xref: /openbmc/linux/fs/zonefs/super.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29 
30 /*
31  * Manage the active zone count. Called with zi->i_truncate_mutex held.
32  */
33 static void zonefs_account_active(struct inode *inode)
34 {
35 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
36 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
37 
38 	lockdep_assert_held(&zi->i_truncate_mutex);
39 
40 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
41 		return;
42 
43 	/*
44 	 * If the zone is active, that is, if it is explicitly open or
45 	 * partially written, check if it was already accounted as active.
46 	 */
47 	if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
48 	    (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
49 		if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
50 			zi->i_flags |= ZONEFS_ZONE_ACTIVE;
51 			atomic_inc(&sbi->s_active_seq_files);
52 		}
53 		return;
54 	}
55 
56 	/* The zone is not active. If it was, update the active count */
57 	if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
58 		zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
59 		atomic_dec(&sbi->s_active_seq_files);
60 	}
61 }
62 
63 static inline int zonefs_zone_mgmt(struct inode *inode,
64 				   enum req_opf op)
65 {
66 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
67 	int ret;
68 
69 	lockdep_assert_held(&zi->i_truncate_mutex);
70 
71 	/*
72 	 * With ZNS drives, closing an explicitly open zone that has not been
73 	 * written will change the zone state to "closed", that is, the zone
74 	 * will remain active. Since this can then cause failure of explicit
75 	 * open operation on other zones if the drive active zone resources
76 	 * are exceeded, make sure that the zone does not remain active by
77 	 * resetting it.
78 	 */
79 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
80 		op = REQ_OP_ZONE_RESET;
81 
82 	trace_zonefs_zone_mgmt(inode, op);
83 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
84 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
85 	if (ret) {
86 		zonefs_err(inode->i_sb,
87 			   "Zone management operation %s at %llu failed %d\n",
88 			   blk_op_str(op), zi->i_zsector, ret);
89 		return ret;
90 	}
91 
92 	return 0;
93 }
94 
95 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
96 {
97 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
98 
99 	i_size_write(inode, isize);
100 	/*
101 	 * A full zone is no longer open/active and does not need
102 	 * explicit closing.
103 	 */
104 	if (isize >= zi->i_max_size) {
105 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
106 
107 		if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
108 			atomic_dec(&sbi->s_active_seq_files);
109 		zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
110 	}
111 }
112 
113 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
114 			      unsigned int flags, struct iomap *iomap,
115 			      struct iomap *srcmap)
116 {
117 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
118 	struct super_block *sb = inode->i_sb;
119 	loff_t isize;
120 
121 	/* All I/Os should always be within the file maximum size */
122 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
123 		return -EIO;
124 
125 	/*
126 	 * Sequential zones can only accept direct writes. This is already
127 	 * checked when writes are issued, so warn if we see a page writeback
128 	 * operation.
129 	 */
130 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
131 			 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
132 		return -EIO;
133 
134 	/*
135 	 * For conventional zones, all blocks are always mapped. For sequential
136 	 * zones, all blocks after always mapped below the inode size (zone
137 	 * write pointer) and unwriten beyond.
138 	 */
139 	mutex_lock(&zi->i_truncate_mutex);
140 	isize = i_size_read(inode);
141 	if (offset >= isize)
142 		iomap->type = IOMAP_UNWRITTEN;
143 	else
144 		iomap->type = IOMAP_MAPPED;
145 	if (flags & IOMAP_WRITE)
146 		length = zi->i_max_size - offset;
147 	else
148 		length = min(length, isize - offset);
149 	mutex_unlock(&zi->i_truncate_mutex);
150 
151 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
152 	iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
153 	iomap->bdev = inode->i_sb->s_bdev;
154 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
155 
156 	trace_zonefs_iomap_begin(inode, iomap);
157 
158 	return 0;
159 }
160 
161 static const struct iomap_ops zonefs_iomap_ops = {
162 	.iomap_begin	= zonefs_iomap_begin,
163 };
164 
165 static int zonefs_readpage(struct file *unused, struct page *page)
166 {
167 	return iomap_readpage(page, &zonefs_iomap_ops);
168 }
169 
170 static void zonefs_readahead(struct readahead_control *rac)
171 {
172 	iomap_readahead(rac, &zonefs_iomap_ops);
173 }
174 
175 /*
176  * Map blocks for page writeback. This is used only on conventional zone files,
177  * which implies that the page range can only be within the fixed inode size.
