1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2019 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/magic.h> 10 #include <linux/iomap.h> 11 #include <linux/init.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/statfs.h> 15 #include <linux/writeback.h> 16 #include <linux/quotaops.h> 17 #include <linux/seq_file.h> 18 #include <linux/parser.h> 19 #include <linux/uio.h> 20 #include <linux/mman.h> 21 #include <linux/sched/mm.h> 22 #include <linux/crc32.h> 23 #include <linux/task_io_accounting_ops.h> 24 25 #include "zonefs.h" 26 27 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 28 unsigned int flags, struct iomap *iomap, 29 struct iomap *srcmap) 30 { 31 struct zonefs_inode_info *zi = ZONEFS_I(inode); 32 struct super_block *sb = inode->i_sb; 33 loff_t isize; 34 35 /* All I/Os should always be within the file maximum size */ 36 if (WARN_ON_ONCE(offset + length > zi->i_max_size)) 37 return -EIO; 38 39 /* 40 * Sequential zones can only accept direct writes. This is already 41 * checked when writes are issued, so warn if we see a page writeback 42 * operation. 43 */ 44 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ && 45 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT))) 46 return -EIO; 47 48 /* 49 * For conventional zones, all blocks are always mapped. For sequential 50 * zones, all blocks after always mapped below the inode size (zone 51 * write pointer) and unwriten beyond. 52 */ 53 mutex_lock(&zi->i_truncate_mutex); 54 isize = i_size_read(inode); 55 if (offset >= isize) 56 iomap->type = IOMAP_UNWRITTEN; 57 else 58 iomap->type = IOMAP_MAPPED; 59 if (flags & IOMAP_WRITE) 60 length = zi->i_max_size - offset; 61 else 62 length = min(length, isize - offset); 63 mutex_unlock(&zi->i_truncate_mutex); 64 65 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 66 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset; 67 iomap->bdev = inode->i_sb->s_bdev; 68 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset; 69 70 return 0; 71 } 72 73 static const struct iomap_ops zonefs_iomap_ops = { 74 .iomap_begin = zonefs_iomap_begin, 75 }; 76 77 static int zonefs_readpage(struct file *unused, struct page *page) 78 { 79 return iomap_readpage(page, &zonefs_iomap_ops); 80 } 81 82 static void zonefs_readahead(struct readahead_control *rac) 83 { 84 iomap_readahead(rac, &zonefs_iomap_ops); 85 } 86 87 /* 88 * Map blocks for page writeback. This is used only on conventional zone files, 89 * which implies that the page range can only be within the fixed inode size. 90 */ 91 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc, 92 struct inode *inode, loff_t offset) 93 { 94 struct zonefs_inode_info *zi = ZONEFS_I(inode); 95 96 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 97 return -EIO; 98 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 99 return -EIO; 100 101 /* If the mapping is already OK, nothing needs to be done */ 102 if (offset >= wpc->iomap.offset && 103 offset < wpc->iomap.offset + wpc->iomap.length) 104 return 0; 105 106 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset, 107 IOMAP_WRITE, &wpc->iomap, NULL); 108 } 109 110 static const struct iomap_writeback_ops zonefs_writeback_ops = { 111 .map_blocks = zonefs_map_blocks, 112 }; 113 114 static int zonefs_writepage(struct page *page, struct writeback_control *wbc) 115 { 116 struct iomap_writepage_ctx wpc = { }; 117 118 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops); 119 } 120 121 static int zonefs_writepages(struct address_space *mapping, 122 struct writeback_control *wbc) 123 { 124 struct iomap_writepage_ctx wpc = { }; 125 126 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 127 } 128 129 static const struct address_space_operations zonefs_file_aops = { 130 .readpage = zonefs_readpage, 131 .readahead = zonefs_readahead, 132 .writepage = zonefs_writepage, 133 .writepages = zonefs_writepages, 134 .set_page_dirty = iomap_set_page_dirty, 135 .releasepage = iomap_releasepage, 136 .invalidatepage = iomap_invalidatepage, 137 .migratepage = iomap_migrate_page, 138 .is_partially_uptodate = iomap_is_partially_uptodate, 139 .error_remove_page = generic_error_remove_page, 140 .direct_IO = noop_direct_IO, 141 }; 142 143 static void zonefs_update_stats(struct inode *inode, loff_t new_isize) 144 { 145 struct super_block *sb = inode->i_sb; 146 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 147 loff_t old_isize = i_size_read(inode); 148 loff_t nr_blocks; 149 150 if (new_isize == old_isize) 151 return; 152 153 spin_lock(&sbi->s_lock); 154 155 /* 156 * This may be called for an update after an IO error. 157 * So beware of the values seen. 158 */ 159 if (new_isize < old_isize) { 160 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits; 161 if (sbi->s_used_blocks > nr_blocks) 162 sbi->s_used_blocks -= nr_blocks; 163 else 164 sbi->s_used_blocks = 0; 165 } else { 166 sbi->s_used_blocks += 167 (new_isize - old_isize) >> sb->s_blocksize_bits; 168 if (sbi->s_used_blocks > sbi->s_blocks) 169 sbi->s_used_blocks = sbi->s_blocks; 170 } 171 172 spin_unlock(&sbi->s_lock); 173 } 174 175 /* 176 * Check a zone condition and adjust its file inode access permissions for 177 * offline and readonly zones. Return the inode size corresponding to the 178 * amount of readable data in the zone. 179 */ 180 static loff_t zonefs_check_zone_condition(struct inode *inode, 181 struct blk_zone *zone, bool warn, 182 bool mount) 183 { 184 struct zonefs_inode_info *zi = ZONEFS_I(inode); 185 186 switch (zone->cond) { 187 case BLK_ZONE_COND_OFFLINE: 188 /* 189 * Dead zone: make the inode immutable, disable all accesses 190 * and set the file size to 0 (zone wp set to zone start). 