 0) 905 ret = generic_write_sync(iocb, ret); 906 907 return ret; 908 } 909 910 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 911 { 912 struct inode *inode = file_inode(iocb->ki_filp); 913 914 if (unlikely(IS_IMMUTABLE(inode))) 915 return -EPERM; 916 917 if (sb_rdonly(inode->i_sb)) 918 return -EROFS; 919 920 /* Write operations beyond the zone size are not allowed */ 921 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 922 return -EFBIG; 923 924 if (iocb->ki_flags & IOCB_DIRECT) { 925 ssize_t ret = zonefs_file_dio_write(iocb, from); 926 if (ret != -ENOTBLK) 927 return ret; 928 } 929 930 return zonefs_file_buffered_write(iocb, from); 931 } 932 933 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 934 int error, unsigned int flags) 935 { 936 if (error) { 937 zonefs_io_error(file_inode(iocb->ki_filp), false); 938 return error; 939 } 940 941 return 0; 942 } 943 944 static const struct iomap_dio_ops zonefs_read_dio_ops = { 945 .end_io = zonefs_file_read_dio_end_io, 946 }; 947 948 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 949 { 950 struct inode *inode = file_inode(iocb->ki_filp); 951 struct zonefs_inode_info *zi = ZONEFS_I(inode); 952 struct super_block *sb = inode->i_sb; 953 loff_t isize; 954 ssize_t ret; 955 956 /* Offline zones cannot be read */ 957 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 958 return -EPERM; 959 960 if (iocb->ki_pos >= zi->i_max_size) 961 return 0; 962 963 if (iocb->ki_flags & IOCB_NOWAIT) { 964 if (!inode_trylock_shared(inode)) 965 return -EAGAIN; 966 } else { 967 inode_lock_shared(inode); 968 } 969 970 /* Limit read operations to written data */ 971 mutex_lock(&zi->i_truncate_mutex); 972 isize = i_size_read(inode); 973 if (iocb->ki_pos >= isize) { 974 mutex_unlock(&zi->i_truncate_mutex); 975 ret = 0; 976 goto inode_unlock; 977 } 978 iov_iter_truncate(to, isize - iocb->ki_pos); 979 mutex_unlock(&zi->i_truncate_mutex); 980 981 if (iocb->ki_flags & IOCB_DIRECT) { 982 size_t count = iov_iter_count(to); 983 984 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 985 ret = -EINVAL; 986 goto inode_unlock; 987 } 988 file_accessed(iocb->ki_filp); 989 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 990 &zonefs_read_dio_ops, 0, 0); 991 } else { 992 ret = generic_file_read_iter(iocb, to); 993 if (ret == -EIO) 994 zonefs_io_error(inode, false); 995 } 996 997 inode_unlock: 998 inode_unlock_shared(inode); 999 1000 return ret; 1001 } 1002 1003 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file) 1004 { 1005 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1006 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1007 1008 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN)) 1009 return false; 1010 1011 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1012 return false; 1013 1014 if (!(file->f_mode & FMODE_WRITE)) 1015 return false; 1016 1017 return true; 1018 } 1019 1020 static int zonefs_open_zone(struct inode *inode) 1021 { 1022 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1023 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1024 int ret = 0; 1025 1026 mutex_lock(&zi->i_truncate_mutex); 1027 1028 if (!zi->i_wr_refcnt) { 1029 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) { 1030 atomic_dec(&sbi->s_open_zones); 1031 ret = -EBUSY; 1032 goto unlock; 1033 } 1034 1035 if (i_size_read(inode) < zi->i_max_size) { 1036 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1037 if (ret) { 1038 atomic_dec(&sbi->s_open_zones); 1039 goto unlock; 1040 } 1041 zi->i_flags |= ZONEFS_ZONE_OPEN; 1042 } 1043 } 1044 1045 zi->i_wr_refcnt++; 1046 1047 unlock: 1048 mutex_unlock(&zi->i_truncate_mutex); 1049 1050 return ret; 1051 } 1052 1053 static int zonefs_file_open(struct inode *inode, struct file *file) 1054 { 1055 int ret; 1056 1057 ret = generic_file_open(inode, file); 1058 if (ret) 1059 return ret; 1060 1061 if (zonefs_file_use_exp_open(inode, file)) 1062 return zonefs_open_zone(inode); 1063 1064 return 0; 1065 } 1066 1067 static void zonefs_close_zone(struct inode *inode) 1068 { 1069 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1070 int ret = 0; 1071 1072 mutex_lock(&zi->i_truncate_mutex); 1073 zi->i_wr_refcnt--; 1074 if (!zi->i_wr_refcnt) { 1075 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1076 struct super_block *sb = inode->i_sb; 1077 1078 /* 1079 * If the file zone is full, it is not open anymore and we only 1080 * need to decrement the open count. 