xref: /openbmc/linux/fs/zonefs/super.c (revision 43ee1e3f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Manage the active zone count. Called with zi->i_truncate_mutex held.
32  */
33 static void zonefs_account_active(struct inode *inode)
34 {
35 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
36 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
37 
38 	lockdep_assert_held(&zi->i_truncate_mutex);
39 
40 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
41 		return;
42 
43 	/*
44 	 * For zones that transitioned to the offline or readonly condition,
45 	 * we only need to clear the active state.
46 	 */
47 	if (zi->i_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY))
48 		goto out;
49 
50 	/*
51 	 * If the zone is active, that is, if it is explicitly open or
52 	 * partially written, check if it was already accounted as active.
53 	 */
54 	if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
55 	    (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
56 		if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
57 			zi->i_flags |= ZONEFS_ZONE_ACTIVE;
58 			atomic_inc(&sbi->s_active_seq_files);
59 		}
60 		return;
61 	}
62 
63 out:
64 	/* The zone is not active. If it was, update the active count */
65 	if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
66 		zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
67 		atomic_dec(&sbi->s_active_seq_files);
68 	}
69 }
70 
71 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op)
72 {
73 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
74 	int ret;
75 
76 	lockdep_assert_held(&zi->i_truncate_mutex);
77 
78 	/*
79 	 * With ZNS drives, closing an explicitly open zone that has not been
80 	 * written will change the zone state to "closed", that is, the zone
81 	 * will remain active. Since this can then cause failure of explicit
82 	 * open operation on other zones if the drive active zone resources
83 	 * are exceeded, make sure that the zone does not remain active by
84 	 * resetting it.
85 	 */
86 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
87 		op = REQ_OP_ZONE_RESET;
88 
89 	trace_zonefs_zone_mgmt(inode, op);
90 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
91 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
92 	if (ret) {
93 		zonefs_err(inode->i_sb,
94 			   "Zone management operation %s at %llu failed %d\n",
95 			   blk_op_str(op), zi->i_zsector, ret);
96 		return ret;
97 	}
98 
99 	return 0;
100 }
101 
102 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
103 {
104 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
105 
106 	i_size_write(inode, isize);
107 	/*
108 	 * A full zone is no longer open/active and does not need
109 	 * explicit closing.
110 	 */
111 	if (isize >= zi->i_max_size) {
112 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
113 
114 		if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
115 			atomic_dec(&sbi->s_active_seq_files);
116 		zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
117 	}
118 }
119 
120 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
121 				   loff_t length, unsigned int flags,
122 				   struct iomap *iomap, struct iomap *srcmap)
123 {
124 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
125 	struct super_block *sb = inode->i_sb;
126 	loff_t isize;
127 
128 	/*
129 	 * All blocks are always mapped below EOF. If reading past EOF,
130 	 * act as if there is a hole up to the file maximum size.
131 	 */
132 	mutex_lock(&zi->i_truncate_mutex);
133 	iomap->bdev = inode->i_sb->s_bdev;
134 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
135 	isize = i_size_read(inode);
136 	if (iomap->offset >= isize) {
137 		iomap->type = IOMAP_HOLE;
138 		iomap->addr = IOMAP_NULL_ADDR;
139 		iomap->length = length;
140 	} else {
141 		iomap->type = IOMAP_MAPPED;
142 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
143 		iomap->length = isize - iomap->offset;
144 	}
145 	mutex_unlock(&zi->i_truncate_mutex);
146 
147 	trace_zonefs_iomap_begin(inode, iomap);
148 
149 	return 0;
150 }
151 
152 static const struct iomap_ops zonefs_read_iomap_ops = {
153 	.iomap_begin	= zonefs_read_iomap_begin,
154 };
155 
156 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
157 				    loff_t length, unsigned int flags,
158 				    struct iomap *iomap, struct iomap *srcmap)
159 {
160 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
161 	struct super_block *sb = inode->i_sb;
162 	loff_t isize;
163 
164 	/* All write I/Os should always be within the file maximum size */
165 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
166 		return -EIO;
167 
168 	/*
169 	 * Sequential zones can only accept direct writes. This is already
170 	 * checked when writes are issued, so warn if we see a page writeback
171 	 * operation.
172 	 */
173 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
174 			 !(flags & IOMAP_DIRECT)))
175 		return -EIO;
176 
177 	/*
178 	 * For conventional zones, all blocks are always mapped. For sequential
179 	 * zones, all blocks after always mapped below the inode size (zone
180 	 * write pointer) and unwriten beyond.
181 	 */
182 	mutex_lock(&zi->i_truncate_mutex);
183 	iomap->bdev = inode->i_sb->s_bdev;
184 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
185 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
186 	isize = i_size_read(inode);
187 	if (iomap->offset >= isize) {
188 		iomap->type = IOMAP_UNWRITTEN;
189 		iomap->length = zi->i_max_size - iomap->offset;
190 	} else {
191 		iomap->type = IOMAP_MAPPED;
192 		iomap->length = isize - iomap->offset;
193 	}
194 	mutex_unlock(&zi->i_truncate_mutex);
195 
196 	trace_zonefs_iomap_begin(inode, iomap);
197 
198 	return 0;
199 }
200 
201 static const struct iomap_ops zonefs_write_iomap_ops = {
202 	.iomap_begin	= zonefs_write_iomap_begin,
203 };
204 
205 static int zonefs_read_folio(struct file *unused, struct folio *folio)
206 {
207 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
208 }
209 
210 static void zonefs_readahead(struct readahead_control *rac)
211 {
212 	iomap_readahead(rac, &zonefs_read_iomap_ops);
213 }
214 
215 /*
216  * Map blocks for page writeback. This is used only on conventional zone files,
217  * which implies that the page range can only be within the fixed inode size.
218  */
219 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
220 				   struct inode *inode, loff_t offset)
221 {
222 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
223 
224 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
225 		return -EIO;
226 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
227 		return -EIO;
228 
229 	/* If the mapping is already OK, nothing needs to be done */
230 	if (offset >= wpc->iomap.offset &&
231 	    offset < wpc->iomap.offset + wpc->iomap.length)
232 		return 0;
233 
234 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
235 					IOMAP_WRITE, &wpc->iomap, NULL);
236 }
237 
238 static const struct iomap_writeback_ops zonefs_writeback_ops = {
239 	.map_blocks		= zonefs_write_map_blocks,
240 };
241 
242 static int zonefs_writepages(struct address_space *mapping,
243 			     struct writeback_control *wbc)
244 {
245 	struct iomap_writepage_ctx wpc = { };
246 
247 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
248 }
249 
250 static int zonefs_swap_activate(struct swap_info_struct *sis,
251 				struct file *swap_file, sector_t *span)
252 {
253 	struct inode *inode = file_inode(swap_file);
254 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
255 
256 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
257 		zonefs_err(inode->i_sb,
258 			   "swap file: not a conventional zone file\n");
259 		return -EINVAL;
260 	}
261 
262 	return iomap_swapfile_activate(sis, swap_file, span,
263 				       &zonefs_read_iomap_ops);
264 }
265 
266 static const struct address_space_operations zonefs_file_aops = {
267 	.read_folio		= zonefs_read_folio,
268 	.readahead		= zonefs_readahead,
269 	.writepages		= zonefs_writepages,
270 	.dirty_folio		= filemap_dirty_folio,
271 	.release_folio		= iomap_release_folio,
272 	.invalidate_folio	= iomap_invalidate_folio,
273 	.migrate_folio		= filemap_migrate_folio,
274 	.is_partially_uptodate	= iomap_is_partially_uptodate,
275 	.error_remove_page	= generic_error_remove_page,
276 	.direct_IO		= noop_direct_IO,
277 	.swap_activate		= zonefs_swap_activate,
278 };
279 
280 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
281 {
282 	struct super_block *sb = inode->i_sb;
283 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
284 	loff_t old_isize = i_size_read(inode);
285 	loff_t nr_blocks;
286 
287 	if (new_isize == old_isize)
288 		return;
289 
290 	spin_lock(&sbi->s_lock);
291 
292 	/*
293 	 * This may be called for an update after an IO error.
