1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 #define CREATE_TRACE_POINTS 28 #include "trace.h" 29 30 /* 31 * Manage the active zone count. Called with zi->i_truncate_mutex held. 32 */ 33 static void zonefs_account_active(struct inode *inode) 34 { 35 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 36 struct zonefs_inode_info *zi = ZONEFS_I(inode); 37 38 lockdep_assert_held(&zi->i_truncate_mutex); 39 40 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 41 return; 42 43 /* 44 * For zones that transitioned to the offline or readonly condition, 45 * we only need to clear the active state. 46 */ 47 if (zi->i_flags & (ZONEFS_ZONE_OFFLINE | ZONEFS_ZONE_READONLY)) 48 goto out; 49 50 /* 51 * If the zone is active, that is, if it is explicitly open or 52 * partially written, check if it was already accounted as active. 53 */ 54 if ((zi->i_flags & ZONEFS_ZONE_OPEN) || 55 (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) { 56 if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) { 57 zi->i_flags |= ZONEFS_ZONE_ACTIVE; 58 atomic_inc(&sbi->s_active_seq_files); 59 } 60 return; 61 } 62 63 out: 64 /* The zone is not active. If it was, update the active count */ 65 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) { 66 zi->i_flags &= ~ZONEFS_ZONE_ACTIVE; 67 atomic_dec(&sbi->s_active_seq_files); 68 } 69 } 70 71 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op) 72 { 73 struct zonefs_inode_info *zi = ZONEFS_I(inode); 74 int ret; 75 76 lockdep_assert_held(&zi->i_truncate_mutex); 77 78 /* 79 * With ZNS drives, closing an explicitly open zone that has not been 80 * written will change the zone state to "closed", that is, the zone 81 * will remain active. Since this can then cause failure of explicit 82 * open operation on other zones if the drive active zone resources 83 * are exceeded, make sure that the zone does not remain active by 84 * resetting it. 85 */ 86 if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset) 87 op = REQ_OP_ZONE_RESET; 88 89 trace_zonefs_zone_mgmt(inode, op); 90 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 91 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS); 92 if (ret) { 93 zonefs_err(inode->i_sb, 94 "Zone management operation %s at %llu failed %d\n", 95 blk_op_str(op), zi->i_zsector, ret); 96 return ret; 97 } 98 99 return 0; 100 } 101 102 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize) 103 { 104 struct zonefs_inode_info *zi = ZONEFS_I(inode); 105 106 i_size_write(inode, isize); 107 /* 108 * A full zone is no longer open/active and does not need 109 * explicit closing. 110 */ 111 if (isize >= zi->i_max_size) { 112 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 113 114 if (zi->i_flags & ZONEFS_ZONE_ACTIVE) 115 atomic_dec(&sbi->s_active_seq_files); 116 zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE); 117 } 118 } 119 120 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 121 loff_t length, unsigned int flags, 122 struct iomap *iomap, struct iomap *srcmap) 123 { 124 struct zonefs_inode_info *zi = ZONEFS_I(inode); 125 struct super_block *sb = inode->i_sb; 126 loff_t isize; 127 128 /* 129 * All blocks are always mapped below EOF. If reading past EOF, 130 * act as if there is a hole up to the file maximum size. 131 */ 132 mutex_lock(&zi->i_truncate_mutex); 133 iomap->bdev = inode->i_sb->s_bdev; 134 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 135 isize = i_size_read(inode); 136 if (iomap->offset >= isize) { 137 iomap->type = IOMAP_HOLE; 138 iomap->addr = IOMAP_NULL_ADDR; 139 iomap->length = length; 140 } else { 141 iomap->type = IOMAP_MAPPED; 142 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 143 iomap->length = isize - iomap->offset; 144 } 145 mutex_unlock(&zi->i_truncate_mutex); 146 147 trace_zonefs_iomap_begin(inode, iomap); 148 149 return 0; 150 } 151 152 static const struct iomap_ops zonefs_read_iomap_ops = { 153 .iomap_begin = zonefs_read_iomap_begin, 154 }; 155 156 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 157 loff_t length, unsigned int flags, 158 struct iomap *iomap, struct iomap *srcmap) 159 { 160 struct zonefs_inode_info *zi = ZONEFS_I(inode); 161 struct super_block *sb = inode->i_sb; 162 loff_t isize; 163 164 /* All write I/Os should always be within the file maximum size */ 165 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 166 return -EIO; 167 168 /* 169 * Sequential zones can only accept direct writes. This is already 170 * checked when writes are issued, so warn if we see a page writeback 171 * operation. 172 */ 173 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 174 !(flags & IOMAP_DIRECT))) 175 return -EIO; 176 177 /* 178 * For conventional zones, all blocks are always mapped. For sequential 179 * zones, all blocks after always mapped below the inode size (zone 180 * write pointer) and unwriten beyond. 181 */ 182 mutex_lock(&zi->i_truncate_mutex); 183 iomap->bdev = inode->i_sb->s_bdev; 184 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 185 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 186 isize = i_size_read(inode); 187 if (iomap->offset >= isize) { 188 iomap->type = IOMAP_UNWRITTEN; 189 iomap->length = zi->i_max_size - iomap->offset; 190 } else { 191 iomap->type = IOMAP_MAPPED; 192 iomap->length = isize - iomap->offset; 193 } 194 mutex_unlock(&zi->i_truncate_mutex); 195 196 trace_zonefs_iomap_begin(inode, iomap); 197 198 return 0; 199 } 200 201 static const struct iomap_ops zonefs_write_iomap_ops = { 202 .iomap_begin = zonefs_write_iomap_begin, 203 }; 204 205 static int zonefs_read_folio(struct file *unused, struct folio *folio) 206 { 207 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 208 } 209 210 static void zonefs_readahead(struct readahead_control *rac) 211 { 212 iomap_readahead(rac, &zonefs_read_iomap_ops); 213 } 214 215 /* 216 * Map blocks for page writeback. This is used only on conventional zone files, 217 * which implies that the page range can only be within the fixed inode size. 218 */ 219 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 220 struct inode *inode, loff_t offset) 221 { 222 struct zonefs_inode_info *zi = ZONEFS_I(inode); 223 224 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 225 return -EIO; 226 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 227 return -EIO; 228 229 /* If the mapping is already OK, nothing needs to be done */ 230 if (offset >= wpc->iomap.offset && 231 offset < wpc->iomap.offset + wpc->iomap.length) 232 return 0; 233 234 return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset, 235 IOMAP_WRITE, &wpc->iomap, NULL); 236 } 237 238 static const struct iomap_writeback_ops zonefs_writeback_ops = { 239 .map_blocks = zonefs_write_map_blocks, 240 }; 241 242 static int zonefs_writepages(struct address_space *mapping, 243 struct writeback_control *wbc) 244 { 245 struct iomap_writepage_ctx wpc = { }; 246 247 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 248 } 249 250 static int zonefs_swap_activate(struct swap_info_struct *sis, 251 struct file *swap_file, sector_t *span) 252 { 253 struct inode *inode = file_inode(swap_file); 254 struct zonefs_inode_info *zi = ZONEFS_I(inode); 255 256 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) { 257 zonefs_err(inode->i_sb, 258 "swap file: not a conventional zone file\n"); 259 return -EINVAL; 260 } 261 262 return iomap_swapfile_activate(sis, swap_file, span, 263 &zonefs_read_iomap_ops); 264 } 265 266 static const struct address_space_operations zonefs_file_aops = { 267 .read_folio = zonefs_read_folio, 268 .readahead = zonefs_readahead, 269 .writepages = zonefs_writepages, 270 .dirty_folio = filemap_dirty_folio, 271 .release_folio = iomap_release_folio, 272 .invalidate_folio = iomap_invalidate_folio, 273 .migrate_folio = filemap_migrate_folio, 274 .is_partially_uptodate = iomap_is_partially_uptodate, 275 .error_remove_page = generic_error_remove_page, 276 .direct_IO = noop_direct_IO, 277 .swap_activate = zonefs_swap_activate, 278 }; 279 280 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 281 { 282 struct super_block *sb = inode->i_sb; 283 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 284 loff_t old_isize = i_size_read(inode); 285 loff_t nr_blocks; 286 287 if (new_isize == old_isize) 288 return; 289 290 spin_lock(&sbi->s_lock); 291 292 /* 293 * This may be called for an update after an IO error. 294 * So beware of the values seen. 295 */ 296 if (new_isize < old_isize) { 297 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 298 if (sbi->s_used_blocks > nr_blocks) 299 sbi->s_used_blocks -= nr_blocks; 300 else 301 sbi->s_used_blocks = 0; 302 } else { 303 sbi->s_used_blocks += 304 (new_isize - old_isize) >> sb->s_blocksize_bits; 305 if (sbi->s_used_blocks > sbi->s_blocks) 306 sbi->s_used_blocks = sbi->s_blocks; 307 } 308 309 spin_unlock(&sbi->s_lock); 310 } 311 312 /* 313 * Check a zone condition and adjust its file inode access permissions for 314 * offline and readonly zones. Return the inode size corresponding to the 315 * amount of readable data in the zone. 316 */ 317 static loff_t zonefs_check_zone_condition(struct inode *inode, 318 struct blk_zone *zone, bool warn, 319 bool mount) 320 { 321 struct zonefs_inode_info *zi = ZONEFS_I(inode); 322 323 switch (zone->cond) { 324 case BLK_ZONE_COND_OFFLINE: 325 /* 326 * Dead zone: make the inode immutable, disable all accesses 327 * and set the file size to 0 (zone wp set to zone start). 328 */ 329 if (warn) 330 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 331 inode->i_ino); 332 inode->i_flags |= S_IMMUTABLE; 333 inode->i_mode &= ~0777; 334 zone->wp = zone->start; 335 zi->i_flags |= ZONEFS_ZONE_OFFLINE; 336 return 0; 337 case BLK_ZONE_COND_READONLY: 338 /* 339 * The write pointer of read-only zones is invalid. If such a 340 * zone is found during mount, the file size cannot be retrieved 341 * so we treat the zone as offline (mount == true case). 342 * Otherwise, keep the file size as it was when last updated 343 * so that the user can recover data. In both cases, writes are 344 * always disabled for the zone. 345 */ 346 if (warn) 347 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 348 inode->i_ino); 349 inode->i_flags |= S_IMMUTABLE; 350 if (mount) { 351 zone->cond = BLK_ZONE_COND_OFFLINE; 352 inode->i_mode &= ~0777; 353 zone->wp = zone->start; 354 zi->i_flags |= ZONEFS_ZONE_OFFLINE; 355 return 0; 356 } 357 zi->i_flags |= ZONEFS_ZONE_READONLY; 358 inode->i_mode &= ~0222; 359 return i_size_read(inode); 360 case BLK_ZONE_COND_FULL: 361 /* The write pointer of full zones is invalid. */ 362 return zi->i_max_size; 363 default: 364 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 365 return zi->i_max_size; 366 return (zone->wp - zone->start) << SECTOR_SHIFT; 367 } 368 } 369 370 struct zonefs_ioerr_data { 371 struct inode *inode; 372 bool write; 373 }; 374 375 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 376 void *data) 377 { 378 struct zonefs_ioerr_data *err = data; 379 struct inode *inode = err->inode; 380 struct zonefs_inode_info *zi = ZONEFS_I(inode); 381 struct super_block *sb = inode->i_sb; 382 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 383 loff_t isize, data_size; 384 385 /* 386 * Check the zone condition: if the zone is not "bad" (offline or 387 * read-only), read errors are simply signaled to the IO issuer as long 388 * as there is no inconsistency between the inode size and the amount of 389 * data writen in the zone (data_size). 390 */ 391 data_size = zonefs_check_zone_condition(inode, zone, true, false); 392 isize = i_size_read(inode); 393 if (zone->cond != BLK_ZONE_COND_OFFLINE && 394 zone->cond != BLK_ZONE_COND_READONLY && 395 !err->write && isize == data_size) 396 return 0; 397 398 /* 399 * At this point, we detected either a bad zone or an inconsistency 400 * between the inode size and the amount of data written in the zone. 401 * For the latter case, the cause may be a write IO error or an external 402 * action on the device. Two error patterns exist: 403 * 1) The inode size is lower than the amount of data in the zone: 404 * a write operation partially failed and data was writen at the end 405 * of the file. This can happen in the case of a large direct IO 406 * needing several BIOs and/or write requests to be processed. 407 * 2) The inode size is larger than the amount of data in the zone: 408 * this can happen with a deferred write error with the use of the 409 * device side write cache after getting successful write IO 410 * completions. Other possibilities are (a) an external corruption, 411 * e.g. an application reset the zone directly, or (b) the device 412 * has a serious problem (e.g. firmware bug). 413 * 414 * In all cases, warn about inode size inconsistency and handle the 415 * IO error according to the zone condition and to the mount options. 416 */ 417 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 418 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 419 inode->i_ino, isize, data_size); 420 421 /* 422 * First handle bad zones signaled by hardware. The mount options 423 * errors=zone-ro and errors=zone-offline result in changing the 424 * zone condition to read-only and offline respectively, as if the 425 * condition was signaled by the hardware. 426 */ 427 if (zone->cond == BLK_ZONE_COND_OFFLINE || 428 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 429 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 430 inode->i_ino); 431 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 432 zone->cond = BLK_ZONE_COND_OFFLINE; 433 data_size = zonefs_check_zone_condition(inode, zone, 434 false, false); 435 } 436 } else if (zone->cond == BLK_ZONE_COND_READONLY || 437 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 438 zonefs_warn(sb, "inode %lu: write access disabled\n", 439 inode->i_ino); 440 if (zone->cond != BLK_ZONE_COND_READONLY) { 441 zone->cond = BLK_ZONE_COND_READONLY; 442 data_size = zonefs_check_zone_condition(inode, zone, 443 false, false); 444 } 445 } 446 447 /* 448 * If the filesystem is mounted with the explicit-open mount option, we 449 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to 450 * the read-only or offline condition, to avoid attempting an explicit 451 * close of the zone when the inode file is closed. 