1081 */ 1082 if (!(zi->i_flags & ZONEFS_ZONE_OPEN)) 1083 goto dec; 1084 1085 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1086 if (ret) { 1087 __zonefs_io_error(inode, false); 1088 /* 1089 * Leaving zones explicitly open may lead to a state 1090 * where most zones cannot be written (zone resources 1091 * exhausted). So take preventive action by remounting 1092 * read-only. 1093 */ 1094 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1095 !(sb->s_flags & SB_RDONLY)) { 1096 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n"); 1097 sb->s_flags |= SB_RDONLY; 1098 } 1099 } 1100 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1101 dec: 1102 atomic_dec(&sbi->s_open_zones); 1103 } 1104 mutex_unlock(&zi->i_truncate_mutex); 1105 } 1106 1107 static int zonefs_file_release(struct inode *inode, struct file *file) 1108 { 1109 /* 1110 * If we explicitly open a zone we must close it again as well, but the 1111 * zone management operation can fail (either due to an IO error or as 1112 * the zone has gone offline or read-only). Make sure we don't fail the 1113 * close(2) for user-space. 1114 */ 1115 if (zonefs_file_use_exp_open(inode, file)) 1116 zonefs_close_zone(inode); 1117 1118 return 0; 1119 } 1120 1121 static const struct file_operations zonefs_file_operations = { 1122 .open = zonefs_file_open, 1123 .release = zonefs_file_release, 1124 .fsync = zonefs_file_fsync, 1125 .mmap = zonefs_file_mmap, 1126 .llseek = zonefs_file_llseek, 1127 .read_iter = zonefs_file_read_iter, 1128 .write_iter = zonefs_file_write_iter, 1129 .splice_read = generic_file_splice_read, 1130 .splice_write = iter_file_splice_write, 1131 .iopoll = iocb_bio_iopoll, 1132 }; 1133 1134 static struct kmem_cache *zonefs_inode_cachep; 1135 1136 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1137 { 1138 struct zonefs_inode_info *zi; 1139 1140 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 1141 if (!zi) 1142 return NULL; 1143 1144 inode_init_once(&zi->i_vnode); 1145 mutex_init(&zi->i_truncate_mutex); 1146 zi->i_wr_refcnt = 0; 1147 1148 return &zi->i_vnode; 1149 } 1150 1151 static void zonefs_free_inode(struct inode *inode) 1152 { 1153 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1154 } 1155 1156 /* 1157 * File system stat. 1158 */ 1159 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1160 { 1161 struct super_block *sb = dentry->d_sb; 1162 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1163 enum zonefs_ztype t; 1164 1165 buf->f_type = ZONEFS_MAGIC; 1166 buf->f_bsize = sb->s_blocksize; 1167 buf->f_namelen = ZONEFS_NAME_MAX; 1168 1169 spin_lock(&sbi->s_lock); 1170 1171 buf->f_blocks = sbi->s_blocks; 1172 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1173 buf->f_bfree = 0; 1174 else 1175 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1176 buf->f_bavail = buf->f_bfree; 1177 1178 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1179 if (sbi->s_nr_files[t]) 1180 buf->f_files += sbi->s_nr_files[t] + 1; 1181 } 1182 buf->f_ffree = 0; 1183 1184 spin_unlock(&sbi->s_lock); 1185 1186 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1187 1188 return 0; 1189 } 1190 1191 enum { 1192 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1193 Opt_explicit_open, Opt_err, 1194 }; 1195 1196 static const match_table_t tokens = { 1197 { Opt_errors_ro, "errors=remount-ro"}, 1198 { Opt_errors_zro, "errors=zone-ro"}, 1199 { Opt_errors_zol, "errors=zone-offline"}, 1200 { Opt_errors_repair, "errors=repair"}, 1201 { Opt_explicit_open, "explicit-open" }, 1202 { Opt_err, NULL} 1203 }; 1204 1205 static int zonefs_parse_options(struct super_block *sb, char *options) 1206 { 1207 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1208 substring_t args[MAX_OPT_ARGS]; 1209 char *p; 1210 1211 if (!options) 1212 return 0; 1213 1214 while ((p = strsep(&options, ",")) != NULL) { 1215 int token; 1216 1217 if (!