294 	 * So beware of the values seen.
295 	 */
296 	if (new_isize < old_isize) {
297 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
298 		if (sbi->s_used_blocks > nr_blocks)
299 			sbi->s_used_blocks -= nr_blocks;
300 		else
301 			sbi->s_used_blocks = 0;
302 	} else {
303 		sbi->s_used_blocks +=
304 			(new_isize - old_isize) >> sb->s_blocksize_bits;
305 		if (sbi->s_used_blocks > sbi->s_blocks)
306 			sbi->s_used_blocks = sbi->s_blocks;
307 	}
308 
309 	spin_unlock(&sbi->s_lock);
310 }
311 
312 /*
313  * Check a zone condition and adjust its file inode access permissions for
314  * offline and readonly zones. Return the inode size corresponding to the
315  * amount of readable data in the zone.
316  */
317 static loff_t zonefs_check_zone_condition(struct inode *inode,
318 					  struct blk_zone *zone, bool warn,
319 					  bool mount)
320 {
321 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
322 
323 	switch (zone->cond) {
324 	case BLK_ZONE_COND_OFFLINE:
325 		/*
326 		 * Dead zone: make the inode immutable, disable all accesses
327 		 * and set the file size to 0 (zone wp set to zone start).
328 		 */
329 		if (warn)
330 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
331 				    inode->i_ino);
332 		inode->i_flags |= S_IMMUTABLE;
333 		inode->i_mode &= ~0777;
334 		zone->wp = zone->start;
335 		zi->i_flags |= ZONEFS_ZONE_OFFLINE;
336 		return 0;
337 	case BLK_ZONE_COND_READONLY:
338 		/*
339 		 * The write pointer of read-only zones is invalid. If such a
340 		 * zone is found during mount, the file size cannot be retrieved
341 		 * so we treat the zone as offline (mount == true case).
342 		 * Otherwise, keep the file size as it was when last updated
343 		 * so that the user can recover data. In both cases, writes are
344 		 * always disabled for the zone.
345 		 */
346 		if (warn)
347 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
348 				    inode->i_ino);
349 		inode->i_flags |= S_IMMUTABLE;
350 		if (mount) {
351 			zone->cond = BLK_ZONE_COND_OFFLINE;
352 			inode->i_mode &= ~0777;
353 			zone->wp = zone->start;
354 			zi->i_flags |= ZONEFS_ZONE_OFFLINE;
355 			return 0;
356 		}
357 		zi->i_flags |= ZONEFS_ZONE_READONLY;
358 		inode->i_mode &= ~0222;
359 		return i_size_read(inode);
360 	case BLK_ZONE_COND_FULL:
361 		/* The write pointer of full zones is invalid. */
362 		return zi->i_max_size;
363 	default:
364 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
365 			return zi->i_max_size;
366 		return (zone->wp - zone->start) << SECTOR_SHIFT;
367 	}
368 }
369 
370 struct zonefs_ioerr_data {
371 	struct inode	*inode;
372 	bool		write;
373 };
374 
375 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
376 			      void *data)
377 {
378 	struct zonefs_ioerr_data *err = data;
379 	struct inode *inode = err->inode;
380 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
381 	struct super_block *sb = inode->i_sb;
382 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
383 	loff_t isize, data_size;
384 
385 	/*
386 	 * Check the zone condition: if the zone is not "bad" (offline or
387 	 * read-only), read errors are simply signaled to the IO issuer as long
388 	 * as there is no inconsistency between the inode size and the amount of
389 	 * data writen in the zone (data_size).
390 	 */
391 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
392 	isize = i_size_read(inode);
393 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
394 	    zone->cond != BLK_ZONE_COND_READONLY &&
395 	    !err->write && isize == data_size)
396 		return 0;
397 
398 	/*
399 	 * At this point, we detected either a bad zone or an inconsistency
400 	 * between the inode size and the amount of data written in the zone.
401 	 * For the latter case, the cause may be a write IO error or an external
402 	 * action on the device. Two error patterns exist:
403 	 * 1) The inode size is lower than the amount of data in the zone:
404 	 *    a write operation partially failed and data was writen at the end
405 	 *    of the file. This can happen in the case of a large direct IO
406 	 *    needing several BIOs and/or write requests to be processed.
407 	 * 2) The inode size is larger than the amount of data in the zone:
408 	 *    this can happen with a deferred write error with the use of the
409 	 *    device side write cache after getting successful write IO
410 	 *    completions. Other possibilities are (a) an external corruption,
411 	 *    e.g. an application reset the zone directly, or (b) the device
412 	 *    has a serious problem (e.g. firmware bug).
413 	 *
414 	 * In all cases, warn about inode size inconsistency and handle the
415 	 * IO error according to the zone condition and to the mount options.
416 	 */
417 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
418 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
419 			    inode->i_ino, isize, data_size);
420 
421 	/*
422 	 * First handle bad zones signaled by hardware. The mount options
423 	 * errors=zone-ro and errors=zone-offline result in changing the
424 	 * zone condition to read-only and offline respectively, as if the
425 	 * condition was signaled by the hardware.
426 	 */
427 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
428 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
429 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
430 			    inode->i_ino);
431 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
432 			zone->cond = BLK_ZONE_COND_OFFLINE;
433 			data_size = zonefs_check_zone_condition(inode, zone,
434 								false, false);
435 		}
436 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
437 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
438 		zonefs_warn(sb, "inode %lu: write access disabled\n",
439 			    inode->i_ino);
440 		if (zone->cond != BLK_ZONE_COND_READONLY) {
441 			zone->cond = BLK_ZONE_COND_READONLY;
442 			data_size = zonefs_check_zone_condition(inode, zone,
443 								false, false);
444 		}
445 	}
446 
447 	/*
448 	 * If the filesystem is mounted with the explicit-open mount option, we
449 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
450 	 * the read-only or offline condition, to avoid attempting an explicit
451 	 * close of the zone when the inode file is closed.
452 	 */
453 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
454 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
455 	     zone->cond == BLK_ZONE_COND_READONLY))
456 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
457 
458 	/*
459 	 * If error=remount-ro was specified, any error result in remounting
460 	 * the volume as read-only.
461 	 */
462 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
463 		zonefs_warn(sb, "remounting filesystem read-only\n");
464 		sb->s_flags |= SB_RDONLY;
465 	}
466 
467 	/*
468 	 * Update block usage stats and the inode size  to prevent access to
469 	 * invalid data.