452 */ 453 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) && 454 (zone->cond == BLK_ZONE_COND_OFFLINE || 455 zone->cond == BLK_ZONE_COND_READONLY)) 456 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 457 458 /* 459 * If error=remount-ro was specified, any error result in remounting 460 * the volume as read-only. 461 */ 462 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 463 zonefs_warn(sb, "remounting filesystem read-only\n"); 464 sb->s_flags |= SB_RDONLY; 465 } 466 467 /* 468 * Update block usage stats and the inode size to prevent access to 469 * invalid data. 470 */ 471 zonefs_update_stats(inode, data_size); 472 zonefs_i_size_write(inode, data_size); 473 zi->i_wpoffset = data_size; 474 zonefs_account_active(inode); 475 476 return 0; 477 } 478 479 /* 480 * When an file IO error occurs, check the file zone to see if there is a change 481 * in the zone condition (e.g. offline or read-only). For a failed write to a 482 * sequential zone, the zone write pointer position must also be checked to 483 * eventually correct the file size and zonefs inode write pointer offset 484 * (which can be out of sync with the drive due to partial write failures). 485 */ 486 static void __zonefs_io_error(struct inode *inode, bool write) 487 { 488 struct zonefs_inode_info *zi = ZONEFS_I(inode); 489 struct super_block *sb = inode->i_sb; 490 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 491 unsigned int noio_flag; 492 unsigned int nr_zones = 1; 493 struct zonefs_ioerr_data err = { 494 .inode = inode, 495 .write = write, 496 }; 497 int ret; 498 499 /* 500 * The only files that have more than one zone are conventional zone 501 * files with aggregated conventional zones, for which the inode zone 502 * size is always larger than the device zone size. 503 */ 504 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev)) 505 nr_zones = zi->i_zone_size >> 506 (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 507 508 /* 509 * Memory allocations in blkdev_report_zones() can trigger a memory 510 * reclaim which may in turn cause a recursion into zonefs as well as 511 * struct request allocations for the same device. The former case may 512 * end up in a deadlock on the inode truncate mutex, while the latter 513 * may prevent IO forward progress. Executing the report zones under 514 * the GFP_NOIO context avoids both problems. 515 */ 516 noio_flag = memalloc_noio_save(); 517 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 518 zonefs_io_error_cb, &err); 519 if (ret != nr_zones) 520 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 521 inode->i_ino, ret); 522 memalloc_noio_restore(noio_flag); 523 } 524 525 static void zonefs_io_error(struct inode *inode, bool write) 526 { 527 struct zonefs_inode_info *zi = ZONEFS_I(inode); 528 529 mutex_lock(&zi->i_truncate_mutex); 530 __zonefs_io_error(inode, write); 531 mutex_unlock(&zi->i_truncate_mutex); 532 } 533 534 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 535 { 536 struct zonefs_inode_info *zi = ZONEFS_I(inode); 537 loff_t old_isize; 538 enum req_op op; 539 int ret = 0; 540 541 /* 542 * Only sequential zone files can be truncated and truncation is allowed 543 * only down to a 0 size, which is equivalent to a zone reset, and to 544 * the maximum file size, which is equivalent to a zone finish. 545 */ 546 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 547 return -EPERM; 548 549 if (!isize) 550 op = REQ_OP_ZONE_RESET; 551 else if (isize == zi->i_max_size) 552 op = REQ_OP_ZONE_FINISH; 553 else 554 return -EPERM; 555 556 inode_dio_wait(inode); 557 558 /* Serialize against page faults */ 559 filemap_invalidate_lock(inode->i_mapping); 560 561 /* Serialize against zonefs_iomap_begin() */ 562 mutex_lock(&zi->i_truncate_mutex); 563 564 old_isize = i_size_read(inode); 565 if (isize == old_isize) 566 goto unlock; 567 568 ret = zonefs_zone_mgmt(inode, op); 569 if (ret) 570 goto unlock; 571 572 /* 573 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 574 * take care of open zones. 575 */ 576 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 577 /* 578 * Truncating a zone to EMPTY or FULL is the equivalent of 579 * closing the zone. For a truncation to 0, we need to 580 * re-open the zone to ensure new writes can be processed. 581 * For a truncation to the maximum file size, the zone is 582 * closed and writes cannot be accepted anymore, so clear 583 * the open flag. 584 */ 585 if (!isize) 586 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 587 else 588 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 589 } 590 591 zonefs_update_stats(inode, isize); 592 truncate_setsize(inode, isize); 593 zi->i_wpoffset = isize; 594 zonefs_account_active(inode); 595 596 unlock: 597 mutex_unlock(&zi->i_truncate_mutex); 598 filemap_invalidate_unlock(inode->i_mapping); 599 600 return ret; 601 } 602 603 static int zonefs_inode_setattr(struct user_namespace *mnt_userns, 604 struct dentry *dentry, struct iattr *iattr) 605 { 606 struct inode *inode = d_inode(dentry); 607 int ret; 608 609 if (unlikely(IS_IMMUTABLE(inode))) 610 return -EPERM; 611 612 ret = setattr_prepare(&init_user_ns, dentry, iattr); 613 if (ret) 614 return ret; 615 616 /* 617 * Since files and directories cannot be created nor deleted, do not 618 * allow setting any write attributes on the sub-directories grouping 619 * files by zone type. 620 */ 621 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 622 (iattr->ia_mode & 0222)) 623 return -EPERM; 624 625 if (((iattr->ia_valid & ATTR_UID) && 626 !uid_eq(iattr->ia_uid, inode->i_uid)) || 627 ((iattr->ia_valid & ATTR_GID) && 628 !gid_eq(iattr->ia_gid, inode->i_gid))) { 629 ret = dquot_transfer(mnt_userns, inode, iattr); 630 if (ret) 631 return ret; 632 } 633 634 if (iattr->ia_valid & ATTR_SIZE) { 635 ret = zonefs_file_truncate(inode, iattr->ia_size); 636 if (ret) 637 return ret; 638 } 639 640 setattr_copy(&init_user_ns, inode, iattr); 641 642 return 0; 643 } 644 645 static const struct inode_operations zonefs_file_inode_operations = { 646 .setattr = zonefs_inode_setattr, 647 }; 648 649 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 650 int datasync) 651 { 652 struct inode *inode = file_inode(file); 653 int ret = 0; 654 655 if (unlikely(IS_IMMUTABLE(inode))) 656 return -EPERM; 657 658 /* 659 * Since only direct writes are allowed in sequential files, page cache 660 * flush is needed only for conventional zone files. 661 */ 662 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 663 ret = file_write_and_wait_range(file, start, end); 664 if (!ret) 665 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 666 667 if (ret) 668 zonefs_io_error(inode, true); 669 670 return ret; 671 } 672 673 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 674 { 675 struct inode *inode = file_inode(vmf->vma->vm_file); 676 struct zonefs_inode_info *zi = ZONEFS_I(inode); 677 vm_fault_t ret; 678 679 if (unlikely(IS_IMMUTABLE(inode))) 680 return VM_FAULT_SIGBUS; 681 682 /* 683 * Sanity check: only conventional zone files can have shared 684 * writeable mappings. 