*p) 1218 continue; 1219 1220 token = match_token(p, tokens, args); 1221 switch (token) { 1222 case Opt_errors_ro: 1223 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1224 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1225 break; 1226 case Opt_errors_zro: 1227 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1228 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1229 break; 1230 case Opt_errors_zol: 1231 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1232 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1233 break; 1234 case Opt_errors_repair: 1235 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1236 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1237 break; 1238 case Opt_explicit_open: 1239 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1240 break; 1241 default: 1242 return -EINVAL; 1243 } 1244 } 1245 1246 return 0; 1247 } 1248 1249 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1250 { 1251 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1252 1253 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1254 seq_puts(seq, ",errors=remount-ro"); 1255 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1256 seq_puts(seq, ",errors=zone-ro"); 1257 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1258 seq_puts(seq, ",errors=zone-offline"); 1259 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1260 seq_puts(seq, ",errors=repair"); 1261 1262 return 0; 1263 } 1264 1265 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1266 { 1267 sync_filesystem(sb); 1268 1269 return zonefs_parse_options(sb, data); 1270 } 1271 1272 static const struct super_operations zonefs_sops = { 1273 .alloc_inode = zonefs_alloc_inode, 1274 .free_inode = zonefs_free_inode, 1275 .statfs = zonefs_statfs, 1276 .remount_fs = zonefs_remount, 1277 .show_options = zonefs_show_options, 1278 }; 1279 1280 static const struct inode_operations zonefs_dir_inode_operations = { 1281 .lookup = simple_lookup, 1282 .setattr = zonefs_inode_setattr, 1283 }; 1284 1285 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1286 enum zonefs_ztype type) 1287 { 1288 struct super_block *sb = parent->i_sb; 1289 1290 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1291 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1292 inode->i_op = &zonefs_dir_inode_operations; 1293 inode->i_fop = &simple_dir_operations; 1294 set_nlink(inode, 2); 1295 inc_nlink(parent); 1296 } 1297 1298 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1299 enum zonefs_ztype type) 1300 { 1301 struct super_block *sb = inode->i_sb; 1302 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1303 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1304 1305 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1306 inode->i_mode = S_IFREG | sbi->s_perm; 1307 1308 zi->i_ztype = type; 1309 zi->i_zsector = zone->start; 1310 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1311 1312 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1313 zone->capacity << SECTOR_SHIFT); 1314 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1315 1316 inode->i_uid = sbi->s_uid; 1317 inode->i_gid = sbi->s_gid; 1318 inode->i_size = zi->i_wpoffset; 1319 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1320 1321 inode->i_op = &zonefs_file_inode_operations; 1322 inode->i_fop = &zonefs_file_operations; 1323 inode->i_mapping->a_ops = &zonefs_file_aops; 1324 1325 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1326 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1327 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1328 } 1329 1330 static struct dentry *zonefs_create_inode(struct dentry *parent, 1331 const char *name, struct blk_zone *zone, 1332 enum zonefs_ztype type) 1333 { 1334 struct inode *dir = d_inode(parent); 1335 struct dentry *dentry; 1336 struct inode *inode; 1337 1338 dentry = d_alloc_name(parent, name); 