470 	 */
471 	zonefs_update_stats(inode, data_size);
472 	zonefs_i_size_write(inode, data_size);
473 	zi->i_wpoffset = data_size;
474 	zonefs_account_active(inode);
475 
476 	return 0;
477 }
478 
479 /*
480  * When an file IO error occurs, check the file zone to see if there is a change
481  * in the zone condition (e.g. offline or read-only). For a failed write to a
482  * sequential zone, the zone write pointer position must also be checked to
483  * eventually correct the file size and zonefs inode write pointer offset
484  * (which can be out of sync with the drive due to partial write failures).
485  */
486 static void __zonefs_io_error(struct inode *inode, bool write)
487 {
488 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
489 	struct super_block *sb = inode->i_sb;
490 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
491 	unsigned int noio_flag;
492 	unsigned int nr_zones = 1;
493 	struct zonefs_ioerr_data err = {
494 		.inode = inode,
495 		.write = write,
496 	};
497 	int ret;
498 
499 	/*
500 	 * The only files that have more than one zone are conventional zone
501 	 * files with aggregated conventional zones, for which the inode zone
502 	 * size is always larger than the device zone size.
503 	 */
504 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
505 		nr_zones = zi->i_zone_size >>
506 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
507 
508 	/*
509 	 * Memory allocations in blkdev_report_zones() can trigger a memory
510 	 * reclaim which may in turn cause a recursion into zonefs as well as
511 	 * struct request allocations for the same device. The former case may
512 	 * end up in a deadlock on the inode truncate mutex, while the latter
513 	 * may prevent IO forward progress. Executing the report zones under
514 	 * the GFP_NOIO context avoids both problems.
515 	 */
516 	noio_flag = memalloc_noio_save();
517 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
518 				  zonefs_io_error_cb, &err);
519 	if (ret != nr_zones)
520 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
521 			   inode->i_ino, ret);
522 	memalloc_noio_restore(noio_flag);
523 }
524 
525 static void zonefs_io_error(struct inode *inode, bool write)
526 {
527 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
528 
529 	mutex_lock(&zi->i_truncate_mutex);
530 	__zonefs_io_error(inode, write);
531 	mutex_unlock(&zi->i_truncate_mutex);
532 }
533 
534 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
535 {
536 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
537 	loff_t old_isize;
538 	enum req_op op;
539 	int ret = 0;
540 
541 	/*
542 	 * Only sequential zone files can be truncated and truncation is allowed
543 	 * only down to a 0 size, which is equivalent to a zone reset, and to
544 	 * the maximum file size, which is equivalent to a zone finish.
545 	 */
546 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
547 		return -EPERM;
548 
549 	if (!isize)
550 		op = REQ_OP_ZONE_RESET;
551 	else if (isize == zi->i_max_size)
552 		op = REQ_OP_ZONE_FINISH;
553 	else
554 		return -EPERM;
555 
556 	inode_dio_wait(inode);
557 
558 	/* Serialize against page faults */
559 	filemap_invalidate_lock(inode->i_mapping);
560 
561 	/* Serialize against zonefs_iomap_begin() */
562 	mutex_lock(&zi->i_truncate_mutex);
563 
564 	old_isize = i_size_read(inode);
565 	if (isize == old_isize)
566 		goto unlock;
567 
568 	ret = zonefs_zone_mgmt(inode, op);
569 	if (ret)
570 		goto unlock;
571 
572 	/*
573 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
574 	 * take care of open zones.
575 	 */
576 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
577 		/*
578 		 * Truncating a zone to EMPTY or FULL is the equivalent of
579 		 * closing the zone. For a truncation to 0, we need to
580 		 * re-open the zone to ensure new writes can be processed.
581 		 * For a truncation to the maximum file size, the zone is
582 		 * closed and writes cannot be accepted anymore, so clear
583 		 * the open flag.
584 		 */
585 		if (!isize)
586 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
587 		else
588 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
589 	}
590 
591 	zonefs_update_stats(inode, isize);
592 	truncate_setsize(inode, isize);
593 	zi->i_wpoffset = isize;
594 	zonefs_account_active(inode);
595 
596 unlock:
597 	mutex_unlock(&zi->i_truncate_mutex);
598 	filemap_invalidate_unlock(inode->i_mapping);
599 
600 	return ret;
601 }
602 
603 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
604 				struct dentry *dentry, struct iattr *iattr)
605 {
606 	struct inode *inode = d_inode(dentry);
607 	int ret;
608 
609 	if (unlikely(IS_IMMUTABLE(inode)))
610 		return -EPERM;
611 
612 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
613 	if (ret)
614 		return ret;
615 
616 	/*
617 	 * Since files and directories cannot be created nor deleted, do not
618 	 * allow setting any write attributes on the sub-directories grouping
619 	 * files by zone type.
620 	 */
621 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
622 	    (iattr->ia_mode & 0222))
623 		return -EPERM;
624 
625 	if (((iattr->ia_valid & ATTR_UID) &&
626 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
627 	    ((iattr->ia_valid & ATTR_GID) &&
628 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
629 		ret = dquot_transfer(mnt_userns, inode, iattr);
630 		if (ret)
631 			return ret;
632 	}
633 
634 	if (iattr->ia_valid & ATTR_SIZE) {
635 		ret = zonefs_file_truncate(inode, iattr->ia_size);
636 		if (ret)
637 			return ret;
638 	}
639 
640 	setattr_copy(&init_user_ns, inode, iattr);
641 
642 	return 0;
643 }
644 
645 static const struct inode_operations zonefs_file_inode_operations = {
646 	.setattr	= zonefs_inode_setattr,
647 };
648 
649 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
650 			     int datasync)
651 {
652 	struct inode *inode = file_inode(file);
653 	int ret = 0;
654 
655 	if (unlikely(IS_IMMUTABLE(inode)))
656 		return -EPERM;
657 
658 	/*
659 	 * Since only direct writes are allowed in sequential files, page cache
660 	 * flush is needed only for conventional zone files.
661 	 */
662 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
663 		ret = file_write_and_wait_range(file, start, end);
664 	if (!ret)
665 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
666 
667 	if (ret)
668 		zonefs_io_error(inode, true);
669 
670 	return ret;
671 }
672 
673 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
674 {
675 	struct inode *inode = file_inode(vmf->vma->vm_file);
676 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
677 	vm_fault_t ret;
678 
679 	if (unlikely(IS_IMMUTABLE(inode)))
680 		return VM_FAULT_SIGBUS;
681 
682 	/*
683 	 * Sanity check: only conventional zone files can have shared
684 	 * writeable mappings.
685 	 */
686 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
687 		return VM_FAULT_NOPAGE;
688 
689 	sb_start_pagefault(inode->i_sb);
690 	file_update_time(vmf->vma->vm_file);
691 
692 	/* Serialize against truncates */
693 	filemap_invalidate_lock_shared(inode->i_mapping);
694 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
695 	filemap_invalidate_unlock_shared(inode->i_mapping);
696 
697 	sb_end_pagefault(inode->i_sb);
698 	return ret;
699 }
700 
701 static const struct vm_operations_struct zonefs_file_vm_ops = {
702 	.fault		= filemap_fault,
703 	.map_pages	= filemap_map_pages,
704 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
705 };
706 
707 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
708 {
709 	/*
710 	 * Conventional zones accept random writes, so their files can support
711 	 * shared writable mappings. For sequential zone files, only read
712 	 * mappings are possible since there are no guarantees for write
713 	 * ordering between msync() and page cache writeback.