685 */ 686 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 687 return VM_FAULT_NOPAGE; 688 689 sb_start_pagefault(inode->i_sb); 690 file_update_time(vmf->vma->vm_file); 691 692 /* Serialize against truncates */ 693 filemap_invalidate_lock_shared(inode->i_mapping); 694 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 695 filemap_invalidate_unlock_shared(inode->i_mapping); 696 697 sb_end_pagefault(inode->i_sb); 698 return ret; 699 } 700 701 static const struct vm_operations_struct zonefs_file_vm_ops = { 702 .fault = filemap_fault, 703 .map_pages = filemap_map_pages, 704 .page_mkwrite = zonefs_filemap_page_mkwrite, 705 }; 706 707 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 708 { 709 /* 710 * Conventional zones accept random writes, so their files can support 711 * shared writable mappings. For sequential zone files, only read 712 * mappings are possible since there are no guarantees for write 713 * ordering between msync() and page cache writeback. 714 */ 715 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 716 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 717 return -EINVAL; 718 719 file_accessed(file); 720 vma->vm_ops = &zonefs_file_vm_ops; 721 722 return 0; 723 } 724 725 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 726 { 727 loff_t isize = i_size_read(file_inode(file)); 728 729 /* 730 * Seeks are limited to below the zone size for conventional zones 731 * and below the zone write pointer for sequential zones. In both 732 * cases, this limit is the inode size. 733 */ 734 return generic_file_llseek_size(file, offset, whence, isize, isize); 735 } 736 737 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 738 int error, unsigned int flags) 739 { 740 struct inode *inode = file_inode(iocb->ki_filp); 741 struct zonefs_inode_info *zi = ZONEFS_I(inode); 742 743 if (error) { 744 zonefs_io_error(inode, true); 745 return error; 746 } 747 748 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 749 /* 750 * Note that we may be seeing completions out of order, 751 * but that is not a problem since a write completed 752 * successfully necessarily means that all preceding writes 753 * were also successful. So we can safely increase the inode 754 * size to the write end location. 755 */ 756 mutex_lock(&zi->i_truncate_mutex); 757 if (i_size_read(inode) < iocb->ki_pos + size) { 758 zonefs_update_stats(inode, iocb->ki_pos + size); 759 zonefs_i_size_write(inode, iocb->ki_pos + size); 760 } 761 mutex_unlock(&zi->i_truncate_mutex); 762 } 763 764 return 0; 765 } 766 767 static const struct iomap_dio_ops zonefs_write_dio_ops = { 768 .end_io = zonefs_file_write_dio_end_io, 769 }; 770 771 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 772 { 773 struct inode *inode = file_inode(iocb->ki_filp); 774 struct zonefs_inode_info *zi = ZONEFS_I(inode); 775 struct block_device *bdev = inode->i_sb->s_bdev; 776 unsigned int max = bdev_max_zone_append_sectors(bdev); 777 struct bio *bio; 778 ssize_t size; 779 int nr_pages; 780 ssize_t ret; 781 782 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 783 iov_iter_truncate(from, max); 784 785 nr_pages = iov_iter_npages(from, BIO_MAX_VECS); 786 if (!nr_pages) 787 return 0; 788 789 bio = bio_alloc(bdev, nr_pages, 790 REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS); 791 bio->bi_iter.bi_sector = zi->i_zsector; 792 bio->bi_ioprio = iocb->ki_ioprio; 793 if (iocb_is_dsync(iocb)) 794 bio->bi_opf |= REQ_FUA; 795 796 ret = bio_iov_iter_get_pages(bio, from); 797 if (unlikely(ret)) 798 goto out_release; 799 800 size = bio->bi_iter.bi_size; 801 task_io_account_write(size); 802 803 if (iocb->ki_flags & IOCB_HIPRI) 804 bio_set_polled(bio, iocb); 805 806 ret = submit_bio_wait(bio); 807 808 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 809 trace_zonefs_file_dio_append(inode, size, ret); 810 811 out_release: 812 bio_release_pages(bio, false); 813 bio_put(bio); 814 815 if (ret >= 0) { 816 iocb->ki_pos += size; 817 return size; 818 } 819 820 return ret; 821 } 822 823 /* 824 * Do not exceed the LFS limits nor the file zone size. If pos is under the 825 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 826 */ 827 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 828 loff_t count) 829 { 830 struct inode *inode = file_inode(file); 831 struct zonefs_inode_info *zi = ZONEFS_I(inode); 832 loff_t limit = rlimit(RLIMIT_FSIZE); 833 loff_t max_size = zi->i_max_size; 834 835 if (limit != RLIM_INFINITY) { 836 if (pos >= limit) { 837 send_sig(SIGXFSZ, current, 0); 838 return -EFBIG; 839 } 840 count = min(count, limit - pos); 841 } 842 843 if (!(file->f_flags & O_LARGEFILE)) 844 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 845 846 if (unlikely(pos >= max_size)) 847 return -EFBIG; 848 849 return min(count, max_size - pos); 850 } 851 852 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 853 { 854 struct file *file = iocb->ki_filp; 855 struct inode *inode = file_inode(file); 856 struct zonefs_inode_info *zi = ZONEFS_I(inode); 857 loff_t count; 858 859 if (IS_SWAPFILE(inode)) 860 return -ETXTBSY; 861 862 if (!iov_iter_count(from)) 863 return 0; 864 865 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 866 return -EINVAL; 867 868 if (iocb->ki_flags & IOCB_APPEND) { 869 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 870 return -EINVAL; 871 mutex_lock(&zi->i_truncate_mutex); 872 iocb->ki_pos = zi->i_wpoffset; 873 mutex_unlock(&zi->i_truncate_mutex); 874 } 875 876 count = zonefs_write_check_limits(file, iocb->ki_pos, 877 iov_iter_count(from)); 878 if (count < 0) 879 return count; 880 881 iov_iter_truncate(from, count); 882 return iov_iter_count(from); 883 } 884 885 /* 886 * Handle direct writes. For sequential zone files, this is the only possible 887 * write path. For these files, check that the user is issuing writes 888 * sequentially from the end of the file. This code assumes that the block layer 889 * delivers write requests to the device in sequential order. This is always the 890 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 891 * elevator feature is being used (e.g. mq-deadline). The block layer always 892 * automatically select such an elevator for zoned block devices during the 893 * device initialization. 894 */ 895 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 896 { 897 struct inode *inode = file_inode(iocb->ki_filp); 898 struct zonefs_inode_info *zi = ZONEFS_I(inode); 899 struct super_block *sb = inode->i_sb; 900 bool sync = is_sync_kiocb(iocb); 901 bool append = false; 902 ssize_t ret, count; 903 904 /* 905 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 906 * as this can cause write reordering (e.g. the first aio gets EAGAIN 907 * on the inode lock but the second goes through but is now unaligned). 