1339 if (!dentry) 1340 return NULL; 1341 1342 inode = new_inode(parent->d_sb); 1343 if (!inode) 1344 goto dput; 1345 1346 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1347 if (zone) 1348 zonefs_init_file_inode(inode, zone, type); 1349 else 1350 zonefs_init_dir_inode(dir, inode, type); 1351 d_add(dentry, inode); 1352 dir->i_size++; 1353 1354 return dentry; 1355 1356 dput: 1357 dput(dentry); 1358 1359 return NULL; 1360 } 1361 1362 struct zonefs_zone_data { 1363 struct super_block *sb; 1364 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1365 struct blk_zone *zones; 1366 }; 1367 1368 /* 1369 * Create a zone group and populate it with zone files. 1370 */ 1371 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1372 enum zonefs_ztype type) 1373 { 1374 struct super_block *sb = zd->sb; 1375 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1376 struct blk_zone *zone, *next, *end; 1377 const char *zgroup_name; 1378 char *file_name; 1379 struct dentry *dir; 1380 unsigned int n = 0; 1381 int ret; 1382 1383 /* If the group is empty, there is nothing to do */ 1384 if (!zd->nr_zones[type]) 1385 return 0; 1386 1387 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1388 if (!file_name) 1389 return -ENOMEM; 1390 1391 if (type == ZONEFS_ZTYPE_CNV) 1392 zgroup_name = "cnv"; 1393 else 1394 zgroup_name = "seq"; 1395 1396 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1397 if (!dir) { 1398 ret = -ENOMEM; 1399 goto free; 1400 } 1401 1402 /* 1403 * The first zone contains the super block: skip it. 1404 */ 1405 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1406 for (zone = &zd->zones[1]; zone < end; zone = next) { 1407 1408 next = zone + 1; 1409 if (zonefs_zone_type(zone) != type) 1410 continue; 1411 1412 /* 1413 * For conventional zones, contiguous zones can be aggregated 1414 * together to form larger files. Note that this overwrites the 1415 * length of the first zone of the set of contiguous zones 1416 * aggregated together. If one offline or read-only zone is 1417 * found, assume that all zones aggregated have the same 1418 * condition. 1419 */ 1420 if (type == ZONEFS_ZTYPE_CNV && 1421 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1422 for (; next < end; next++) { 1423 if (zonefs_zone_type(next) != type) 1424 break; 1425 zone->len += next->len; 1426 zone->capacity += next->capacity; 1427 if (next->cond == BLK_ZONE_COND_READONLY && 1428 zone->cond != BLK_ZONE_COND_OFFLINE) 1429 zone->cond = BLK_ZONE_COND_READONLY; 1430 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1431 zone->cond = BLK_ZONE_COND_OFFLINE; 1432 } 1433 if (zone->capacity != zone->len) { 1434 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1435 ret = -EINVAL; 1436 goto free; 1437 } 1438 } 1439 1440 /* 1441 * Use the file number within its group as file name. 1442 */ 1443 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1444 if (!zonefs_create_inode(dir, file_name, zone, type)) { 1445 ret = -ENOMEM; 1446 goto free; 1447 } 1448 1449 n++; 1450 } 1451 1452 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1453 zgroup_name, n, n > 1 ? "s" : ""); 1454 1455 sbi->s_nr_files[type] = n; 1456 ret = 0; 1457 1458 free: 1459 kfree(file_name); 1460 1461 return ret; 1462 } 1463 1464 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1465 void *data) 1466 { 1467 struct zonefs_zone_data *zd = data; 1468 1469 /* 1470 * Count the number of usable zones: the first zone at index 0 contains 1471 * the super block and is ignored. 