178  */
179 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
180 			     struct inode *inode, loff_t offset)
181 {
182 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
183 
184 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
185 		return -EIO;
186 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
187 		return -EIO;
188 
189 	/* If the mapping is already OK, nothing needs to be done */
190 	if (offset >= wpc->iomap.offset &&
191 	    offset < wpc->iomap.offset + wpc->iomap.length)
192 		return 0;
193 
194 	return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
195 				  IOMAP_WRITE, &wpc->iomap, NULL);
196 }
197 
198 static const struct iomap_writeback_ops zonefs_writeback_ops = {
199 	.map_blocks		= zonefs_map_blocks,
200 };
201 
202 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
203 {
204 	struct iomap_writepage_ctx wpc = { };
205 
206 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
207 }
208 
209 static int zonefs_writepages(struct address_space *mapping,
210 			     struct writeback_control *wbc)
211 {
212 	struct iomap_writepage_ctx wpc = { };
213 
214 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
215 }
216 
217 static int zonefs_swap_activate(struct swap_info_struct *sis,
218 				struct file *swap_file, sector_t *span)
219 {
220 	struct inode *inode = file_inode(swap_file);
221 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
222 
223 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
224 		zonefs_err(inode->i_sb,
225 			   "swap file: not a conventional zone file\n");
226 		return -EINVAL;
227 	}
228 
229 	return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
230 }
231 
232 static const struct address_space_operations zonefs_file_aops = {
233 	.readpage		= zonefs_readpage,
234 	.readahead		= zonefs_readahead,
235 	.writepage		= zonefs_writepage,
236 	.writepages		= zonefs_writepages,
237 	.dirty_folio		= filemap_dirty_folio,
238 	.releasepage		= iomap_releasepage,
239 	.invalidate_folio	= iomap_invalidate_folio,
240 	.migratepage		= iomap_migrate_page,
241 	.is_partially_uptodate	= iomap_is_partially_uptodate,
242 	.error_remove_page	= generic_error_remove_page,
243 	.direct_IO		= noop_direct_IO,
244 	.swap_activate		= zonefs_swap_activate,
245 };
246 
247 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
248 {
249 	struct super_block *sb = inode->i_sb;
250 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
251 	loff_t old_isize = i_size_read(inode);
252 	loff_t nr_blocks;
253 
254 	if (new_isize == old_isize)
255 		return;
256 
257 	spin_lock(&sbi->s_lock);
258 
259 	/*
260 	 * This may be called for an update after an IO error.
261 	 * So beware of the values seen.
262 	 */
263 	if (new_isize < old_isize) {
264 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
265 		if (sbi->s_used_blocks > nr_blocks)
266 			sbi->s_used_blocks -= nr_blocks;
267 		else
268 			sbi->s_used_blocks = 0;
269 	} else {
270 		sbi->s_used_blocks +=
271 			(new_isize - old_isize) >> sb->s_blocksize_bits;
272 		if (sbi->s_used_blocks > sbi->s_blocks)
273 			sbi->s_used_blocks = sbi->s_blocks;
274 	}
275 
276 	spin_unlock(&sbi->s_lock);
277 }
278 
279 /*
280  * Check a zone condition and adjust its file inode access permissions for
281  * offline and readonly zones. Return the inode size corresponding to the
282  * amount of readable data in the zone.
283  */
284 static loff_t zonefs_check_zone_condition(struct inode *inode,
285 					  struct blk_zone *zone, bool warn,
286 					  bool mount)
287 {
288 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
289 
290 	switch (zone->cond) {
291 	case BLK_ZONE_COND_OFFLINE:
292 		/*
293 		 * Dead zone: make the inode immutable, disable all accesses
294 		 * and set the file size to 0 (zone wp set to zone start).