714 	 */
715 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
716 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
717 		return -EINVAL;
718 
719 	file_accessed(file);
720 	vma->vm_ops = &zonefs_file_vm_ops;
721 
722 	return 0;
723 }
724 
725 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
726 {
727 	loff_t isize = i_size_read(file_inode(file));
728 
729 	/*
730 	 * Seeks are limited to below the zone size for conventional zones
731 	 * and below the zone write pointer for sequential zones. In both
732 	 * cases, this limit is the inode size.
733 	 */
734 	return generic_file_llseek_size(file, offset, whence, isize, isize);
735 }
736 
737 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
738 					int error, unsigned int flags)
739 {
740 	struct inode *inode = file_inode(iocb->ki_filp);
741 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
742 
743 	if (error) {
744 		zonefs_io_error(inode, true);
745 		return error;
746 	}
747 
748 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
749 		/*
750 		 * Note that we may be seeing completions out of order,
751 		 * but that is not a problem since a write completed
752 		 * successfully necessarily means that all preceding writes
753 		 * were also successful. So we can safely increase the inode
754 		 * size to the write end location.
755 		 */
756 		mutex_lock(&zi->i_truncate_mutex);
757 		if (i_size_read(inode) < iocb->ki_pos + size) {
758 			zonefs_update_stats(inode, iocb->ki_pos + size);
759 			zonefs_i_size_write(inode, iocb->ki_pos + size);
760 		}
761 		mutex_unlock(&zi->i_truncate_mutex);
762 	}
763 
764 	return 0;
765 }
766 
767 static const struct iomap_dio_ops zonefs_write_dio_ops = {
768 	.end_io			= zonefs_file_write_dio_end_io,
769 };
770 
771 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
772 {
773 	struct inode *inode = file_inode(iocb->ki_filp);
774 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
775 	struct block_device *bdev = inode->i_sb->s_bdev;
776 	unsigned int max = bdev_max_zone_append_sectors(bdev);
777 	struct bio *bio;
778 	ssize_t size;
779 	int nr_pages;
780 	ssize_t ret;
781 
782 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
783 	iov_iter_truncate(from, max);
784 
785 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
786 	if (!nr_pages)
787 		return 0;
788 
789 	bio = bio_alloc(bdev, nr_pages,
790 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
791 	bio->bi_iter.bi_sector = zi->i_zsector;
792 	bio->bi_ioprio = iocb->ki_ioprio;
793 	if (iocb_is_dsync(iocb))
794 		bio->bi_opf |= REQ_FUA;
795 
796 	ret = bio_iov_iter_get_pages(bio, from);
797 	if (unlikely(ret))
798 		goto out_release;
799 
800 	size = bio->bi_iter.bi_size;
801 	task_io_account_write(size);
802 
803 	if (iocb->ki_flags & IOCB_HIPRI)
804 		bio_set_polled(bio, iocb);
805 
806 	ret = submit_bio_wait(bio);
807 
808 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
809 	trace_zonefs_file_dio_append(inode, size, ret);
810 
811 out_release:
812 	bio_release_pages(bio, false);
813 	bio_put(bio);
814 
815 	if (ret >= 0) {
816 		iocb->ki_pos += size;
817 		return size;
818 	}
819 
820 	return ret;
821 }
822 
823 /*
824  * Do not exceed the LFS limits nor the file zone size. If pos is under the
825  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
826  */
827 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
828 					loff_t count)
829 {
830 	struct inode *inode = file_inode(file);
831 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
832 	loff_t limit = rlimit(RLIMIT_FSIZE);
833 	loff_t max_size = zi->i_max_size;
834 
835 	if (limit != RLIM_INFINITY) {
836 		if (pos >= limit) {
837 			send_sig(SIGXFSZ, current, 0);
838 			return -EFBIG;
839 		}
840 		count = min(count, limit - pos);
841 	}
842 
843 	if (!(file->f_flags & O_LARGEFILE))
844 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
845 
846 	if (unlikely(pos >= max_size))
847 		return -EFBIG;
848 
849 	return min(count, max_size - pos);
850 }
851 
852 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
853 {
854 	struct file *file = iocb->ki_filp;
855 	struct inode *inode = file_inode(file);
856 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
857 	loff_t count;
858 
859 	if (IS_SWAPFILE(inode))
860 		return -ETXTBSY;
861 
862 	if (!iov_iter_count(from))
863 		return 0;
864 
865 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
866 		return -EINVAL;
867 
868 	if (iocb->ki_flags & IOCB_APPEND) {
869 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
870 			return -EINVAL;
871 		mutex_lock(&zi->i_truncate_mutex);
872 		iocb->ki_pos = zi->i_wpoffset;
873 		mutex_unlock(&zi->i_truncate_mutex);
874 	}
875 
876 	count = zonefs_write_check_limits(file, iocb->ki_pos,
877 					  iov_iter_count(from));
878 	if (count < 0)
879 		return count;
880 
881 	iov_iter_truncate(from, count);
882 	return iov_iter_count(from);
883 }
884 
885 /*
886  * Handle direct writes. For sequential zone files, this is the only possible
887  * write path. For these files, check that the user is issuing writes
888  * sequentially from the end of the file. This code assumes that the block layer
889  * delivers write requests to the device in sequential order. This is always the
890  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
891  * elevator feature is being used (e.g. mq-deadline). The block layer always
892  * automatically select such an elevator for zoned block devices during the
893  * device initialization.
894  */
895 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
896 {
897 	struct inode *inode = file_inode(iocb->ki_filp);
898 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
899 	struct super_block *sb = inode->i_sb;
900 	bool sync = is_sync_kiocb(iocb);
901 	bool append = false;
902 	ssize_t ret, count;
903 
904 	/*
905 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
906 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
907 	 * on the inode lock but the second goes through but is now unaligned).
908 	 */
909 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
910 	    (iocb->ki_flags & IOCB_NOWAIT))
911 		return -EOPNOTSUPP;
912 
913 	if (iocb->ki_flags & IOCB_NOWAIT) {
914 		if (!inode_trylock(inode))
915 			return -EAGAIN;
916 	} else {
917 		inode_lock(inode);
918 	}
919 
920 	count = zonefs_write_checks(iocb, from);
921 	if (count <= 0) {
922 		ret = count;
923 		goto inode_unlock;
924 	}
925 
926 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
927 		ret = -EINVAL;
928 		goto inode_unlock;
929 	}
930 
931 	/* Enforce sequential writes (append only) in sequential zones */
932 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
933 		mutex_lock(&zi->i_truncate_mutex);
934 		if (iocb->ki_pos != zi->i_wpoffset) {
935 			mutex_unlock(&zi->i_truncate_mutex);
936 			ret = -EINVAL;
937 			goto inode_unlock;
938 		}
939 		mutex_unlock(&zi->i_truncate_mutex);
940 		append = sync;
941 	}
942 
943 	if (append)
944 		ret = zonefs_file_dio_append(iocb, from);
945 	else
946 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
947 				   &zonefs_write_dio_ops, 0, NULL, 0);
948 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
949 	    (ret > 0 || ret == -EIOCBQUEUED)) {
950 		if (ret > 0)
951 			count = ret;
952 
953 		/*
954 		 * Update the zone write pointer offset assuming the write
955 		 * operation succeeded. If it did not, the error recovery path
956 		 * will correct it. Also do active seq file accounting.