1472 */ 1473 switch (zone->type) { 1474 case BLK_ZONE_TYPE_CONVENTIONAL: 1475 zone->wp = zone->start + zone->len; 1476 if (idx) 1477 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1478 break; 1479 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1480 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1481 if (idx) 1482 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1483 break; 1484 default: 1485 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1486 zone->type); 1487 return -EIO; 1488 } 1489 1490 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1491 1492 return 0; 1493 } 1494 1495 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1496 { 1497 struct block_device *bdev = zd->sb->s_bdev; 1498 int ret; 1499 1500 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1501 sizeof(struct blk_zone), GFP_KERNEL); 1502 if (!zd->zones) 1503 return -ENOMEM; 1504 1505 /* Get zones information from the device */ 1506 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1507 zonefs_get_zone_info_cb, zd); 1508 if (ret < 0) { 1509 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1510 return ret; 1511 } 1512 1513 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1514 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1515 ret, blkdev_nr_zones(bdev->bd_disk)); 1516 return -EIO; 1517 } 1518 1519 return 0; 1520 } 1521 1522 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1523 { 1524 kvfree(zd->zones); 1525 } 1526 1527 /* 1528 * Read super block information from the device. 1529 */ 1530 static int zonefs_read_super(struct super_block *sb) 1531 { 1532 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1533 struct zonefs_super *super; 1534 u32 crc, stored_crc; 1535 struct page *page; 1536 struct bio_vec bio_vec; 1537 struct bio bio; 1538 int ret; 1539 1540 page = alloc_page(GFP_KERNEL); 1541 if (!page) 1542 return -ENOMEM; 1543 1544 bio_init(&bio, &bio_vec, 1); 1545 bio.bi_iter.bi_sector = 0; 1546 bio.bi_opf = REQ_OP_READ; 1547 bio_set_dev(&bio, sb->s_bdev); 1548 bio_add_page(&bio, page, PAGE_SIZE, 0); 1549 1550 ret = submit_bio_wait(&bio); 1551 if (ret) 1552 goto free_page; 1553 1554 super = kmap(page); 1555 1556 ret = -EINVAL; 1557 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1558 goto unmap; 1559 1560 stored_crc = le32_to_cpu(super->s_crc); 1561 super->s_crc = 0; 1562 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1563 if (crc != stored_crc) { 1564 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1565 crc, stored_crc); 1566 goto unmap; 1567 } 1568 1569 sbi->s_features = le64_to_cpu(super->s_features); 1570 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1571 zonefs_err(sb, "Unknown features set 0x%llx\n", 1572 sbi->s_features); 1573 goto unmap; 1574 } 1575 1576 if (sbi->s_features & ZONEFS_F_UID) { 1577 sbi->s_uid = make_kuid(current_user_ns(), 1578 le32_to_cpu(super->s_uid)); 1579 if (!uid_valid(sbi->s_uid)) { 1580 zonefs_err(sb, "Invalid UID feature\n"); 1581 goto unmap; 1582 } 1583 } 1584 1585 if (sbi->s_features & ZONEFS_F_GID) { 1586 sbi->s_gid = make_kgid(current_user_ns(), 1587 le32_to_cpu(super->s_gid)); 1588 if (!gid_valid(sbi->s_gid)) { 1589 zonefs_err(sb, "Invalid GID feature\n"); 1590 goto unmap; 1591 } 1592 } 1593 1594 if (sbi->s_features & ZONEFS_F_PERM) 1595 sbi->s_perm = le32_to_cpu(super->s_perm); 1596 1597 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1598 zonefs_err(sb, "Reserved area is being used\n"); 1599 goto unmap; 1600 } 1601 1602 import_uuid(&sbi->s_uuid, super->s_uuid); 1603 ret = 0; 1604 1605 unmap: 1606 kunmap(page); 1607 free_page: 1608 __free_page(page); 1609 1610 return ret; 1611 } 1612 1613 /* 1614 * Check that the device is zoned. If it is, get the list of zones and create 1615 * sub-directories and files according to the device zone configuration and 1616 * format options. 1617 */ 1618 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1619 { 1620 struct zonefs_zone_data zd; 1621 struct zonefs_sb_info *sbi; 1622 struct inode *inode; 1623 enum zonefs_ztype t; 1624 int ret; 1625 1626 if (!bdev_is_zoned(sb->s_bdev)) { 1627 zonefs_err(sb, "Not a zoned block device\n"); 1628 return -EINVAL; 1629 } 1630 1631 /* 1632 * Initialize super block information: the maximum file size is updated 1633 * when the zone files are created so that the format option 1634 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1635 * beyond the zone size is taken into account. 