191 */ 192 if (warn) 193 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n", 194 inode->i_ino); 195 inode->i_flags |= S_IMMUTABLE; 196 inode->i_mode &= ~0777; 197 zone->wp = zone->start; 198 return 0; 199 case BLK_ZONE_COND_READONLY: 200 /* 201 * The write pointer of read-only zones is invalid. If such a 202 * zone is found during mount, the file size cannot be retrieved 203 * so we treat the zone as offline (mount == true case). 204 * Otherwise, keep the file size as it was when last updated 205 * so that the user can recover data. In both cases, writes are 206 * always disabled for the zone. 207 */ 208 if (warn) 209 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n", 210 inode->i_ino); 211 inode->i_flags |= S_IMMUTABLE; 212 if (mount) { 213 zone->cond = BLK_ZONE_COND_OFFLINE; 214 inode->i_mode &= ~0777; 215 zone->wp = zone->start; 216 return 0; 217 } 218 inode->i_mode &= ~0222; 219 return i_size_read(inode); 220 default: 221 if (zi->i_ztype == ZONEFS_ZTYPE_CNV) 222 return zi->i_max_size; 223 return (zone->wp - zone->start) << SECTOR_SHIFT; 224 } 225 } 226 227 struct zonefs_ioerr_data { 228 struct inode *inode; 229 bool write; 230 }; 231 232 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx, 233 void *data) 234 { 235 struct zonefs_ioerr_data *err = data; 236 struct inode *inode = err->inode; 237 struct zonefs_inode_info *zi = ZONEFS_I(inode); 238 struct super_block *sb = inode->i_sb; 239 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 240 loff_t isize, data_size; 241 242 /* 243 * Check the zone condition: if the zone is not "bad" (offline or 244 * read-only), read errors are simply signaled to the IO issuer as long 245 * as there is no inconsistency between the inode size and the amount of 246 * data writen in the zone (data_size). 247 */ 248 data_size = zonefs_check_zone_condition(inode, zone, true, false); 249 isize = i_size_read(inode); 250 if (zone->cond != BLK_ZONE_COND_OFFLINE && 251 zone->cond != BLK_ZONE_COND_READONLY && 252 !err->write && isize == data_size) 253 return 0; 254 255 /* 256 * At this point, we detected either a bad zone or an inconsistency 257 * between the inode size and the amount of data written in the zone. 258 * For the latter case, the cause may be a write IO error or an external 259 * action on the device. Two error patterns exist: 260 * 1) The inode size is lower than the amount of data in the zone: 261 * a write operation partially failed and data was writen at the end 262 * of the file. This can happen in the case of a large direct IO 263 * needing several BIOs and/or write requests to be processed. 264 * 2) The inode size is larger than the amount of data in the zone: 265 * this can happen with a deferred write error with the use of the 266 * device side write cache after getting successful write IO 267 * completions. Other possibilities are (a) an external corruption, 268 * e.g. an application reset the zone directly, or (b) the device 269 * has a serious problem (e.g. firmware bug). 270 * 271 * In all cases, warn about inode size inconsistency and handle the 272 * IO error according to the zone condition and to the mount options. 273 */ 274 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size) 275 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n", 276 inode->i_ino, isize, data_size); 277 278 /* 279 * First handle bad zones signaled by hardware. The mount options 280 * errors=zone-ro and errors=zone-offline result in changing the 281 * zone condition to read-only and offline respectively, as if the 282 * condition was signaled by the hardware. 283 */ 284 if (zone->cond == BLK_ZONE_COND_OFFLINE || 285 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) { 286 zonefs_warn(sb, "inode %lu: read/write access disabled\n", 287 inode->i_ino); 288 if (zone->cond != BLK_ZONE_COND_OFFLINE) { 289 zone->cond = BLK_ZONE_COND_OFFLINE; 290 data_size = zonefs_check_zone_condition(inode, zone, 291 false, false); 292 } 293 } else if (zone->cond == BLK_ZONE_COND_READONLY || 294 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) { 295 zonefs_warn(sb, "inode %lu: write access disabled\n", 296 inode->i_ino); 297 if (zone->cond != BLK_ZONE_COND_READONLY) { 298 zone->cond = BLK_ZONE_COND_READONLY; 299 data_size = zonefs_check_zone_condition(inode, zone, 300 false, false); 301 } 302 } 303 304 /* 305 * If error=remount-ro was specified, any error result in remounting 306 * the volume as read-only. 307 */ 308 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) { 309 zonefs_warn(sb, "remounting filesystem read-only\n"); 310 sb->s_flags |= SB_RDONLY; 311 } 312 313 /* 314 * Update block usage stats and the inode size to prevent access to 315 * invalid data. 316 */ 317 zonefs_update_stats(inode, data_size); 318 i_size_write(inode, data_size); 319 zi->i_wpoffset = data_size; 320 321 return 0; 322 } 323 324 /* 325 * When an file IO error occurs, check the file zone to see if there is a change 326 * in the zone condition (e.g. offline or read-only). For a failed write to a 327 * sequential zone, the zone write pointer position must also be checked to 328 * eventually correct the file size and zonefs inode write pointer offset 329 * (which can be out of sync with the drive due to partial write failures). 