957 		 */
958 		mutex_lock(&zi->i_truncate_mutex);
959 		zi->i_wpoffset += count;
960 		zonefs_account_active(inode);
961 		mutex_unlock(&zi->i_truncate_mutex);
962 	}
963 
964 inode_unlock:
965 	inode_unlock(inode);
966 
967 	return ret;
968 }
969 
970 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
971 					  struct iov_iter *from)
972 {
973 	struct inode *inode = file_inode(iocb->ki_filp);
974 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
975 	ssize_t ret;
976 
977 	/*
978 	 * Direct IO writes are mandatory for sequential zone files so that the
979 	 * write IO issuing order is preserved.
980 	 */
981 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
982 		return -EIO;
983 
984 	if (iocb->ki_flags & IOCB_NOWAIT) {
985 		if (!inode_trylock(inode))
986 			return -EAGAIN;
987 	} else {
988 		inode_lock(inode);
989 	}
990 
991 	ret = zonefs_write_checks(iocb, from);
992 	if (ret <= 0)
993 		goto inode_unlock;
994 
995 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
996 	if (ret > 0)
997 		iocb->ki_pos += ret;
998 	else if (ret == -EIO)
999 		zonefs_io_error(inode, true);
1000 
1001 inode_unlock:
1002 	inode_unlock(inode);
1003 	if (ret > 0)
1004 		ret = generic_write_sync(iocb, ret);
1005 
1006 	return ret;
1007 }
1008 
1009 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1010 {
1011 	struct inode *inode = file_inode(iocb->ki_filp);
1012 
1013 	if (unlikely(IS_IMMUTABLE(inode)))
1014 		return -EPERM;
1015 
1016 	if (sb_rdonly(inode->i_sb))
1017 		return -EROFS;
1018 
1019 	/* Write operations beyond the zone size are not allowed */
1020 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1021 		return -EFBIG;
1022 
1023 	if (iocb->ki_flags & IOCB_DIRECT) {
1024 		ssize_t ret = zonefs_file_dio_write(iocb, from);
1025 		if (ret != -ENOTBLK)
1026 			return ret;
1027 	}
1028 
1029 	return zonefs_file_buffered_write(iocb, from);
1030 }
1031 
1032 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1033 				       int error, unsigned int flags)
1034 {
1035 	if (error) {
1036 		zonefs_io_error(file_inode(iocb->ki_filp), false);
1037 		return error;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1044 	.end_io			= zonefs_file_read_dio_end_io,
1045 };
1046 
1047 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1048 {
1049 	struct inode *inode = file_inode(iocb->ki_filp);
1050 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1051 	struct super_block *sb = inode->i_sb;
1052 	loff_t isize;
1053 	ssize_t ret;
1054 
1055 	/* Offline zones cannot be read */
1056 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1057 		return -EPERM;
1058 
1059 	if (iocb->ki_pos >= zi->i_max_size)
1060 		return 0;
1061 
1062 	if (iocb->ki_flags & IOCB_NOWAIT) {
1063 		if (!inode_trylock_shared(inode))
1064 			return -EAGAIN;
1065 	} else {
1066 		inode_lock_shared(inode);
1067 	}
1068 
1069 	/* Limit read operations to written data */
1070 	mutex_lock(&zi->i_truncate_mutex);
1071 	isize = i_size_read(inode);
1072 	if (iocb->ki_pos >= isize) {
1073 		mutex_unlock(&zi->i_truncate_mutex);
1074 		ret = 0;
1075 		goto inode_unlock;
1076 	}
1077 	iov_iter_truncate(to, isize - iocb->ki_pos);
1078 	mutex_unlock(&zi->i_truncate_mutex);
1079 
1080 	if (iocb->ki_flags & IOCB_DIRECT) {
1081 		size_t count = iov_iter_count(to);
1082 
1083 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1084 			ret = -EINVAL;
1085 			goto inode_unlock;
1086 		}
1087 		file_accessed(iocb->ki_filp);
1088 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1089 				   &zonefs_read_dio_ops, 0, NULL, 0);
1090 	} else {
1091 		ret = generic_file_read_iter(iocb, to);
1092 		if (ret == -EIO)
1093 			zonefs_io_error(inode, false);
1094 	}
1095 
1096 inode_unlock:
1097 	inode_unlock_shared(inode);
1098 
1099 	return ret;
1100 }
1101 
1102 /*
1103  * Write open accounting is done only for sequential files.
1104  */
1105 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1106 					    struct file *file)
1107 {
1108 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1109 
1110 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1111 		return false;
1112 
1113 	if (!(file->f_mode & FMODE_WRITE))
1114 		return false;
1115 
1116 	return true;
1117 }
1118 
1119 static int zonefs_seq_file_write_open(struct inode *inode)
1120 {
1121 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1122 	int ret = 0;
1123 
1124 	mutex_lock(&zi->i_truncate_mutex);
1125 
1126 	if (!zi->i_wr_refcnt) {
1127 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1128 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1129 
1130 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1131 
1132 			if (sbi->s_max_wro_seq_files
1133 			    && wro > sbi->s_max_wro_seq_files) {
1134 				atomic_dec(&sbi->s_wro_seq_files);
1135 				ret = -EBUSY;
1136 				goto unlock;
1137 			}
1138 
1139 			if (i_size_read(inode) < zi->i_max_size) {
1140 				ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1141 				if (ret) {
1142 					atomic_dec(&sbi->s_wro_seq_files);
1143 					goto unlock;
1144 				}
1145 				zi->i_flags |= ZONEFS_ZONE_OPEN;
1146 				zonefs_account_active(inode);
1147 			}
1148 		}
1149 	}
1150 
1151 	zi->i_wr_refcnt++;
1152 
1153 unlock:
1154 	mutex_unlock(&zi->i_truncate_mutex);
1155 
1156 	return ret;
1157 }
1158 
1159 static int zonefs_file_open(struct inode *inode, struct file *file)
1160 {
1161 	int ret;
1162 
1163 	ret = generic_file_open(inode, file);
1164 	if (ret)
1165 		return ret;
1166 
1167 	if (zonefs_seq_file_need_wro(inode, file))
1168 		return zonefs_seq_file_write_open(inode);
1169 
1170 	return 0;
1171 }
1172 
1173 static void zonefs_seq_file_write_close(struct inode *inode)
1174 {
1175 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1176 	struct super_block *sb = inode->i_sb;
1177 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1178 	int ret = 0;
1179 
1180 	mutex_lock(&zi->i_truncate_mutex);
1181 
1182 	zi->i_wr_refcnt--;
1183 	if (zi->i_wr_refcnt)
1184 		goto unlock;
1185 
1186 	/*
1187 	 * The file zone may not be open anymore (e.g. the file was truncated to
1188 	 * its maximum size or it was fully written). For this case, we only
1189 	 * need to decrement the write open count.
1190 	 */
1191 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1192 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1193 		if (ret) {
1194 			__zonefs_io_error(inode, false);
1195 			/*
1196 			 * Leaving zones explicitly open may lead to a state
1197 			 * where most zones cannot be written (zone resources
1198 			 * exhausted). So take preventive action by remounting
1199 			 * read-only.