1636 */ 1637 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1638 if (!sbi) 1639 return -ENOMEM; 1640 1641 spin_lock_init(&sbi->s_lock); 1642 sb->s_fs_info = sbi; 1643 sb->s_magic = ZONEFS_MAGIC; 1644 sb->s_maxbytes = 0; 1645 sb->s_op = &zonefs_sops; 1646 sb->s_time_gran = 1; 1647 1648 /* 1649 * The block size is set to the device zone write granularity to ensure 1650 * that write operations are always aligned according to the device 1651 * interface constraints. 1652 */ 1653 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1654 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1655 sbi->s_uid = GLOBAL_ROOT_UID; 1656 sbi->s_gid = GLOBAL_ROOT_GID; 1657 sbi->s_perm = 0640; 1658 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1659 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev); 1660 atomic_set(&sbi->s_open_zones, 0); 1661 if (!sbi->s_max_open_zones && 1662 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1663 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n"); 1664 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1665 } 1666 1667 ret = zonefs_read_super(sb); 1668 if (ret) 1669 return ret; 1670 1671 ret = zonefs_parse_options(sb, data); 1672 if (ret) 1673 return ret; 1674 1675 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1676 zd.sb = sb; 1677 ret = zonefs_get_zone_info(&zd); 1678 if (ret) 1679 goto cleanup; 1680 1681 zonefs_info(sb, "Mounting %u zones", 1682 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1683 1684 /* Create root directory inode */ 1685 ret = -ENOMEM; 1686 inode = new_inode(sb); 1687 if (!inode) 1688 goto cleanup; 1689 1690 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1691 inode->i_mode = S_IFDIR | 0555; 1692 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1693 inode->i_op = &zonefs_dir_inode_operations; 1694 inode->i_fop = &simple_dir_operations; 1695 set_nlink(inode, 2); 1696 1697 sb->s_root = d_make_root(inode); 1698 if (!sb->s_root) 1699 goto cleanup; 1700 1701 /* Create and populate files in zone groups directories */ 1702 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1703 ret = zonefs_create_zgroup(&zd, t); 1704 if (ret) 1705 break; 1706 } 1707 1708 cleanup: 1709 zonefs_cleanup_zone_info(&zd); 1710 1711 return ret; 1712 } 1713 1714 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1715 int flags, const char *dev_name, void *data) 1716 { 1717 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1718 } 1719 1720 static void zonefs_kill_super(struct super_block *sb) 1721 { 1722 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1723 1724 if (sb->s_root) 1725 d_genocide(sb->s_root); 1726 kill_block_super(sb); 1727 kfree(sbi); 1728 } 1729 1730 /* 1731 * File system definition and registration. 1732 */ 1733 static struct file_system_type zonefs_type = { 1734 .owner = THIS_MODULE, 1735 .name = "zonefs", 1736 .mount = zonefs_mount, 1737 .kill_sb = zonefs_kill_super, 1738 .fs_flags = FS_REQUIRES_DEV, 1739 }; 1740 1741 static int __init zonefs_init_inodecache(void) 1742 { 1743 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1744 sizeof(struct zonefs_inode_info), 0, 1745 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1746 NULL); 1747 if (zonefs_inode_cachep == NULL) 1748 return -ENOMEM; 1749 return 0; 1750 } 1751 1752 static void zonefs_destroy_inodecache(void) 1753 { 1754 /* 1755 * Make sure all delayed rcu free inodes are flushed before we 1756 * destroy the inode cache. 1757 */ 1758 rcu_barrier(); 1759 kmem_cache_destroy(zonefs_inode_cachep); 1760 } 1761 1762 static int __init zonefs_init(void) 1763 { 1764 int ret; 1765 1766 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1767 1768 ret = zonefs_init_inodecache(); 1769 if (ret) 1770 return ret; 1771 1772 ret = register_filesystem(&zonefs_type); 1773 if (ret) { 1774 zonefs_destroy_inodecache(); 1775 return ret; 1776 } 1777 1778 return 0; 1779 } 1780 1781 static void __exit zonefs_exit(void) 1782 { 1783 zonefs_destroy_inodecache(); 1784 unregister_filesystem(&zonefs_type); 1785 } 1786 1787 MODULE_AUTHOR("Damien Le Moal"); 1788 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1789 MODULE_LICENSE("GPL"); 1790 MODULE_ALIAS_FS("zonefs"); 1791 module_init(zonefs_init); 1792 module_exit(zonefs_exit); 1793