330 */ 331 static void zonefs_io_error(struct inode *inode, bool write) 332 { 333 struct zonefs_inode_info *zi = ZONEFS_I(inode); 334 struct super_block *sb = inode->i_sb; 335 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 336 unsigned int noio_flag; 337 unsigned int nr_zones = 338 zi->i_max_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT); 339 struct zonefs_ioerr_data err = { 340 .inode = inode, 341 .write = write, 342 }; 343 int ret; 344 345 mutex_lock(&zi->i_truncate_mutex); 346 347 /* 348 * Memory allocations in blkdev_report_zones() can trigger a memory 349 * reclaim which may in turn cause a recursion into zonefs as well as 350 * struct request allocations for the same device. The former case may 351 * end up in a deadlock on the inode truncate mutex, while the latter 352 * may prevent IO forward progress. Executing the report zones under 353 * the GFP_NOIO context avoids both problems. 354 */ 355 noio_flag = memalloc_noio_save(); 356 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones, 357 zonefs_io_error_cb, &err); 358 if (ret != nr_zones) 359 zonefs_err(sb, "Get inode %lu zone information failed %d\n", 360 inode->i_ino, ret); 361 memalloc_noio_restore(noio_flag); 362 363 mutex_unlock(&zi->i_truncate_mutex); 364 } 365 366 static int zonefs_file_truncate(struct inode *inode, loff_t isize) 367 { 368 struct zonefs_inode_info *zi = ZONEFS_I(inode); 369 loff_t old_isize; 370 enum req_opf op; 371 int ret = 0; 372 373 /* 374 * Only sequential zone files can be truncated and truncation is allowed 375 * only down to a 0 size, which is equivalent to a zone reset, and to 376 * the maximum file size, which is equivalent to a zone finish. 377 */ 378 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ) 379 return -EPERM; 380 381 if (!isize) 382 op = REQ_OP_ZONE_RESET; 383 else if (isize == zi->i_max_size) 384 op = REQ_OP_ZONE_FINISH; 385 else 386 return -EPERM; 387 388 inode_dio_wait(inode); 389 390 /* Serialize against page faults */ 391 down_write(&zi->i_mmap_sem); 392 393 /* Serialize against zonefs_iomap_begin() */ 394 mutex_lock(&zi->i_truncate_mutex); 395 396 old_isize = i_size_read(inode); 397 if (isize == old_isize) 398 goto unlock; 399 400 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector, 401 zi->i_max_size >> SECTOR_SHIFT, GFP_NOFS); 402 if (ret) { 403 zonefs_err(inode->i_sb, 404 "Zone management operation at %llu failed %d", 405 zi->i_zsector, ret); 406 goto unlock; 407 } 408 409 zonefs_update_stats(inode, isize); 410 truncate_setsize(inode, isize); 411 zi->i_wpoffset = isize; 412 413 unlock: 414 mutex_unlock(&zi->i_truncate_mutex); 415 up_write(&zi->i_mmap_sem); 416 417 return ret; 418 } 419 420 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr) 421 { 422 struct inode *inode = d_inode(dentry); 423 int ret; 424 425 if (unlikely(IS_IMMUTABLE(inode))) 426 return -EPERM; 427 428 ret = setattr_prepare(dentry, iattr); 429 if (ret) 430 return ret; 431 432 /* 433 * Since files and directories cannot be created nor deleted, do not 434 * allow setting any write attributes on the sub-directories grouping 435 * files by zone type. 436 */ 437 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) && 438 (iattr->ia_mode & 0222)) 439 return -EPERM; 440 441 if (((iattr->ia_valid & ATTR_UID) && 442 !uid_eq(iattr->ia_uid, inode->i_uid)) || 443 ((iattr->ia_valid & ATTR_GID) && 444 !gid_eq(iattr->ia_gid, inode->i_gid))) { 445 ret = dquot_transfer(inode, iattr); 446 if (ret) 447 return ret; 448 } 449 450 if (iattr->ia_valid & ATTR_SIZE) { 451 ret = zonefs_file_truncate(inode, iattr->ia_size); 452 if (ret) 453 return ret; 454 } 455 456 setattr_copy(inode, iattr); 457 458 return 0; 459 } 460 461 static const struct inode_operations zonefs_file_inode_operations = { 462 .setattr = zonefs_inode_setattr, 463 }; 464 465 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 466 int datasync) 467 { 468 struct inode *inode = file_inode(file); 469 int ret = 0; 470 471 if (unlikely(IS_IMMUTABLE(inode))) 472 return -EPERM; 473 474 /* 475 * Since only direct writes are allowed in sequential files, page cache 476 * flush is needed only for conventional zone files. 477 */ 478 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV) 479 ret = file_write_and_wait_range(file, start, end); 480 if (!ret) 481 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL); 482 483 if (ret) 484 zonefs_io_error(inode, true); 485 486 return ret; 487 } 488 489 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf) 490 { 491 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file)); 492 vm_fault_t ret; 493 494 down_read(&zi->i_mmap_sem); 495 ret = filemap_fault(vmf); 496 up_read(&zi->i_mmap_sem); 497 498 return ret; 499 } 500 501 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 502 { 503 struct inode *inode = file_inode(vmf->vma->vm_file); 504 struct zonefs_inode_info *zi = ZONEFS_I(inode); 505 vm_fault_t ret; 506 507 if (unlikely(IS_IMMUTABLE(inode))) 508 return VM_FAULT_SIGBUS; 509 510 /* 511 * Sanity check: only conventional zone files can have shared 512 * writeable mappings. 513 */ 514 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV)) 515 return VM_FAULT_NOPAGE; 516 517 sb_start_pagefault(inode->i_sb); 518 file_update_time(vmf->vma->vm_file); 519 520 /* Serialize against truncates */ 521 down_read(&zi->i_mmap_sem); 522 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops); 523 up_read(&zi->i_mmap_sem); 524 525 sb_end_pagefault(inode->i_sb); 526 return ret; 527 } 528 529 static const struct vm_operations_struct zonefs_file_vm_ops = { 530 .fault = zonefs_filemap_fault, 531 .map_pages = filemap_map_pages, 532 .page_mkwrite = zonefs_filemap_page_mkwrite, 533 }; 534 535 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 536 { 537 /* 538 * Conventional zones accept random writes, so their files can support 539 * shared writable mappings. For sequential zone files, only read 540 * mappings are possible since there are no guarantees for write 541 * ordering between msync() and page cache writeback. 