1200 			 */
1201 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1202 			    !(sb->s_flags & SB_RDONLY)) {
1203 				zonefs_warn(sb,
1204 					"closing zone at %llu failed %d\n",
1205 					zi->i_zsector, ret);
1206 				zonefs_warn(sb,
1207 					"remounting filesystem read-only\n");
1208 				sb->s_flags |= SB_RDONLY;
1209 			}
1210 			goto unlock;
1211 		}
1212 
1213 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1214 		zonefs_account_active(inode);
1215 	}
1216 
1217 	atomic_dec(&sbi->s_wro_seq_files);
1218 
1219 unlock:
1220 	mutex_unlock(&zi->i_truncate_mutex);
1221 }
1222 
1223 static int zonefs_file_release(struct inode *inode, struct file *file)
1224 {
1225 	/*
1226 	 * If we explicitly open a zone we must close it again as well, but the
1227 	 * zone management operation can fail (either due to an IO error or as
1228 	 * the zone has gone offline or read-only). Make sure we don't fail the
1229 	 * close(2) for user-space.
1230 	 */
1231 	if (zonefs_seq_file_need_wro(inode, file))
1232 		zonefs_seq_file_write_close(inode);
1233 
1234 	return 0;
1235 }
1236 
1237 static const struct file_operations zonefs_file_operations = {
1238 	.open		= zonefs_file_open,
1239 	.release	= zonefs_file_release,
1240 	.fsync		= zonefs_file_fsync,
1241 	.mmap		= zonefs_file_mmap,
1242 	.llseek		= zonefs_file_llseek,
1243 	.read_iter	= zonefs_file_read_iter,
1244 	.write_iter	= zonefs_file_write_iter,
1245 	.splice_read	= generic_file_splice_read,
1246 	.splice_write	= iter_file_splice_write,
1247 	.iopoll		= iocb_bio_iopoll,
1248 };
1249 
1250 static struct kmem_cache *zonefs_inode_cachep;
1251 
1252 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1253 {
1254 	struct zonefs_inode_info *zi;
1255 
1256 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1257 	if (!zi)
1258 		return NULL;
1259 
1260 	inode_init_once(&zi->i_vnode);
1261 	mutex_init(&zi->i_truncate_mutex);
1262 	zi->i_wr_refcnt = 0;
1263 	zi->i_flags = 0;
1264 
1265 	return &zi->i_vnode;
1266 }
1267 
1268 static void zonefs_free_inode(struct inode *inode)
1269 {
1270 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1271 }
1272 
1273 /*
1274  * File system stat.
1275  */
1276 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1277 {
1278 	struct super_block *sb = dentry->d_sb;
1279 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1280 	enum zonefs_ztype t;
1281 
1282 	buf->f_type = ZONEFS_MAGIC;
1283 	buf->f_bsize = sb->s_blocksize;
1284 	buf->f_namelen = ZONEFS_NAME_MAX;
1285 
1286 	spin_lock(&sbi->s_lock);
1287 
1288 	buf->f_blocks = sbi->s_blocks;
1289 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1290 		buf->f_bfree = 0;
1291 	else
1292 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1293 	buf->f_bavail = buf->f_bfree;
1294 
1295 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1296 		if (sbi->s_nr_files[t])
1297 			buf->f_files += sbi->s_nr_files[t] + 1;
1298 	}
1299 	buf->f_ffree = 0;
1300 
1301 	spin_unlock(&sbi->s_lock);
1302 
1303 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1304 
1305 	return 0;
1306 }
1307 
1308 enum {
1309 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1310 	Opt_explicit_open, Opt_err,
1311 };
1312 
1313 static const match_table_t tokens = {
1314 	{ Opt_errors_ro,	"errors=remount-ro"},
1315 	{ Opt_errors_zro,	"errors=zone-ro"},
1316 	{ Opt_errors_zol,	"errors=zone-offline"},
1317 	{ Opt_errors_repair,	"errors=repair"},
1318 	{ Opt_explicit_open,	"explicit-open" },
1319 	{ Opt_err,		NULL}
1320 };
1321 
1322 static int zonefs_parse_options(struct super_block *sb, char *options)
1323 {
1324 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1325 	substring_t args[MAX_OPT_ARGS];
1326 	char *p;
1327 
1328 	if (!options)
1329 		return 0;
1330 
1331 	while ((p = strsep(&options, ",")) != NULL) {
1332 		int token;
1333 
1334 		if (!*p)
1335 			continue;
1336 
1337 		token = match_token(p, tokens, args);
1338 		switch (token) {
1339 		case Opt_errors_ro:
1340 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1341 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1342 			break;
1343 		case Opt_errors_zro:
1344 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1345 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1346 			break;
1347 		case Opt_errors_zol:
1348 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1349 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1350 			break;
1351 		case Opt_errors_repair:
1352 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1353 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1354 			break;
1355 		case Opt_explicit_open:
1356 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1357 			break;
1358 		default:
1359 			return -EINVAL;
1360 		}
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1367 {
1368 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1369 
1370 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1371 		seq_puts(seq, ",errors=remount-ro");
1372 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1373 		seq_puts(seq, ",errors=zone-ro");
1374 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1375 		seq_puts(seq, ",errors=zone-offline");
1376 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1377 		seq_puts(seq, ",errors=repair");
1378 
1379 	return 0;
1380 }
1381 
1382 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1383 {
1384 	sync_filesystem(sb);
1385 
1386 	return zonefs_parse_options(sb, data);
1387 }
1388 
1389 static const struct super_operations zonefs_sops = {
1390 	.alloc_inode	= zonefs_alloc_inode,
1391 	.free_inode	= zonefs_free_inode,
1392 	.statfs		= zonefs_statfs,
1393 	.remount_fs	= zonefs_remount,
1394 	.show_options	= zonefs_show_options,
1395 };
1396 
1397 static const struct inode_operations zonefs_dir_inode_operations = {
1398 	.lookup		= simple_lookup,
1399 	.setattr	= zonefs_inode_setattr,
1400 };
1401 
1402 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1403 				  enum zonefs_ztype type)
1404 {
1405 	struct super_block *sb = parent->i_sb;
1406 
1407 	inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1;
1408 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1409 	inode->i_op = &zonefs_dir_inode_operations;
1410 	inode->i_fop = &simple_dir_operations;
1411 	set_nlink(inode, 2);
1412 	inc_nlink(parent);
1413 }
1414 
1415 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1416 				  enum zonefs_ztype type)
1417 {
1418 	struct super_block *sb = inode->i_sb;
1419 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1420 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1421 	int ret = 0;
1422 
1423 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1424 	inode->i_mode = S_IFREG | sbi->s_perm;
1425 
1426 	zi->i_ztype = type;
1427 	zi->i_zsector = zone->start;
1428 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1429 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1430 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1431 		zonefs_err(sb,
1432 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1433 			   zi->i_zone_size,
1434 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1435 		return -EINVAL;
1436 	}
1437 
1438 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1439 			       zone->capacity << SECTOR_SHIFT);
1440 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1441 
1442 	inode->i_uid = sbi->s_uid;
1443 	inode->i_gid = sbi->s_gid;
1444 	inode->i_size = zi->i_wpoffset;
1445 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1446 
1447 	inode->i_op = &zonefs_file_inode_operations;
1448 	inode->i_fop = &zonefs_file_operations;
1449 	inode->i_mapping->a_ops = &zonefs_file_aops;
1450 
1451 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1452 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1453 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1454 
1455 	mutex_lock(&zi->i_truncate_mutex);
1456 
1457 	/*
1458 	 * For sequential zones, make sure that any open zone is closed first
1459 	 * to ensure that the initial number of open zones is 0, in sync with
1460 	 * the open zone accounting done when the mount option
1461 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1462 	 */
1463 	if (type == ZONEFS_ZTYPE_SEQ &&
1464 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1465 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1466 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1467 		if (ret)
1468 			goto unlock;
1469 	}
1470 
1471 	zonefs_account_active(inode);
1472 
1473 unlock:
1474 	mutex_unlock(&zi->i_truncate_mutex);
1475 
1476 	return ret;
1477 }
1478 
1479 static struct dentry *zonefs_create_inode(struct dentry *parent,
1480 					const char *name, struct blk_zone *zone,
1481 					enum zonefs_ztype type)
1482 {
1483 	struct inode *dir = d_inode(parent);
1484 	struct dentry *dentry;
1485 	struct inode *inode;
1486 	int ret = -ENOMEM;
1487 
1488 	dentry = d_alloc_name(parent, name);
1489 	if (!dentry)
1490 		return ERR_PTR(ret);
1491 
1492 	inode = new_inode(parent->d_sb);
1493 	if (!inode)
1494 		goto dput;
1495 
1496 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1497 	if (zone) {
1498 		ret = zonefs_init_file_inode(inode, zone, type);
1499 		if (ret) {
1500 			iput(inode);
1501 			goto dput;
1502 		}
1503 	} else {
1504 		zonefs_init_dir_inode(dir, inode, type);
1505 	}
1506 
1507 	d_add(dentry, inode);
1508 	dir->i_size++;
1509 
1510 	return dentry;
1511 
1512 dput:
1513 	dput(dentry);
1514 
1515 	return ERR_PTR(ret);
1516 }
1517 
1518 struct zonefs_zone_data {
1519 	struct super_block	*sb;
1520 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1521 	struct blk_zone		*zones;
1522 };
1523 
1524 /*
1525  * Create a zone group and populate it with zone files.