908 */ 909 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 910 (iocb->ki_flags & IOCB_NOWAIT)) 911 return -EOPNOTSUPP; 912 913 if (iocb->ki_flags & IOCB_NOWAIT) { 914 if (!inode_trylock(inode)) 915 return -EAGAIN; 916 } else { 917 inode_lock(inode); 918 } 919 920 count = zonefs_write_checks(iocb, from); 921 if (count <= 0) { 922 ret = count; 923 goto inode_unlock; 924 } 925 926 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 927 ret = -EINVAL; 928 goto inode_unlock; 929 } 930 931 /* Enforce sequential writes (append only) in sequential zones */ 932 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 933 mutex_lock(&zi->i_truncate_mutex); 934 if (iocb->ki_pos != zi->i_wpoffset) { 935 mutex_unlock(&zi->i_truncate_mutex); 936 ret = -EINVAL; 937 goto inode_unlock; 938 } 939 mutex_unlock(&zi->i_truncate_mutex); 940 append = sync; 941 } 942 943 if (append) 944 ret = zonefs_file_dio_append(iocb, from); 945 else 946 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 947 &zonefs_write_dio_ops, 0, NULL, 0); 948 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 949 (ret > 0 || ret == -EIOCBQUEUED)) { 950 if (ret > 0) 951 count = ret; 952 953 /* 954 * Update the zone write pointer offset assuming the write 955 * operation succeeded. If it did not, the error recovery path 956 * will correct it. Also do active seq file accounting. 957 */ 958 mutex_lock(&zi->i_truncate_mutex); 959 zi->i_wpoffset += count; 960 zonefs_account_active(inode); 961 mutex_unlock(&zi->i_truncate_mutex); 962 } 963 964 inode_unlock: 965 inode_unlock(inode); 966 967 return ret; 968 } 969 970 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 971 struct iov_iter *from) 972 { 973 struct inode *inode = file_inode(iocb->ki_filp); 974 struct zonefs_inode_info *zi = ZONEFS_I(inode); 975 ssize_t ret; 976 977 /* 978 * Direct IO writes are mandatory for sequential zone files so that the 979 * write IO issuing order is preserved. 980 */ 981 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 982 return -EIO; 983 984 if (iocb->ki_flags & IOCB_NOWAIT) { 985 if (!inode_trylock(inode)) 986 return -EAGAIN; 987 } else { 988 inode_lock(inode); 989 } 990 991 ret = zonefs_write_checks(iocb, from); 992 if (ret <= 0) 993 goto inode_unlock; 994 995 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 996 if (ret > 0) 997 iocb->ki_pos += ret; 998 else if (ret == -EIO) 999 zonefs_io_error(inode, true); 1000 1001 inode_unlock: 1002 inode_unlock(inode); 1003 if (ret > 0) 1004 ret = generic_write_sync(iocb, ret); 1005 1006 return ret; 1007 } 1008 1009 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1010 { 1011 struct inode *inode = file_inode(iocb->ki_filp); 1012 1013 if (unlikely(IS_IMMUTABLE(inode))) 1014 return -EPERM; 1015 1016 if (sb_rdonly(inode->i_sb)) 1017 return -EROFS; 1018 1019 /* Write operations beyond the zone size are not allowed */ 1020 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 1021 return -EFBIG; 1022 1023 if (iocb->ki_flags & IOCB_DIRECT) { 1024 ssize_t ret = zonefs_file_dio_write(iocb, from); 1025 if (ret != -ENOTBLK) 1026 return ret; 1027 } 1028 1029 return zonefs_file_buffered_write(iocb, from); 1030 } 1031 1032 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 1033 int error, unsigned int flags) 1034 { 1035 if (error) { 1036 zonefs_io_error(file_inode(iocb->ki_filp), false); 1037 return error; 1038 } 1039 1040 return 0; 1041 } 1042 1043 static const struct iomap_dio_ops zonefs_read_dio_ops = { 1044 .end_io = zonefs_file_read_dio_end_io, 1045 }; 1046 1047 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1048 { 1049 struct inode *inode = file_inode(iocb->ki_filp); 1050 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1051 struct super_block *sb = inode->i_sb; 1052 loff_t isize; 1053 ssize_t ret; 1054 1055 /* Offline zones cannot be read */ 1056 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 1057 return -EPERM; 1058 1059 if (iocb->ki_pos >= zi->i_max_size) 1060 return 0; 1061 1062 if (iocb->ki_flags & IOCB_NOWAIT) { 1063 if (!inode_trylock_shared(inode)) 1064 return -EAGAIN; 1065 } else { 1066 inode_lock_shared(inode); 1067 } 1068 1069 /* Limit read operations to written data */ 1070 mutex_lock(&zi->i_truncate_mutex); 1071 isize = i_size_read(inode); 1072 if (iocb->ki_pos >= isize) { 1073 mutex_unlock(&zi->i_truncate_mutex); 1074 ret = 0; 1075 goto inode_unlock; 1076 } 1077 iov_iter_truncate(to, isize - iocb->ki_pos); 1078 mutex_unlock(&zi->i_truncate_mutex); 1079 1080 if (iocb->ki_flags & IOCB_DIRECT) { 1081 size_t count = iov_iter_count(to); 1082 1083 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 1084 ret = -EINVAL; 1085 goto inode_unlock; 1086 } 1087 file_accessed(iocb->ki_filp); 1088 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 1089 &zonefs_read_dio_ops, 0, NULL, 0); 1090 } else { 1091 ret = generic_file_read_iter(iocb, to); 1092 if (ret == -EIO) 1093 zonefs_io_error(inode, false); 1094 } 1095 1096 inode_unlock: 1097 inode_unlock_shared(inode); 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * Write open accounting is done only for sequential files. 1104 */ 1105 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 1106 struct file *file) 1107 { 1108 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1109 1110 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 1111 return false; 1112 1113 if (!(file->f_mode & FMODE_WRITE)) 1114 return false; 1115 1116 return true; 1117 } 1118 1119 static int zonefs_seq_file_write_open(struct inode *inode) 1120 { 1121 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1122 int ret = 0; 1123 1124 mutex_lock(&zi->i_truncate_mutex); 1125 1126 if (!zi->i_wr_refcnt) { 1127 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 1128 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 1129 1130 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1131 1132 if (sbi->s_max_wro_seq_files 1133 && wro > sbi->s_max_wro_seq_files) { 1134 atomic_dec(&sbi->s_wro_seq_files); 1135 ret = -EBUSY; 1136 goto unlock; 1137 } 1138 1139 if (i_size_read(inode) < zi->i_max_size) { 1140 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 1141 if (ret) { 1142 atomic_dec(&sbi->s_wro_seq_files); 1143 goto unlock; 1144 } 1145 zi->i_flags |= ZONEFS_ZONE_OPEN; 1146 zonefs_account_active(inode); 1147 } 1148 } 1149 } 1150 1151 zi->i_wr_refcnt++; 1152 1153 unlock: 1154 mutex_unlock(&zi->i_truncate_mutex); 1155 1156 return ret; 1157 } 1158 1159 static int zonefs_file_open(struct inode *inode, struct file *file) 1160 { 1161 int ret; 1162 1163 ret = generic_file_open(inode, file); 1164 if (ret) 1165 return ret; 1166 1167 if (zonefs_seq_file_need_wro(inode, file)) 1168 return zonefs_seq_file_write_open(inode); 1169 1170 return 0; 1171 } 1172 1173 static void zonefs_seq_file_write_close(struct inode *inode) 1174 { 1175 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1176 struct super_block *sb = inode->i_sb; 1177 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1178 int ret = 0; 1179 1180 mutex_lock(&zi->i_truncate_mutex); 1181 1182 zi->i_wr_refcnt--; 1183 if (zi->i_wr_refcnt) 1184 goto unlock; 1185 1186 /* 1187 * The file zone may not be open anymore (e.g. the file was truncated to 1188 * its maximum size or it was fully written). For this case, we only 1189 * need to decrement the write open count. 1190 */ 1191 if (zi->i_flags & ZONEFS_ZONE_OPEN) { 1192 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1193 if (ret) { 1194 __zonefs_io_error(inode, false); 1195 /* 1196 * Leaving zones explicitly open may lead to a state 1197 * where most zones cannot be written (zone resources 1198 * exhausted). So take preventive action by remounting 1199 * read-only. 1200 */ 1201 if (zi->i_flags & ZONEFS_ZONE_OPEN && 1202 !