542 */ 543 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ && 544 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 545 return -EINVAL; 546 547 file_accessed(file); 548 vma->vm_ops = &zonefs_file_vm_ops; 549 550 return 0; 551 } 552 553 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 554 { 555 loff_t isize = i_size_read(file_inode(file)); 556 557 /* 558 * Seeks are limited to below the zone size for conventional zones 559 * and below the zone write pointer for sequential zones. In both 560 * cases, this limit is the inode size. 561 */ 562 return generic_file_llseek_size(file, offset, whence, isize, isize); 563 } 564 565 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 566 int error, unsigned int flags) 567 { 568 struct inode *inode = file_inode(iocb->ki_filp); 569 struct zonefs_inode_info *zi = ZONEFS_I(inode); 570 571 if (error) { 572 zonefs_io_error(inode, true); 573 return error; 574 } 575 576 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) { 577 /* 578 * Note that we may be seeing completions out of order, 579 * but that is not a problem since a write completed 580 * successfully necessarily means that all preceding writes 581 * were also successful. So we can safely increase the inode 582 * size to the write end location. 583 */ 584 mutex_lock(&zi->i_truncate_mutex); 585 if (i_size_read(inode) < iocb->ki_pos + size) { 586 zonefs_update_stats(inode, iocb->ki_pos + size); 587 i_size_write(inode, iocb->ki_pos + size); 588 } 589 mutex_unlock(&zi->i_truncate_mutex); 590 } 591 592 return 0; 593 } 594 595 static const struct iomap_dio_ops zonefs_write_dio_ops = { 596 .end_io = zonefs_file_write_dio_end_io, 597 }; 598 599 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from) 600 { 601 struct inode *inode = file_inode(iocb->ki_filp); 602 struct zonefs_inode_info *zi = ZONEFS_I(inode); 603 struct block_device *bdev = inode->i_sb->s_bdev; 604 unsigned int max; 605 struct bio *bio; 606 ssize_t size; 607 int nr_pages; 608 ssize_t ret; 609 610 nr_pages = iov_iter_npages(from, BIO_MAX_PAGES); 611 if (!nr_pages) 612 return 0; 613 614 max = queue_max_zone_append_sectors(bdev_get_queue(bdev)); 615 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize); 616 iov_iter_truncate(from, max); 617 618 bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set); 619 if (!bio) 620 return -ENOMEM; 621 622 bio_set_dev(bio, bdev); 623 bio->bi_iter.bi_sector = zi->i_zsector; 624 bio->bi_write_hint = iocb->ki_hint; 625 bio->bi_ioprio = iocb->ki_ioprio; 626 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE; 627 if (iocb->ki_flags & IOCB_DSYNC) 628 bio->bi_opf |= REQ_FUA; 629 630 ret = bio_iov_iter_get_pages(bio, from); 631 if (unlikely(ret)) { 632 bio_io_error(bio); 633 return ret; 634 } 635 size = bio->bi_iter.bi_size; 636 task_io_account_write(ret); 637 638 if (iocb->ki_flags & IOCB_HIPRI) 639 bio_set_polled(bio, iocb); 640 641 ret = submit_bio_wait(bio); 642 643 bio_put(bio); 644 645 zonefs_file_write_dio_end_io(iocb, size, ret, 0); 646 if (ret >= 0) { 647 iocb->ki_pos += size; 648 return size; 649 } 650 651 return ret; 652 } 653 654 /* 655 * Handle direct writes. For sequential zone files, this is the only possible 656 * write path. For these files, check that the user is issuing writes 657 * sequentially from the end of the file. This code assumes that the block layer 658 * delivers write requests to the device in sequential order. This is always the 659 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 660 * elevator feature is being used (e.g. mq-deadline). The block layer always 661 * automatically select such an elevator for zoned block devices during the 662 * device initialization. 663 */ 664 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 665 { 666 struct inode *inode = file_inode(iocb->ki_filp); 667 struct zonefs_inode_info *zi = ZONEFS_I(inode); 668 struct super_block *sb = inode->i_sb; 669 bool sync = is_sync_kiocb(iocb); 670 bool append = false; 671 size_t count; 672 ssize_t ret; 673 674 /* 675 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 676 * as this can cause write reordering (e.g. the first aio gets EAGAIN 677 * on the inode lock but the second goes through but is now unaligned). 678 */ 679 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync && 680 (iocb->ki_flags & IOCB_NOWAIT)) 681 return -EOPNOTSUPP; 682 683 if (iocb->ki_flags & IOCB_NOWAIT) { 684 if (!inode_trylock(inode)) 685 return -EAGAIN; 686 } else { 687 inode_lock(inode); 688 } 689 690 ret = generic_write_checks(iocb, from); 691 if (ret <= 0) 692 goto inode_unlock; 693 694 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 695 count = iov_iter_count(from); 696 697 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 698 ret = -EINVAL; 699 goto inode_unlock; 700 } 701 702 /* Enforce sequential writes (append only) in sequential zones */ 703 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) { 704 mutex_lock(&zi->i_truncate_mutex); 705 if (iocb->ki_pos != zi->i_wpoffset) { 706 mutex_unlock(&zi->i_truncate_mutex); 707 ret = -EINVAL; 708 goto inode_unlock; 709 } 710 mutex_unlock(&zi->i_truncate_mutex); 