1526  */
1527 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1528 				enum zonefs_ztype type)
1529 {
1530 	struct super_block *sb = zd->sb;
1531 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1532 	struct blk_zone *zone, *next, *end;
1533 	const char *zgroup_name;
1534 	char *file_name;
1535 	struct dentry *dir, *dent;
1536 	unsigned int n = 0;
1537 	int ret;
1538 
1539 	/* If the group is empty, there is nothing to do */
1540 	if (!zd->nr_zones[type])
1541 		return 0;
1542 
1543 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1544 	if (!file_name)
1545 		return -ENOMEM;
1546 
1547 	if (type == ZONEFS_ZTYPE_CNV)
1548 		zgroup_name = "cnv";
1549 	else
1550 		zgroup_name = "seq";
1551 
1552 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1553 	if (IS_ERR(dir)) {
1554 		ret = PTR_ERR(dir);
1555 		goto free;
1556 	}
1557 
1558 	/*
1559 	 * The first zone contains the super block: skip it.
1560 	 */
1561 	end = zd->zones + bdev_nr_zones(sb->s_bdev);
1562 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1563 
1564 		next = zone + 1;
1565 		if (zonefs_zone_type(zone) != type)
1566 			continue;
1567 
1568 		/*
1569 		 * For conventional zones, contiguous zones can be aggregated
1570 		 * together to form larger files. Note that this overwrites the
1571 		 * length of the first zone of the set of contiguous zones
1572 		 * aggregated together. If one offline or read-only zone is
1573 		 * found, assume that all zones aggregated have the same
1574 		 * condition.
1575 		 */
1576 		if (type == ZONEFS_ZTYPE_CNV &&
1577 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1578 			for (; next < end; next++) {
1579 				if (zonefs_zone_type(next) != type)
1580 					break;
1581 				zone->len += next->len;
1582 				zone->capacity += next->capacity;
1583 				if (next->cond == BLK_ZONE_COND_READONLY &&
1584 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1585 					zone->cond = BLK_ZONE_COND_READONLY;
1586 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1587 					zone->cond = BLK_ZONE_COND_OFFLINE;
1588 			}
1589 			if (zone->capacity != zone->len) {
1590 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1591 				ret = -EINVAL;
1592 				goto free;
1593 			}
1594 		}
1595 
1596 		/*
1597 		 * Use the file number within its group as file name.
1598 		 */
1599 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1600 		dent = zonefs_create_inode(dir, file_name, zone, type);
1601 		if (IS_ERR(dent)) {
1602 			ret = PTR_ERR(dent);
1603 			goto free;
1604 		}
1605 
1606 		n++;
1607 	}
1608 
1609 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1610 		    zgroup_name, n, n > 1 ? "s" : "");
1611 
1612 	sbi->s_nr_files[type] = n;
1613 	ret = 0;
1614 
1615 free:
1616 	kfree(file_name);
1617 
1618 	return ret;
1619 }
1620 
1621 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1622 				   void *data)
1623 {
1624 	struct zonefs_zone_data *zd = data;
1625 
1626 	/*
1627 	 * Count the number of usable zones: the first zone at index 0 contains
1628 	 * the super block and is ignored.
1629 	 */
1630 	switch (zone->type) {
1631 	case BLK_ZONE_TYPE_CONVENTIONAL:
1632 		zone->wp = zone->start + zone->len;
1633 		if (idx)
1634 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1635 		break;
1636 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1637 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1638 		if (idx)
1639 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1640 		break;
1641 	default:
1642 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1643 			   zone->type);
1644 		return -EIO;
1645 	}
1646 
1647 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1648 
1649 	return 0;
1650 }
1651 
1652 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1653 {
1654 	struct block_device *bdev = zd->sb->s_bdev;
1655 	int ret;
1656 
1657 	zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
1658 			     GFP_KERNEL);
1659 	if (!zd->zones)
1660 		return -ENOMEM;
1661 
1662 	/* Get zones information from the device */
1663 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1664 				  zonefs_get_zone_info_cb, zd);
1665 	if (ret < 0) {
1666 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1667 		return ret;
1668 	}
1669 
1670 	if (ret != bdev_nr_zones(bdev)) {
1671 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1672 			   ret, bdev_nr_zones(bdev));
1673 		return -EIO;
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1680 {
1681 	kvfree(zd->zones);
1682 }
1683 
1684 /*
1685  * Read super block information from the device.