(sb->s_flags & SB_RDONLY)) { 1203 zonefs_warn(sb, 1204 "closing zone at %llu failed %d\n", 1205 zi->i_zsector, ret); 1206 zonefs_warn(sb, 1207 "remounting filesystem read-only\n"); 1208 sb->s_flags |= SB_RDONLY; 1209 } 1210 goto unlock; 1211 } 1212 1213 zi->i_flags &= ~ZONEFS_ZONE_OPEN; 1214 zonefs_account_active(inode); 1215 } 1216 1217 atomic_dec(&sbi->s_wro_seq_files); 1218 1219 unlock: 1220 mutex_unlock(&zi->i_truncate_mutex); 1221 } 1222 1223 static int zonefs_file_release(struct inode *inode, struct file *file) 1224 { 1225 /* 1226 * If we explicitly open a zone we must close it again as well, but the 1227 * zone management operation can fail (either due to an IO error or as 1228 * the zone has gone offline or read-only). Make sure we don't fail the 1229 * close(2) for user-space. 1230 */ 1231 if (zonefs_seq_file_need_wro(inode, file)) 1232 zonefs_seq_file_write_close(inode); 1233 1234 return 0; 1235 } 1236 1237 static const struct file_operations zonefs_file_operations = { 1238 .open = zonefs_file_open, 1239 .release = zonefs_file_release, 1240 .fsync = zonefs_file_fsync, 1241 .mmap = zonefs_file_mmap, 1242 .llseek = zonefs_file_llseek, 1243 .read_iter = zonefs_file_read_iter, 1244 .write_iter = zonefs_file_write_iter, 1245 .splice_read = generic_file_splice_read, 1246 .splice_write = iter_file_splice_write, 1247 .iopoll = iocb_bio_iopoll, 1248 }; 1249 1250 static struct kmem_cache *zonefs_inode_cachep; 1251 1252 static struct inode *zonefs_alloc_inode(struct super_block *sb) 1253 { 1254 struct zonefs_inode_info *zi; 1255 1256 zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL); 1257 if (!zi) 1258 return NULL; 1259 1260 inode_init_once(&zi->i_vnode); 1261 mutex_init(&zi->i_truncate_mutex); 1262 zi->i_wr_refcnt = 0; 1263 zi->i_flags = 0; 1264 1265 return &zi->i_vnode; 1266 } 1267 1268 static void zonefs_free_inode(struct inode *inode) 1269 { 1270 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 1271 } 1272 1273 /* 1274 * File system stat. 1275 */ 1276 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 1277 { 1278 struct super_block *sb = dentry->d_sb; 1279 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1280 enum zonefs_ztype t; 1281 1282 buf->f_type = ZONEFS_MAGIC; 1283 buf->f_bsize = sb->s_blocksize; 1284 buf->f_namelen = ZONEFS_NAME_MAX; 1285 1286 spin_lock(&sbi->s_lock); 1287 1288 buf->f_blocks = sbi->s_blocks; 1289 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 1290 buf->f_bfree = 0; 1291 else 1292 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 1293 buf->f_bavail = buf->f_bfree; 1294 1295 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1296 if (sbi->s_nr_files[t]) 1297 buf->f_files += sbi->s_nr_files[t] + 1; 1298 } 1299 buf->f_ffree = 0; 1300 1301 spin_unlock(&sbi->s_lock); 1302 1303 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b); 1304 1305 return 0; 1306 } 1307 1308 enum { 1309 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 1310 Opt_explicit_open, Opt_err, 1311 }; 1312 1313 static const match_table_t tokens = { 1314 { Opt_errors_ro, "errors=remount-ro"}, 1315 { Opt_errors_zro, "errors=zone-ro"}, 1316 { Opt_errors_zol, "errors=zone-offline"}, 1317 { Opt_errors_repair, "errors=repair"}, 1318 { Opt_explicit_open, "explicit-open" }, 1319 { Opt_err, NULL} 1320 }; 1321 1322 static int zonefs_parse_options(struct super_block *sb, char *options) 1323 { 1324 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1325 substring_t args[MAX_OPT_ARGS]; 1326 char *p; 1327 1328 if (!options) 1329 return 0; 1330 1331 while ((p = strsep(&options, ",")) != NULL) { 1332 int token; 1333 1334 if (!*p) 1335 continue; 1336 1337 token = match_token(p, tokens, args); 1338 switch (token) { 1339 case Opt_errors_ro: 1340 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1341 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 1342 break; 1343 case Opt_errors_zro: 1344 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1345 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 1346 break; 1347 case Opt_errors_zol: 1348 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1349 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 1350 break; 1351 case Opt_errors_repair: 1352 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 1353 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 1354 break; 1355 case Opt_explicit_open: 1356 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN; 1357 break; 1358 default: 1359 return -EINVAL; 1360 } 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 1367 { 1368 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 1369 1370 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 1371 seq_puts(seq, ",errors=remount-ro"); 1372 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 1373 seq_puts(seq, ",errors=zone-ro"); 1374 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1375 seq_puts(seq, ",errors=zone-offline"); 1376 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1377 seq_puts(seq, ",errors=repair"); 1378 1379 return 0; 1380 } 1381 1382 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1383 { 1384 sync_filesystem(sb); 1385 1386 return zonefs_parse_options(sb, data); 1387 } 1388 1389 static const struct super_operations zonefs_sops = { 1390 .alloc_inode = zonefs_alloc_inode, 1391 .free_inode = zonefs_free_inode, 1392 .statfs = zonefs_statfs, 1393 .remount_fs = zonefs_remount, 1394 .show_options = zonefs_show_options, 1395 }; 1396 1397 static const struct inode_operations zonefs_dir_inode_operations = { 1398 .lookup = simple_lookup, 1399 .setattr = zonefs_inode_setattr, 1400 }; 1401 1402 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1403 enum zonefs_ztype type) 1404 { 1405 struct super_block *sb = parent->i_sb; 1406 1407 inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1; 1408 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555); 1409 inode->i_op = &zonefs_dir_inode_operations; 1410 inode->i_fop = &simple_dir_operations; 1411 set_nlink(inode, 2); 1412 inc_nlink(parent); 1413 } 1414 1415 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1416 enum zonefs_ztype type) 1417 { 1418 struct super_block *sb = inode->i_sb; 1419 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1420 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1421 int ret = 0; 1422 1423 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1424 inode->i_mode = S_IFREG | sbi->s_perm; 1425 1426 zi->i_ztype = type; 1427 zi->i_zsector = zone->start; 1428 zi->i_zone_size = zone->len << SECTOR_SHIFT; 1429 if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT && 1430 !