711 append = sync; 712 } 713 714 if (append) 715 ret = zonefs_file_dio_append(iocb, from); 716 else 717 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops, 718 &zonefs_write_dio_ops, sync); 719 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && 720 (ret > 0 || ret == -EIOCBQUEUED)) { 721 if (ret > 0) 722 count = ret; 723 mutex_lock(&zi->i_truncate_mutex); 724 zi->i_wpoffset += count; 725 mutex_unlock(&zi->i_truncate_mutex); 726 } 727 728 inode_unlock: 729 inode_unlock(inode); 730 731 return ret; 732 } 733 734 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 735 struct iov_iter *from) 736 { 737 struct inode *inode = file_inode(iocb->ki_filp); 738 struct zonefs_inode_info *zi = ZONEFS_I(inode); 739 ssize_t ret; 740 741 /* 742 * Direct IO writes are mandatory for sequential zone files so that the 743 * write IO issuing order is preserved. 744 */ 745 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) 746 return -EIO; 747 748 if (iocb->ki_flags & IOCB_NOWAIT) { 749 if (!inode_trylock(inode)) 750 return -EAGAIN; 751 } else { 752 inode_lock(inode); 753 } 754 755 ret = generic_write_checks(iocb, from); 756 if (ret <= 0) 757 goto inode_unlock; 758 759 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos); 760 761 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops); 762 if (ret > 0) 763 iocb->ki_pos += ret; 764 else if (ret == -EIO) 765 zonefs_io_error(inode, true); 766 767 inode_unlock: 768 inode_unlock(inode); 769 if (ret > 0) 770 ret = generic_write_sync(iocb, ret); 771 772 return ret; 773 } 774 775 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 776 { 777 struct inode *inode = file_inode(iocb->ki_filp); 778 779 if (unlikely(IS_IMMUTABLE(inode))) 780 return -EPERM; 781 782 if (sb_rdonly(inode->i_sb)) 783 return -EROFS; 784 785 /* Write operations beyond the zone size are not allowed */ 786 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size) 787 return -EFBIG; 788 789 if (iocb->ki_flags & IOCB_DIRECT) 790 return zonefs_file_dio_write(iocb, from); 791 792 return zonefs_file_buffered_write(iocb, from); 793 } 794 795 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 796 int error, unsigned int flags) 797 { 798 if (error) { 799 zonefs_io_error(file_inode(iocb->ki_filp), false); 800 return error; 801 } 802 803 return 0; 804 } 805 806 static const struct iomap_dio_ops zonefs_read_dio_ops = { 807 .end_io = zonefs_file_read_dio_end_io, 808 }; 809 810 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 811 { 812 struct inode *inode = file_inode(iocb->ki_filp); 813 struct zonefs_inode_info *zi = ZONEFS_I(inode); 814 struct super_block *sb = inode->i_sb; 815 loff_t isize; 816 ssize_t ret; 817 818 /* Offline zones cannot be read */ 819 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 820 return -EPERM; 821 822 if (iocb->ki_pos >= zi->i_max_size) 823 return 0; 824 825 if (iocb->ki_flags & IOCB_NOWAIT) { 826 if (!inode_trylock_shared(inode)) 827 return -EAGAIN; 828 } else { 829 inode_lock_shared(inode); 830 } 831 832 /* Limit read operations to written data */ 833 mutex_lock(&zi->i_truncate_mutex); 834 isize = i_size_read(inode); 835 if (iocb->ki_pos >= isize) { 836 mutex_unlock(&zi->i_truncate_mutex); 837 ret = 0; 838 goto inode_unlock; 839 } 840 iov_iter_truncate(to, isize - iocb->ki_pos); 841 mutex_unlock(&zi->i_truncate_mutex); 842 843 if (iocb->ki_flags & IOCB_DIRECT) { 844 size_t count = iov_iter_count(to); 845 846 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 847 ret = -EINVAL; 848 goto inode_unlock; 849 } 850 file_accessed(iocb->ki_filp); 851 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops, 852 &zonefs_read_dio_ops, is_sync_kiocb(iocb)); 853 } else { 854 ret = generic_file_read_iter(iocb, to); 855 if (ret == -EIO) 856 zonefs_io_error(inode, false); 857 } 858 859 inode_unlock: 860 inode_unlock_shared(inode); 861 862 return ret; 863 } 864 865 static const struct file_operations zonefs_file_operations = { 866 .open = generic_file_open, 867 .fsync = zonefs_file_fsync, 868 .mmap = zonefs_file_mmap, 869 .llseek = zonefs_file_llseek, 870 .read_iter = zonefs_file_read_iter, 871 .write_iter = zonefs_file_write_iter, 872 .splice_read = generic_file_splice_read, 873 .splice_write = iter_file_splice_write, 874 .iopoll = iomap_dio_iopoll, 875 }; 876 877 static struct kmem_cache *zonefs_inode_cachep; 878 879 static struct inode *zonefs_alloc_inode(struct super_block *sb) 880 { 881 struct zonefs_inode_info *zi; 882 883 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL); 884 if (!zi) 885 return NULL; 886 887 inode_init_once(&zi->i_vnode); 888 mutex_init(&zi->i_truncate_mutex); 889 init_rwsem(&zi->i_mmap_sem); 890 891 return &zi->i_vnode; 892 } 893 894 static void zonefs_free_inode(struct inode *inode) 895 { 896 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode)); 897 } 898 899 /* 900 * File system stat. 901 */ 902 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf) 903 { 904 struct super_block *sb = dentry->d_sb; 905 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 906 enum zonefs_ztype t; 907 u64 fsid; 908 909 buf->f_type = ZONEFS_MAGIC; 910 buf->f_bsize = sb->s_blocksize; 911 buf->f_namelen = ZONEFS_NAME_MAX; 912 913 spin_lock(&sbi->s_lock); 914 915 buf->f_blocks = sbi->s_blocks; 916 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks)) 917 buf->f_bfree = 0; 918 else 919 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks; 920 buf->f_bavail = buf->f_bfree; 921 922 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 923 if (sbi->s_nr_files[t]) 924 buf->f_files += sbi->s_nr_files[t] + 1; 925 } 926 buf->f_ffree = 0; 927 928 spin_unlock(&sbi->s_lock); 929 930 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^ 931 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64)); 932 buf->f_fsid.val[0] = (u32)fsid; 933 buf->f_fsid.val[1] = (u32)(fsid >> 32); 934 935 return 0; 936 } 937 938 enum { 939 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair, 940 Opt_err, 941 }; 942 943 static const match_table_t tokens = { 944 { Opt_errors_ro, "errors=remount-ro"}, 945 { Opt_errors_zro, "errors=zone-ro"}, 946 { Opt_errors_zol, "errors=zone-offline"}, 947 { Opt_errors_repair, "errors=repair"}, 948 { Opt_err, NULL} 949 }; 950 951 static int zonefs_parse_options(struct super_block *sb, char *options) 952 { 953 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 954 substring_t args[MAX_OPT_ARGS]; 955 char *p; 956 957 if (!options) 958 return 0; 959 960 while ((p = strsep(&options, ",")) != NULL) { 961 int token; 962 963 if (!*p) 964 continue; 965 966 token = match_token(p, tokens, args); 967 switch (token) { 968 case Opt_errors_ro: 969 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 970 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO; 971 break; 972 case Opt_errors_zro: 973 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 974 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO; 975 break; 976 case Opt_errors_zol: 977 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 978 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL; 979 break; 980 case Opt_errors_repair: 981 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK; 982 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR; 983 break; 984 default: 985 return -EINVAL; 986 } 987 } 988 989 return 0; 990 } 991 992 static int zonefs_show_options(struct seq_file *seq, struct dentry *root) 993 { 994 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb); 995 996 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) 997 seq_puts(seq, ",errors=remount-ro"); 998 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) 999 seq_puts(seq, ",errors=zone-ro"); 1000 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) 1001 seq_puts(seq, ",errors=zone-offline"); 1002 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR) 1003 seq_puts(seq, ",errors=repair"); 1004 1005 return 0; 1006 } 1007 1008 static int zonefs_remount(struct super_block *sb, int *flags, char *data) 1009 { 1010 sync_filesystem(sb); 1011 1012 return zonefs_parse_options(sb, data); 1013 } 1014 1015 static const struct super_operations zonefs_sops = { 1016 .alloc_inode = zonefs_alloc_inode, 1017 .free_inode = zonefs_free_inode, 1018 .statfs = zonefs_statfs, 1019 .remount_fs = zonefs_remount, 1020 .show_options = zonefs_show_options, 1021 }; 1022 1023 static const struct inode_operations zonefs_dir_inode_operations = { 1024 .lookup = simple_lookup, 1025 .setattr = zonefs_inode_setattr, 1026 }; 1027 1028 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode, 1029 enum zonefs_ztype type) 1030 { 1031 struct super_block *sb = parent->i_sb; 1032 1033 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1; 1034 inode_init_owner(inode, parent, S_IFDIR | 0555); 1035 inode->i_op = &zonefs_dir_inode_operations; 1036 inode->i_fop = &simple_dir_operations; 1037 set_nlink(inode, 2); 1038 inc_nlink(parent); 1039 } 1040 1041 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone, 1042 enum zonefs_ztype type) 1043 { 1044 struct super_block *sb = inode->i_sb; 1045 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1046 struct zonefs_inode_info *zi = ZONEFS_I(inode); 1047 1048 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift; 1049 inode->i_mode = S_IFREG | sbi->s_perm; 1050 1051 zi->i_ztype = type; 1052 zi->i_zsector = zone->start; 1053 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE, 1054 zone->len << SECTOR_SHIFT); 1055 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true); 1056 1057 inode->i_uid = sbi->s_uid; 1058 inode->i_gid = sbi->s_gid; 1059 inode->i_size = zi->i_wpoffset; 1060 inode->i_blocks = zone->len; 1061 1062 inode->i_op = &zonefs_file_inode_operations; 1063 inode->i_fop = &zonefs_file_operations; 1064 inode->i_mapping->a_ops = &zonefs_file_aops; 1065 1066 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes); 1067 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits; 1068 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits; 1069 } 1070 1071 static struct dentry *zonefs_create_inode(struct dentry *parent, 1072 const char *name, struct blk_zone *zone, 1073 enum zonefs_ztype type) 1074 { 1075 struct inode *dir = d_inode(parent); 1076 struct dentry *dentry; 1077 struct inode *inode; 1078 1079 dentry = d_alloc_name(parent, name); 1080 if (!dentry) 1081 return NULL; 1082 1083 inode = new_inode(parent->d_sb); 1084 if (!inode) 1085 goto dput; 1086 1087 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime; 1088 if (zone) 1089 zonefs_init_file_inode(inode, zone, type); 1090 else 1091 zonefs_init_dir_inode(dir, inode, type); 1092 d_add(dentry, inode); 1093 dir->i_size++; 1094 1095 return dentry; 1096 1097 dput: 1098 dput(dentry); 1099 1100 return NULL; 1101 } 1102 1103 struct zonefs_zone_data { 1104 struct super_block *sb; 1105 unsigned int nr_zones[ZONEFS_ZTYPE_MAX]; 1106 struct blk_zone *zones; 1107 }; 1108 1109 /* 1110 * Create a zone group and populate it with zone files. 