1686  */
1687 static int zonefs_read_super(struct super_block *sb)
1688 {
1689 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1690 	struct zonefs_super *super;
1691 	u32 crc, stored_crc;
1692 	struct page *page;
1693 	struct bio_vec bio_vec;
1694 	struct bio bio;
1695 	int ret;
1696 
1697 	page = alloc_page(GFP_KERNEL);
1698 	if (!page)
1699 		return -ENOMEM;
1700 
1701 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1702 	bio.bi_iter.bi_sector = 0;
1703 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1704 
1705 	ret = submit_bio_wait(&bio);
1706 	if (ret)
1707 		goto free_page;
1708 
1709 	super = page_address(page);
1710 
1711 	ret = -EINVAL;
1712 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1713 		goto free_page;
1714 
1715 	stored_crc = le32_to_cpu(super->s_crc);
1716 	super->s_crc = 0;
1717 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1718 	if (crc != stored_crc) {
1719 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1720 			   crc, stored_crc);
1721 		goto free_page;
1722 	}
1723 
1724 	sbi->s_features = le64_to_cpu(super->s_features);
1725 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1726 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1727 			   sbi->s_features);
1728 		goto free_page;
1729 	}
1730 
1731 	if (sbi->s_features & ZONEFS_F_UID) {
1732 		sbi->s_uid = make_kuid(current_user_ns(),
1733 				       le32_to_cpu(super->s_uid));
1734 		if (!uid_valid(sbi->s_uid)) {
1735 			zonefs_err(sb, "Invalid UID feature\n");
1736 			goto free_page;
1737 		}
1738 	}
1739 
1740 	if (sbi->s_features & ZONEFS_F_GID) {
1741 		sbi->s_gid = make_kgid(current_user_ns(),
1742 				       le32_to_cpu(super->s_gid));
1743 		if (!gid_valid(sbi->s_gid)) {
1744 			zonefs_err(sb, "Invalid GID feature\n");
1745 			goto free_page;
1746 		}
1747 	}
1748 
1749 	if (sbi->s_features & ZONEFS_F_PERM)
1750 		sbi->s_perm = le32_to_cpu(super->s_perm);
1751 
1752 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1753 		zonefs_err(sb, "Reserved area is being used\n");
1754 		goto free_page;
1755 	}
1756 
1757 	import_uuid(&sbi->s_uuid, super->s_uuid);
1758 	ret = 0;
1759 
1760 free_page:
1761 	__free_page(page);
1762 
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Check that the device is zoned. If it is, get the list of zones and create
1768  * sub-directories and files according to the device zone configuration and
1769  * format options.
1770  */
1771 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1772 {
1773 	struct zonefs_zone_data zd;
1774 	struct zonefs_sb_info *sbi;
1775 	struct inode *inode;
1776 	enum zonefs_ztype t;
1777 	int ret;
1778 
1779 	if (!bdev_is_zoned(sb->s_bdev)) {
1780 		zonefs_err(sb, "Not a zoned block device\n");
1781 		return -EINVAL;
1782 	}
1783 
1784 	/*
1785 	 * Initialize super block information: the maximum file size is updated
1786 	 * when the zone files are created so that the format option
1787 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1788 	 * beyond the zone size is taken into account.
1789 	 */
1790 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1791 	if (!sbi)
1792 		return -ENOMEM;
1793 
1794 	spin_lock_init(&sbi->s_lock);
1795 	sb->s_fs_info = sbi;
1796 	sb->s_magic = ZONEFS_MAGIC;
1797 	sb->s_maxbytes = 0;
1798 	sb->s_op = &zonefs_sops;
1799 	sb->s_time_gran	= 1;
1800 
1801 	/*
1802 	 * The block size is set to the device zone write granularity to ensure
1803 	 * that write operations are always aligned according to the device
1804 	 * interface constraints.
1805 	 */
1806 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1807 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1808 	sbi->s_uid = GLOBAL_ROOT_UID;
1809 	sbi->s_gid = GLOBAL_ROOT_GID;
1810 	sbi->s_perm = 0640;
1811 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1812 
1813 	atomic_set(&sbi->s_wro_seq_files, 0);
1814 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1815 	atomic_set(&sbi->s_active_seq_files, 0);
1816 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1817 
1818 	ret = zonefs_read_super(sb);
1819 	if (ret)
1820 		return ret;
1821 
1822 	ret = zonefs_parse_options(sb, data);
1823 	if (ret)
1824 		return ret;
1825 
1826 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1827 	zd.sb = sb;
1828 	ret = zonefs_get_zone_info(&zd);
1829 	if (ret)
1830 		goto cleanup;
1831 
1832 	ret = zonefs_sysfs_register(sb);
1833 	if (ret)
1834 		goto cleanup;
1835 
1836 	zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1837 
1838 	if (!sbi->s_max_wro_seq_files &&
1839 	    !sbi->s_max_active_seq_files &&
1840 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1841 		zonefs_info(sb,
1842 			"No open and active zone limits. Ignoring explicit_open mount option\n");
1843 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1844 	}
1845 
1846 	/* Create root directory inode */
1847 	ret = -ENOMEM;
1848 	inode = new_inode(sb);
1849 	if (!inode)
1850 		goto cleanup;
1851 
1852 	inode->i_ino = bdev_nr_zones(sb->s_bdev);
1853 	inode->i_mode = S_IFDIR | 0555;
1854 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1855 	inode->i_op = &zonefs_dir_inode_operations;
1856 	inode->i_fop = &simple_dir_operations;
1857 	set_nlink(inode, 2);
1858 
1859 	sb->s_root = d_make_root(inode);
1860 	if (!sb->s_root)
1861 		goto cleanup;
1862 
1863 	/* Create and populate files in zone groups directories */
1864 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1865 		ret = zonefs_create_zgroup(&zd, t);
1866 		if (ret)
1867 			break;
1868 	}
1869 
1870 cleanup:
1871 	zonefs_cleanup_zone_info(&zd);
1872 
1873 	return ret;
1874 }
1875 
1876 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1877 				   int flags, const char *dev_name, void *data)
1878 {
1879 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1880 }
1881 
1882 static void zonefs_kill_super(struct super_block *sb)
1883 {
1884 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1885 
1886 	if (sb->s_root)
1887 		d_genocide(sb->s_root);
1888 
1889 	zonefs_sysfs_unregister(sb);
1890 	kill_block_super(sb);
1891 	kfree(sbi);
1892 }
1893 
1894 /*
1895  * File system definition and registration.
1896  */
1897 static struct file_system_type zonefs_type = {
1898 	.owner		= THIS_MODULE,
1899 	.name		= "zonefs",
1900 	.mount		= zonefs_mount,
1901 	.kill_sb	= zonefs_kill_super,
1902 	.fs_flags	= FS_REQUIRES_DEV,
1903 };
1904 
1905 static int __init zonefs_init_inodecache(void)
1906 {
1907 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1908 			sizeof(struct zonefs_inode_info), 0,
1909 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1910 			NULL);
1911 	if (zonefs_inode_cachep == NULL)
1912 		return -ENOMEM;
1913 	return 0;
1914 }
1915 
1916 static void zonefs_destroy_inodecache(void)
1917 {
1918 	/*
1919 	 * Make sure all delayed rcu free inodes are flushed before we
1920 	 * destroy the inode cache.
1921 	 */
1922 	rcu_barrier();
1923 	kmem_cache_destroy(zonefs_inode_cachep);
1924 }
1925 
1926 static int __init zonefs_init(void)
1927 {
1928 	int ret;
1929 
1930 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1931 
1932 	ret = zonefs_init_inodecache();
1933 	if (ret)
1934 		return ret;
1935 
1936 	ret = zonefs_sysfs_init();
1937 	if (ret)
1938 		goto destroy_inodecache;
1939 
1940 	ret = register_filesystem(&zonefs_type);
1941 	if (ret)
1942 		goto sysfs_exit;
1943 
1944 	return 0;
1945 
1946 sysfs_exit:
1947 	zonefs_sysfs_exit();
1948 destroy_inodecache:
1949 	zonefs_destroy_inodecache();
1950 
1951 	return ret;
1952 }
1953 
1954 static void __exit zonefs_exit(void)
1955 {
1956 	unregister_filesystem(&zonefs_type);
1957 	zonefs_sysfs_exit();
1958 	zonefs_destroy_inodecache();
1959 }
1960 
1961 MODULE_AUTHOR("Damien Le Moal");
1962 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1963 MODULE_LICENSE("GPL");
1964 MODULE_ALIAS_FS("zonefs");
1965 module_init(zonefs_init);
1966 module_exit(zonefs_exit);
1967