295 		 */
296 		if (warn)
297 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
298 				    inode->i_ino);
299 		inode->i_flags |= S_IMMUTABLE;
300 		inode->i_mode &= ~0777;
301 		zone->wp = zone->start;
302 		return 0;
303 	case BLK_ZONE_COND_READONLY:
304 		/*
305 		 * The write pointer of read-only zones is invalid. If such a
306 		 * zone is found during mount, the file size cannot be retrieved
307 		 * so we treat the zone as offline (mount == true case).
308 		 * Otherwise, keep the file size as it was when last updated
309 		 * so that the user can recover data. In both cases, writes are
310 		 * always disabled for the zone.
311 		 */
312 		if (warn)
313 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
314 				    inode->i_ino);
315 		inode->i_flags |= S_IMMUTABLE;
316 		if (mount) {
317 			zone->cond = BLK_ZONE_COND_OFFLINE;
318 			inode->i_mode &= ~0777;
319 			zone->wp = zone->start;
320 			return 0;
321 		}
322 		inode->i_mode &= ~0222;
323 		return i_size_read(inode);
324 	case BLK_ZONE_COND_FULL:
325 		/* The write pointer of full zones is invalid. */
326 		return zi->i_max_size;
327 	default:
328 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
329 			return zi->i_max_size;
330 		return (zone->wp - zone->start) << SECTOR_SHIFT;
331 	}
332 }
333 
334 struct zonefs_ioerr_data {
335 	struct inode	*inode;
336 	bool		write;
337 };
338 
339 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
340 			      void *data)
341 {
342 	struct zonefs_ioerr_data *err = data;
343 	struct inode *inode = err->inode;
344 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
345 	struct super_block *sb = inode->i_sb;
346 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
347 	loff_t isize, data_size;
348 
349 	/*
350 	 * Check the zone condition: if the zone is not "bad" (offline or
351 	 * read-only), read errors are simply signaled to the IO issuer as long
352 	 * as there is no inconsistency between the inode size and the amount of
353 	 * data writen in the zone (data_size).
354 	 */
355 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
356 	isize = i_size_read(inode);
357 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
358 	    zone->cond != BLK_ZONE_COND_READONLY &&
359 	    !err->write && isize == data_size)
360 		return 0;
361 
362 	/*
363 	 * At this point, we detected either a bad zone or an inconsistency
364 	 * between the inode size and the amount of data written in the zone.
365 	 * For the latter case, the cause may be a write IO error or an external
366 	 * action on the device. Two error patterns exist:
367 	 * 1) The inode size is lower than the amount of data in the zone:
368 	 *    a write operation partially failed and data was writen at the end
369 	 *    of the file. This can happen in the case of a large direct IO
370 	 *    needing several BIOs and/or write requests to be processed.
371 	 * 2) The inode size is larger than the amount of data in the zone:
372 	 *    this can happen with a deferred write error with the use of the
373 	 *    device side write cache after getting successful write IO
374 	 *    completions. Other possibilities are (a) an external corruption,
375 	 *    e.g. an application reset the zone directly, or (b) the device
376 	 *    has a serious problem (e.g. firmware bug).
377 	 *
378 	 * In all cases, warn about inode size inconsistency and handle the
379 	 * IO error according to the zone condition and to the mount options.
380 	 */
381 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
382 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
383 			    inode->i_ino, isize, data_size);
384 
385 	/*
386 	 * First handle bad zones signaled by hardware. The mount options
387 	 * errors=zone-ro and errors=zone-offline result in changing the
388 	 * zone condition to read-only and offline respectively, as if the
389 	 * condition was signaled by the hardware.