1111 */ 1112 static int zonefs_create_zgroup(struct zonefs_zone_data *zd, 1113 enum zonefs_ztype type) 1114 { 1115 struct super_block *sb = zd->sb; 1116 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1117 struct blk_zone *zone, *next, *end; 1118 const char *zgroup_name; 1119 char *file_name; 1120 struct dentry *dir; 1121 unsigned int n = 0; 1122 int ret = -ENOMEM; 1123 1124 /* If the group is empty, there is nothing to do */ 1125 if (!zd->nr_zones[type]) 1126 return 0; 1127 1128 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL); 1129 if (!file_name) 1130 return -ENOMEM; 1131 1132 if (type == ZONEFS_ZTYPE_CNV) 1133 zgroup_name = "cnv"; 1134 else 1135 zgroup_name = "seq"; 1136 1137 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type); 1138 if (!dir) 1139 goto free; 1140 1141 /* 1142 * The first zone contains the super block: skip it. 1143 */ 1144 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk); 1145 for (zone = &zd->zones[1]; zone < end; zone = next) { 1146 1147 next = zone + 1; 1148 if (zonefs_zone_type(zone) != type) 1149 continue; 1150 1151 /* 1152 * For conventional zones, contiguous zones can be aggregated 1153 * together to form larger files. Note that this overwrites the 1154 * length of the first zone of the set of contiguous zones 1155 * aggregated together. If one offline or read-only zone is 1156 * found, assume that all zones aggregated have the same 1157 * condition. 1158 */ 1159 if (type == ZONEFS_ZTYPE_CNV && 1160 (sbi->s_features & ZONEFS_F_AGGRCNV)) { 1161 for (; next < end; next++) { 1162 if (zonefs_zone_type(next) != type) 1163 break; 1164 zone->len += next->len; 1165 if (next->cond == BLK_ZONE_COND_READONLY && 1166 zone->cond != BLK_ZONE_COND_OFFLINE) 1167 zone->cond = BLK_ZONE_COND_READONLY; 1168 else if (next->cond == BLK_ZONE_COND_OFFLINE) 1169 zone->cond = BLK_ZONE_COND_OFFLINE; 1170 } 1171 } 1172 1173 /* 1174 * Use the file number within its group as file name. 1175 */ 1176 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n); 1177 if (!zonefs_create_inode(dir, file_name, zone, type)) 1178 goto free; 1179 1180 n++; 1181 } 1182 1183 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n", 1184 zgroup_name, n, n > 1 ? "s" : ""); 1185 1186 sbi->s_nr_files[type] = n; 1187 ret = 0; 1188 1189 free: 1190 kfree(file_name); 1191 1192 return ret; 1193 } 1194 1195 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx, 1196 void *data) 1197 { 1198 struct zonefs_zone_data *zd = data; 1199 1200 /* 1201 * Count the number of usable zones: the first zone at index 0 contains 1202 * the super block and is ignored. 1203 */ 1204 switch (zone->type) { 1205 case BLK_ZONE_TYPE_CONVENTIONAL: 1206 zone->wp = zone->start + zone->len; 1207 if (idx) 1208 zd->nr_zones[ZONEFS_ZTYPE_CNV]++; 1209 break; 1210 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1211 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1212 if (idx) 1213 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++; 1214 break; 1215 default: 1216 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n", 1217 zone->type); 1218 return -EIO; 1219 } 1220 1221 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone)); 1222 1223 return 0; 1224 } 1225 1226 static int zonefs_get_zone_info(struct zonefs_zone_data *zd) 1227 { 1228 struct block_device *bdev = zd->sb->s_bdev; 1229 int ret; 1230 1231 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk), 1232 sizeof(struct blk_zone), GFP_KERNEL); 1233 if (!zd->zones) 1234 return -ENOMEM; 1235 1236 /* Get zones information from the device */ 1237 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, 1238 zonefs_get_zone_info_cb, zd); 1239 if (ret < 0) { 1240 zonefs_err(zd->sb, "Zone report failed %d\n", ret); 1241 return ret; 1242 } 1243 1244 if (ret != blkdev_nr_zones(bdev->bd_disk)) { 1245 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n", 1246 ret, blkdev_nr_zones(bdev->bd_disk)); 1247 return -EIO; 1248 } 1249 1250 return 0; 1251 } 1252 1253 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd) 1254 { 1255 kvfree(zd->zones); 1256 } 1257 1258 /* 1259 * Read super block information from the device. 1260 */ 1261 static int zonefs_read_super(struct super_block *sb) 1262 { 1263 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1264 struct zonefs_super *super; 1265 u32 crc, stored_crc; 1266 struct page *page; 1267 struct bio_vec bio_vec; 1268 struct bio bio; 1269 int ret; 1270 1271 page = alloc_page(GFP_KERNEL); 1272 if (!page) 1273 return -ENOMEM; 1274 1275 bio_init(&bio, &bio_vec, 1); 1276 bio.bi_iter.bi_sector = 0; 1277 bio.bi_opf = REQ_OP_READ; 1278 bio_set_dev(&bio, sb->s_bdev); 1279 bio_add_page(&bio, page, PAGE_SIZE, 0); 1280 1281 ret = submit_bio_wait(&bio); 1282 if (ret) 1283 goto free_page; 1284 1285 super = kmap(page); 1286 1287 ret = -EINVAL; 1288 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC) 1289 goto unmap; 1290 1291 stored_crc = le32_to_cpu(super->s_crc); 1292 super->s_crc = 0; 1293 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super)); 1294 if (crc != stored_crc) { 1295 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)", 1296 crc, stored_crc); 1297 goto unmap; 1298 } 1299 1300 sbi->s_features = le64_to_cpu(super->s_features); 1301 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) { 1302 zonefs_err(sb, "Unknown features set 0x%llx\n", 1303 sbi->s_features); 1304 goto unmap; 1305 } 1306 1307 if (sbi->s_features & ZONEFS_F_UID) { 1308 sbi->s_uid = make_kuid(current_user_ns(), 1309 le32_to_cpu(super->s_uid)); 1310 if (!uid_valid(sbi->s_uid)) { 1311 zonefs_err(sb, "Invalid UID feature\n"); 1312 goto unmap; 1313 } 