(sbi->s_features & ZONEFS_F_AGGRCNV)) { 1431 zonefs_err(sb, 1432 "zone size %llu doesn't match device's zone sectors %llu\n", 1433 zi->i_zone_size, 1434 bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT); 1435 return -EINVAL; 1436 } 1437 1438 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1439 zone->capacity << SECTOR_SHIFT); 1440 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1441 1442 inode->i_uid = sbi->s_uid; 1443 inode->i_gid = sbi->s_gid; 1444 inode->i_size = zi->i_wpoffset; 1445 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT; 1446 1447 inode->i_op = &zonefs_file_inode_operations; 1448 inode->i_fop = &zonefs_file_operations; 1449 inode->i_mapping->a_ops = &zonefs_file_aops; 1450 1451 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1452 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1453 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1454 1455 mutex_lock(&zi->i_truncate_mutex); 1456 1457 /* 1458 * For sequential zones, make sure that any open zone is closed first 1459 * to ensure that the initial number of open zones is 0, in sync with 1460 * the open zone accounting done when the mount option 1461 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used. 1462 */ 1463 if (type == ZONEFS_ZTYPE_SEQ && 1464 (zone->cond == BLK_ZONE_COND_IMP_OPEN || 1465 zone->cond == BLK_ZONE_COND_EXP_OPEN)) { 1466 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 1467 if (ret) 1468 goto unlock; 1469 } 1470 1471 zonefs_account_active(inode); 1472 1473 unlock: 1474 mutex_unlock(&zi->i_truncate_mutex); 1475 1476 return ret; 1477 } 1478 1479 static struct dentry *zonefs_create_inode(struct dentry *parent, 1480 const char *name, struct blk_zone *zone, 1481 enum zonefs_ztype type) 1482 { 1483 struct inode *dir = d_inode(parent); 1484 struct dentry *dentry; 1485 struct inode *inode; 1486 int ret = -ENOMEM; 1487 1488 dentry = d_alloc_name(parent, name); 1489 if (!dentry) 1490 return ERR_PTR(ret); 1491 1492 inode = new_inode(parent->d_sb); 1493 if (!inode) 1494 goto dput; 1495 1496 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1497 if (zone) { 1498 ret = zonefs_init_file_inode(inode, zone, type); 1499 if (ret) { 1500 iput(inode); 1501 goto dput; 1502 } 1503 } else { 1504 zonefs_init_dir_inode(dir, inode, type); 1505 } 1506 1507 d_add(dentry, inode); 1508 dir->i_size++; 1509 1510 return dentry; 1511 1512 dput: 1513 dput(dentry); 1514 1515 return ERR_PTR(ret); 1516 } 1517 1518 struct zonefs_zone_data { 1519 struct super_block *sb; 1520 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1521 struct blk_zone *zones; 1522 }; 1523 1524 /* 1525 * Create a zone group and populate it with zone files. 1526 */ 1527 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1528 enum zonefs_ztype type) 1529 { 1530 struct super_block *sb = zd->sb; 1531 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1532 struct blk_zone *zone, *next, *end; 1533 const char *zgroup_name; 1534 char *file_name; 1535 struct dentry *dir, *dent; 1536 unsigned int n = 0; 1537 int ret; 1538 1539 /* If the group is empty, there is nothing to do */ 1540 if (!zd->nr_zones[type]) 1541 return 0; 1542 1543 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1544 if (!file_name) 1545 return -ENOMEM; 1546 1547 if (type == ZONEFS_ZTYPE_CNV) 1548 zgroup_name = "cnv"; 1549 else 1550 zgroup_name = "seq"; 1551 1552 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1553 if (IS_ERR(dir)) { 1554 ret = PTR_ERR(dir); 1555 goto free; 1556 } 1557 1558 /* 1559 * The first zone contains the super block: skip it. 1560 */ 1561 end = zd->zones + bdev_nr_zones(sb->s_bdev); 1562 for (zone = &zd->zones[1]; zone < end; zone = next) { 1563 1564 next = zone + 1; 1565 if (zonefs_zone_type(zone) != type) 1566 continue; 1567 1568 /* 1569 * For conventional zones, contiguous zones can be aggregated 1570 * together to form larger files. Note that this overwrites the 1571 * length of the first zone of the set of contiguous zones 1572 * aggregated together. If one offline or read-only zone is 1573 * found, assume that all zones aggregated have the same 1574 * condition. 1575 */ 1576 if (type == ZONEFS_ZTYPE_CNV && 1577 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1578 for (; next < end; next++) { 1579 if (zonefs_zone_type(next) != type) 1580 break; 1581 zone->len += next->len; 1582 zone->capacity += next->capacity; 1583 if (next->cond == BLK_ZONE_COND_READONLY && 1584 zone->cond != BLK_ZONE_COND_OFFLINE) 1585 zone->cond = BLK_ZONE_COND_READONLY; 1586 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1587 zone->cond = BLK_ZONE_COND_OFFLINE; 1588 } 1589 if (zone->capacity != zone->len) { 1590 zonefs_err(sb, "Invalid conventional zone capacity\n"); 1591 ret = -EINVAL; 1592 goto free; 1593 } 1594 } 1595 1596 /* 1597 * Use the file number within its group as file name. 1598 */ 1599 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1600 dent = zonefs_create_inode(dir, file_name, zone, type); 1601 if (IS_ERR(dent)) { 1602 ret = PTR_ERR(dent); 1603 goto free; 1604 } 1605 1606 n++; 1607 } 1608 1609 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1610 zgroup_name, n, n > 1 ? "s" : ""); 1611 1612 sbi->s_nr_files[type] = n; 1613 ret = 0; 1614 1615 free: 1616 kfree(file_name); 1617 1618 return ret; 1619 } 1620 1621 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1622 void *data) 1623 { 1624 struct zonefs_zone_data *zd = data; 1625 1626 /* 1627 * Count the number of usable zones: the first zone at index 0 contains 1628 * the super block and is ignored. 1629 */ 1630 switch (zone->type) { 1631 case BLK_ZONE_TYPE_CONVENTIONAL: 1632 zone->wp = zone->start + zone->len; 1633 if (idx) 1634 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1635 break; 1636 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1637 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1638 if (idx) 1639 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1640 break; 1641 default: 1642 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1643 zone->type); 1644 return -EIO; 1645 } 1646 1647 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1648 1649 return 0; 1650 } 1651 1652 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1653 { 1654 struct block_device *bdev = zd->sb->s_bdev; 1655 int ret; 1656 1657 zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone), 1658 GFP_KERNEL); 1659 if (!zd->zones) 1660 return -ENOMEM; 1661 1662 /* Get zones information from the device */ 1663 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1664 zonefs_get_zone_info_cb, zd); 1665 if (ret < 0) { 1666 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1667 return ret; 1668 } 1669 1670 if (ret != bdev_nr_zones(bdev)) { 1671 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1672 ret, bdev_nr_zones(bdev)); 1673 return -EIO; 1674 } 1675 1676 return 0; 1677 } 1678 1679 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1680 { 1681 kvfree(zd->zones); 1682 } 1683 1684 /* 1685 * Read super block information from the device. 