390 	 */
391 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
392 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
393 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
394 			    inode->i_ino);
395 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
396 			zone->cond = BLK_ZONE_COND_OFFLINE;
397 			data_size = zonefs_check_zone_condition(inode, zone,
398 								false, false);
399 		}
400 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
401 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
402 		zonefs_warn(sb, "inode %lu: write access disabled\n",
403 			    inode->i_ino);
404 		if (zone->cond != BLK_ZONE_COND_READONLY) {
405 			zone->cond = BLK_ZONE_COND_READONLY;
406 			data_size = zonefs_check_zone_condition(inode, zone,
407 								false, false);
408 		}
409 	}
410 
411 	/*
412 	 * If the filesystem is mounted with the explicit-open mount option, we
413 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
414 	 * the read-only or offline condition, to avoid attempting an explicit
415 	 * close of the zone when the inode file is closed.
416 	 */
417 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
418 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
419 	     zone->cond == BLK_ZONE_COND_READONLY))
420 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
421 
422 	/*
423 	 * If error=remount-ro was specified, any error result in remounting
424 	 * the volume as read-only.
425 	 */
426 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
427 		zonefs_warn(sb, "remounting filesystem read-only\n");
428 		sb->s_flags |= SB_RDONLY;
429 	}
430 
431 	/*
432 	 * Update block usage stats and the inode size  to prevent access to
433 	 * invalid data.
434 	 */
435 	zonefs_update_stats(inode, data_size);
436 	zonefs_i_size_write(inode, data_size);
437 	zi->i_wpoffset = data_size;
438 	zonefs_account_active(inode);
439 
440 	return 0;
441 }
442 
443 /*
444  * When an file IO error occurs, check the file zone to see if there is a change
445  * in the zone condition (e.g. offline or read-only). For a failed write to a
446  * sequential zone, the zone write pointer position must also be checked to
447  * eventually correct the file size and zonefs inode write pointer offset
448  * (which can be out of sync with the drive due to partial write failures).
449  */
450 static void __zonefs_io_error(struct inode *inode, bool write)
451 {
452 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
453 	struct super_block *sb = inode->i_sb;
454 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
455 	unsigned int noio_flag;
456 	unsigned int nr_zones =
457 		zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
458 	struct zonefs_ioerr_data err = {
459 		.inode = inode,
460 		.write = write,
461 	};
462 	int ret;
463 
464 	/*
465 	 * Memory allocations in blkdev_report_zones() can trigger a memory
466 	 * reclaim which may in turn cause a recursion into zonefs as well as
467 	 * struct request allocations for the same device. The former case may
468 	 * end up in a deadlock on the inode truncate mutex, while the latter
469 	 * may prevent IO forward progress. Executing the report zones under
470 	 * the GFP_NOIO context avoids both problems.
471 	 */
472 	noio_flag = memalloc_noio_save();
473 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
474 				  zonefs_io_error_cb, &err);
475 	if (ret != nr_zones)
476 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
477 			   inode->i_ino, ret);
478 	memalloc_noio_restore(noio_flag);
479 }
480 
481 static void zonefs_io_error(struct inode *inode, bool write)
482 {
483 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
484 
485 	mutex_lock(&zi->i_truncate_mutex);
486 	__zonefs_io_error(inode, write);
487 	mutex_unlock(&zi->i_truncate_mutex);
488 }
489 
490 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
491 {
492 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
493 	loff_t old_isize;
494 	enum req_opf op;
495 	int ret = 0;
496 
497 	/*
498 	 * Only sequential zone files can be truncated and truncation is allowed
499 	 * only down to a 0 size, which is equivalent to a zone reset, and to
500 	 * the maximum file size, which is equivalent to a zone finish.
501 	 */
502 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
503 		return -EPERM;
504 
505 	if (!isize)
506 		op = REQ_OP_ZONE_RESET;
507 	else if (isize == zi->i_max_size)
508 		op = REQ_OP_ZONE_FINISH;
509 	else
510 		return -EPERM;
511 
512 	inode_dio_wait(inode);
513 
514 	/* Serialize against page faults */
515 	filemap_invalidate_lock(inode->i_mapping);
516 
517 	/* Serialize against zonefs_iomap_begin() */
518 	mutex_lock(&zi->i_truncate_mutex);
519 
520 	old_isize = i_size_read(inode);
521 	if (isize == old_isize)
522 		goto unlock;
523 
524 	ret = zonefs_zone_mgmt(inode, op);
525 	if (ret)
526 		goto unlock;
527 
528 	/*
529 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
530 	 * take care of open zones.