1314 } 1315 1316 if (sbi->s_features & ZONEFS_F_GID) { 1317 sbi->s_gid = make_kgid(current_user_ns(), 1318 le32_to_cpu(super->s_gid)); 1319 if (!gid_valid(sbi->s_gid)) { 1320 zonefs_err(sb, "Invalid GID feature\n"); 1321 goto unmap; 1322 } 1323 } 1324 1325 if (sbi->s_features & ZONEFS_F_PERM) 1326 sbi->s_perm = le32_to_cpu(super->s_perm); 1327 1328 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) { 1329 zonefs_err(sb, "Reserved area is being used\n"); 1330 goto unmap; 1331 } 1332 1333 import_uuid(&sbi->s_uuid, super->s_uuid); 1334 ret = 0; 1335 1336 unmap: 1337 kunmap(page); 1338 free_page: 1339 __free_page(page); 1340 1341 return ret; 1342 } 1343 1344 /* 1345 * Check that the device is zoned. If it is, get the list of zones and create 1346 * sub-directories and files according to the device zone configuration and 1347 * format options. 1348 */ 1349 static int zonefs_fill_super(struct super_block *sb, void *data, int silent) 1350 { 1351 struct zonefs_zone_data zd; 1352 struct zonefs_sb_info *sbi; 1353 struct inode *inode; 1354 enum zonefs_ztype t; 1355 int ret; 1356 1357 if (!bdev_is_zoned(sb->s_bdev)) { 1358 zonefs_err(sb, "Not a zoned block device\n"); 1359 return -EINVAL; 1360 } 1361 1362 /* 1363 * Initialize super block information: the maximum file size is updated 1364 * when the zone files are created so that the format option 1365 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file 1366 * beyond the zone size is taken into account. 1367 */ 1368 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 1369 if (!sbi) 1370 return -ENOMEM; 1371 1372 spin_lock_init(&sbi->s_lock); 1373 sb->s_fs_info = sbi; 1374 sb->s_magic = ZONEFS_MAGIC; 1375 sb->s_maxbytes = 0; 1376 sb->s_op = &zonefs_sops; 1377 sb->s_time_gran = 1; 1378 1379 /* 1380 * The block size is set to the device physical sector size to ensure 1381 * that write operations on 512e devices (512B logical block and 4KB 1382 * physical block) are always aligned to the device physical blocks, 1383 * as mandated by the ZBC/ZAC specifications. 1384 */ 1385 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev)); 1386 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev)); 1387 sbi->s_uid = GLOBAL_ROOT_UID; 1388 sbi->s_gid = GLOBAL_ROOT_GID; 1389 sbi->s_perm = 0640; 1390 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO; 1391 1392 ret = zonefs_read_super(sb); 1393 if (ret) 1394 return ret; 1395 1396 ret = zonefs_parse_options(sb, data); 1397 if (ret) 1398 return ret; 1399 1400 memset(&zd, 0, sizeof(struct zonefs_zone_data)); 1401 zd.sb = sb; 1402 ret = zonefs_get_zone_info(&zd); 1403 if (ret) 1404 goto cleanup; 1405 1406 zonefs_info(sb, "Mounting %u zones", 1407 blkdev_nr_zones(sb->s_bdev->bd_disk)); 1408 1409 /* Create root directory inode */ 1410 ret = -ENOMEM; 1411 inode = new_inode(sb); 1412 if (!inode) 1413 goto cleanup; 1414 1415 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk); 1416 inode->i_mode = S_IFDIR | 0555; 1417 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode); 1418 inode->i_op = &zonefs_dir_inode_operations; 1419 inode->i_fop = &simple_dir_operations; 1420 set_nlink(inode, 2); 1421 1422 sb->s_root = d_make_root(inode); 1423 if (!sb->s_root) 1424 goto cleanup; 1425 1426 /* Create and populate files in zone groups directories */ 1427 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) { 1428 ret = zonefs_create_zgroup(&zd, t); 1429 if (ret) 1430 break; 1431 } 1432 1433 cleanup: 1434 zonefs_cleanup_zone_info(&zd); 1435 1436 return ret; 1437 } 1438 1439 static struct dentry *zonefs_mount(struct file_system_type *fs_type, 1440 int flags, const char *dev_name, void *data) 1441 { 1442 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super); 1443 } 1444 1445 static void zonefs_kill_super(struct super_block *sb) 1446 { 1447 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 1448 1449 if (sb->s_root) 1450 d_genocide(sb->s_root); 1451 kill_block_super(sb); 1452 kfree(sbi); 1453 } 1454 1455 /* 1456 * File system definition and registration. 1457 */ 1458 static struct file_system_type zonefs_type = { 1459 .owner = THIS_MODULE, 1460 .name = "zonefs", 1461 .mount = zonefs_mount, 1462 .kill_sb = zonefs_kill_super, 1463 .fs_flags = FS_REQUIRES_DEV, 1464 }; 1465 1466 static int __init zonefs_init_inodecache(void) 1467 { 1468 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache", 1469 sizeof(struct zonefs_inode_info), 0, 1470 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), 1471 NULL); 1472 if (zonefs_inode_cachep == NULL) 1473 return -ENOMEM; 1474 return 0; 1475 } 1476 1477 static void zonefs_destroy_inodecache(void) 1478 { 1479 /* 1480 * Make sure all delayed rcu free inodes are flushed before we 1481 * destroy the inode cache. 1482 */ 1483 rcu_barrier(); 1484 kmem_cache_destroy(zonefs_inode_cachep); 1485 } 1486 1487 static int __init zonefs_init(void) 1488 { 1489 int ret; 1490 1491 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE); 1492 1493 ret = zonefs_init_inodecache(); 1494 if (ret) 1495 return ret; 1496 1497 ret = register_filesystem(&zonefs_type); 1498 if (ret) { 1499 zonefs_destroy_inodecache(); 1500 return ret; 1501 } 1502 1503 return 0; 1504 } 1505 1506 static void __exit zonefs_exit(void) 1507 { 1508 zonefs_destroy_inodecache(); 1509 unregister_filesystem(&zonefs_type); 1510 } 1511 1512 MODULE_AUTHOR("Damien Le Moal"); 1513 MODULE_DESCRIPTION("Zone file system for zoned block devices"); 1514 MODULE_LICENSE("GPL"); 1515 module_init(zonefs_init); 1516 module_exit(zonefs_exit); 1517