1686 */ 1687 static int zonefs_read_super(struct super_block *sb) 1688 { 1689 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1690 struct zonefs_super *super; 1691 u32 crc, stored_crc; 1692 struct page *page; 1693 struct bio_vec bio_vec; 1694 struct bio bio; 1695 int ret; 1696 1697 page = alloc_page(GFP_KERNEL); 1698 if (!page) 1699 return -ENOMEM; 1700 1701 bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ); 1702 bio.bi_iter.bi_sector = 0; 1703 bio_add_page(&bio, page, PAGE_SIZE, 0); 1704 1705 ret = submit_bio_wait(&bio); 1706 if (ret) 1707 goto free_page; 1708 1709 super = page_address(page); 1710 1711 ret = -EINVAL; 1712 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1713 goto free_page; 1714 1715 stored_crc = le32_to_cpu(super->s_crc); 1716 super->s_crc = 0; 1717 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1718 if (crc != stored_crc) { 1719 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1720 crc, stored_crc); 1721 goto free_page; 1722 } 1723 1724 sbi->s_features = le64_to_cpu(super->s_features); 1725 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1726 zonefs_err(sb, "Unknown features set 0x%llx\n", 1727 sbi->s_features); 1728 goto free_page; 1729 } 1730 1731 if (sbi->s_features & ZONEFS_F_UID) { 1732 sbi->s_uid = make_kuid(current_user_ns(), 1733 le32_to_cpu(super->s_uid)); 1734 if (!uid_valid(sbi->s_uid)) { 1735 zonefs_err(sb, "Invalid UID feature\n"); 1736 goto free_page; 1737 } 1738 } 1739 1740 if (sbi->s_features & ZONEFS_F_GID) { 1741 sbi->s_gid = make_kgid(current_user_ns(), 1742 le32_to_cpu(super->s_gid)); 1743 if (!gid_valid(sbi->s_gid)) { 1744 zonefs_err(sb, "Invalid GID feature\n"); 1745 goto free_page; 1746 } 1747 } 1748 1749 if (sbi->s_features & ZONEFS_F_PERM) 1750 sbi->s_perm = le32_to_cpu(super->s_perm); 1751 1752 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1753 zonefs_err(sb, "Reserved area is being used\n"); 1754 goto free_page; 1755 } 1756 1757 import_uuid(&sbi->s_uuid, super->s_uuid); 1758 ret = 0; 1759 1760 free_page: 1761 __free_page(page); 1762 1763 return ret; 1764 } 1765 1766 /* 1767 * Check that the device is zoned. If it is, get the list of zones and create 1768 * sub-directories and files according to the device zone configuration and 1769 * format options. 1770 */ 1771 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1772 { 1773 struct zonefs_zone_data zd; 1774 struct zonefs_sb_info *sbi; 1775 struct inode *inode; 1776 enum zonefs_ztype t; 1777 int ret; 1778 1779 if (!bdev_is_zoned(sb->s_bdev)) { 1780 zonefs_err(sb, "Not a zoned block device\n"); 1781 return -EINVAL; 1782 } 1783 1784 /* 1785 * Initialize super block information: the maximum file size is updated 1786 * when the zone files are created so that the format option 1787 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1788 * beyond the zone size is taken into account. 1789 */ 1790 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1791 if (!sbi) 1792 return -ENOMEM; 1793 1794 spin_lock_init(&sbi->s_lock); 1795 sb->s_fs_info = sbi; 1796 sb->s_magic = ZONEFS_MAGIC; 1797 sb->s_maxbytes = 0; 1798 sb->s_op = &zonefs_sops; 1799 sb->s_time_gran = 1; 1800 1801 /* 1802 * The block size is set to the device zone write granularity to ensure 1803 * that write operations are always aligned according to the device 1804 * interface constraints. 1805 */ 1806 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev)); 1807 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1808 sbi->s_uid = GLOBAL_ROOT_UID; 1809 sbi->s_gid = GLOBAL_ROOT_GID; 1810 sbi->s_perm = 0640; 1811 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1812 1813 atomic_set(&sbi->s_wro_seq_files, 0); 1814 sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev); 1815 atomic_set(&sbi->s_active_seq_files, 0); 1816 sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev); 1817 1818 ret = zonefs_read_super(sb); 1819 if (ret) 1820 return ret; 1821 1822 ret = zonefs_parse_options(sb, data); 1823 if (ret) 1824 return ret; 1825 1826 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1827 zd.sb = sb; 1828 ret = zonefs_get_zone_info(&zd); 1829 if (ret) 1830 goto cleanup; 1831 1832 ret = zonefs_sysfs_register(sb); 1833 if (ret) 1834 goto cleanup; 1835 1836 zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev)); 1837 1838 if (!sbi->s_max_wro_seq_files && 1839 !sbi->s_max_active_seq_files && 1840 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 1841 zonefs_info(sb, 1842 "No open and active zone limits. Ignoring explicit_open mount option\n"); 1843 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN; 1844 } 1845 1846 /* Create root directory inode */ 1847 ret = -ENOMEM; 1848 inode = new_inode(sb); 1849 if (!inode) 1850 goto cleanup; 1851 1852 inode->i_ino = bdev_nr_zones(sb->s_bdev); 1853 inode->i_mode = S_IFDIR | 0555; 1854 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1855 inode->i_op = &zonefs_dir_inode_operations; 1856 inode->i_fop = &simple_dir_operations; 1857 set_nlink(inode, 2); 1858 1859 sb->s_root = d_make_root(inode); 1860 if (!sb->s_root) 1861 goto cleanup; 1862 1863 /* Create and populate files in zone groups directories */ 1864 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1865 ret = zonefs_create_zgroup(&zd, t); 1866 if (ret) 1867 break; 1868 } 1869 1870 cleanup: 1871 zonefs_cleanup_zone_info(&zd); 1872 1873 return ret; 1874 } 1875 1876 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1877 int flags, const char *dev_name, void *data) 1878 { 1879 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1880 } 1881 1882 static void zonefs_kill_super(struct super_block *sb) 1883 { 1884 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1885 1886 if (sb->s_root) 1887 d_genocide(sb->s_root); 1888 1889 zonefs_sysfs_unregister(sb); 1890 kill_block_super(sb); 1891 kfree(sbi); 1892 } 1893 1894 /* 1895 * File system definition and registration. 1896 */ 1897 static struct file_system_type zonefs_type = { 1898 .owner = THIS_MODULE, 1899 .name = "zonefs", 1900 .mount = zonefs_mount, 1901 .kill_sb = zonefs_kill_super, 1902 .fs_flags = FS_REQUIRES_DEV, 1903 }; 1904 1905 static int __init zonefs_init_inodecache(void) 1906 { 1907 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1908 sizeof(struct zonefs_inode_info), 0, 1909 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1910 NULL); 1911 if (zonefs_inode_cachep == NULL) 1912 return -ENOMEM; 1913 return 0; 1914 } 1915 1916 static void zonefs_destroy_inodecache(void) 1917 { 1918 /* 1919 * Make sure all delayed rcu free inodes are flushed before we 1920 * destroy the inode cache. 1921 */ 1922 rcu_barrier(); 1923 kmem_cache_destroy(zonefs_inode_cachep); 1924 } 1925 1926 static int __init zonefs_init(void) 1927 { 1928 int ret; 1929 1930 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1931 1932 ret = zonefs_init_inodecache(); 1933 if (ret) 1934 return ret; 1935 1936 ret = zonefs_sysfs_init(); 1937 if (ret) 1938 goto destroy_inodecache; 1939 1940 ret = register_filesystem(&zonefs_type); 1941 if (ret) 1942 goto sysfs_exit; 1943 1944 return 0; 1945 1946 sysfs_exit: 1947 zonefs_sysfs_exit(); 1948 destroy_inodecache: 1949 zonefs_destroy_inodecache(); 1950 1951 return ret; 1952 } 1953 1954 static void __exit zonefs_exit(void) 1955 { 1956 unregister_filesystem(&zonefs_type); 1957 zonefs_sysfs_exit(); 1958 zonefs_destroy_inodecache(); 1959 } 1960 1961 MODULE_AUTHOR("Damien Le Moal"); 1962 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1963 MODULE_LICENSE("GPL"); 1964 MODULE_ALIAS_FS("zonefs"); 1965 module_init(zonefs_init); 1966 module_exit(zonefs_exit); 1967