531 	 */
532 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
533 		/*
534 		 * Truncating a zone to EMPTY or FULL is the equivalent of
535 		 * closing the zone. For a truncation to 0, we need to
536 		 * re-open the zone to ensure new writes can be processed.
537 		 * For a truncation to the maximum file size, the zone is
538 		 * closed and writes cannot be accepted anymore, so clear
539 		 * the open flag.
540 		 */
541 		if (!isize)
542 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
543 		else
544 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
545 	}
546 
547 	zonefs_update_stats(inode, isize);
548 	truncate_setsize(inode, isize);
549 	zi->i_wpoffset = isize;
550 	zonefs_account_active(inode);
551 
552 unlock:
553 	mutex_unlock(&zi->i_truncate_mutex);
554 	filemap_invalidate_unlock(inode->i_mapping);
555 
556 	return ret;
557 }
558 
559 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
560 				struct dentry *dentry, struct iattr *iattr)
561 {
562 	struct inode *inode = d_inode(dentry);
563 	int ret;
564 
565 	if (unlikely(IS_IMMUTABLE(inode)))
566 		return -EPERM;
567 
568 	ret = setattr_prepare(&init_user_ns, dentry, iattr);
569 	if (ret)
570 		return ret;
571 
572 	/*
573 	 * Since files and directories cannot be created nor deleted, do not
574 	 * allow setting any write attributes on the sub-directories grouping
575 	 * files by zone type.
576 	 */
577 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
578 	    (iattr->ia_mode & 0222))
579 		return -EPERM;
580 
581 	if (((iattr->ia_valid & ATTR_UID) &&
582 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
583 	    ((iattr->ia_valid & ATTR_GID) &&
584 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
585 		ret = dquot_transfer(inode, iattr);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	if (iattr->ia_valid & ATTR_SIZE) {
591 		ret = zonefs_file_truncate(inode, iattr->ia_size);
592 		if (ret)
593 			return ret;
594 	}
595 
596 	setattr_copy(&init_user_ns, inode, iattr);
597 
598 	return 0;
599 }
600 
601 static const struct inode_operations zonefs_file_inode_operations = {
602 	.setattr	= zonefs_inode_setattr,
603 };
604 
605 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
606 			     int datasync)
607 {
608 	struct inode *inode = file_inode(file);
609 	int ret = 0;
610 
611 	if (unlikely(IS_IMMUTABLE(inode)))
612 		return -EPERM;
613 
614 	/*
615 	 * Since only direct writes are allowed in sequential files, page cache
616 	 * flush is needed only for conventional zone files.
617 	 */
618 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
619 		ret = file_write_and_wait_range(file, start, end);
620 	if (!ret)
621 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
622 
623 	if (ret)
624 		zonefs_io_error(inode, true);
625 
626 	return ret;
627 }
628 
629 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
630 {
631 	struct inode *inode = file_inode(vmf->vma->vm_file);
632 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
633 	vm_fault_t ret;
634 
635 	if (unlikely(IS_IMMUTABLE(inode)))
636 		return VM_FAULT_SIGBUS;
637 
638 	/*
639 	 * Sanity check: only conventional zone files can have shared
640 	 * writeable mappings.
641 	 */
642 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
643 		return VM_FAULT_NOPAGE;
644 
645 	sb_start_pagefault(inode->i_sb);
646 	file_update_time(vmf->vma->vm_file);
647 
648 	/* Serialize against truncates */
649 	filemap_invalidate_lock_shared(inode->i_mapping);
650 	ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
651 	filemap_invalidate_unlock_shared(inode->i_mapping);
652 
653 	sb_end_pagefault(inode->i_sb);
654 	return ret;
655 }
656 
657 static const struct vm_operations_struct zonefs_file_vm_ops = {
658 	.fault		= filemap_fault,
659 	.map_pages	= filemap_map_pages,
660 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
661 };
662 
663 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
664 {
665 	/*
666 	 * Conventional zones accept random writes, so their files can support
667 	 * shared writable mappings. For sequential zone files, only read
668 	 * mappings are possible since there are no guarantees for write
669 	 * ordering between msync() and page cache writeback.
670 	 */
671 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
672 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
673 		return -EINVAL;
674 
675 	file_accessed(file);
676 	vma->vm_ops = &zonefs_file_vm_ops;
677 
678 	return 0;
679 }
680 
681 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
682 {
683 	loff_t isize = i_size_read(file_inode(file));
684 
685 	/*
686 	 * Seeks are limited to below the zone size for conventional zones
687 	 * and below the zone write pointer for sequential zones. In both
688 	 * cases, this limit is the inode size.
689 	 */
690 	return generic_file_llseek_size(file, offset, whence, isize, isize);
691 }
692 
693 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
694 					int error, unsigned int flags)
695 {
696 	struct inode *inode = file_inode(iocb->ki_filp);
697 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
698 
699 	if (error) {
700 		zonefs_io_error(inode, true);
701 		return error;
702 	}
703 
704 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
705 		/*
706 		 * Note that we may be seeing completions out of order,
707 		 * but that is not a problem since a write completed
708 		 * successfully necessarily means that all preceding writes
709 		 * were also successful. So we can safely increase the inode
710 		 * size to the write end location.
711 		 */
712 		mutex_lock(&zi->i_truncate_mutex);
713 		if (i_size_read(inode) < iocb->ki_pos + size) {
714 			zonefs_update_stats(inode, iocb->ki_pos + size);
715 			zonefs_i_size_write(inode, iocb->ki_pos + size);
716 		}
717 		mutex_unlock(&zi->i_truncate_mutex);
718 	}
719 
720 	return 0;
721 }
722 
723 static const struct iomap_dio_ops zonefs_write_dio_ops = {
724 	.end_io			= zonefs_file_write_dio_end_io,
725 };
726 
727 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
728 {
729 	struct inode *inode = file_inode(iocb->ki_filp);
730 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
731 	struct block_device *bdev = inode->i_sb->s_bdev;
732 	unsigned int max = bdev_max_zone_append_sectors(bdev);
733 	struct bio *bio;
734 	ssize_t size;
735 	int nr_pages;
736 	ssize_t ret;
737 
738 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
739 	iov_iter_truncate(from, max);
740 
741 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
742 	if (!nr_pages)
743 		return 0;
744 
745 	bio = bio_alloc(bdev, nr_pages,
746 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
747 	bio->bi_iter.bi_sector = zi->i_zsector;
748 	bio->bi_ioprio = iocb->ki_ioprio;
749 	if (iocb->ki_flags & IOCB_DSYNC)
750 		bio->bi_opf |= REQ_FUA;
751 
752 	ret = bio_iov_iter_get_pages(bio, from);
753 	if (unlikely(ret))
754 		goto out_release;
755 
756 	size = bio->bi_iter.bi_size;
757 	task_io_account_write(size);
758 
759 	if (iocb->ki_flags & IOCB_HIPRI)
760 		bio_set_polled(bio, iocb);
761 
762 	ret = submit_bio_wait(bio);
763 
764 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
765 	trace_zonefs_file_dio_append(inode, size, ret);
766 
767 out_release:
768 	bio_release_pages(bio, false);
769 	bio_put(bio);
770 
771 	if (ret >= 0) {
772 		iocb->ki_pos += size;
773 		return size;
774 	}
775 
776 	return ret;
777 }
778 
779 /*
780  * Do not exceed the LFS limits nor the file zone size. If pos is under the
781  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
782  */
783 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
784 					loff_t count)
785 {
786 	struct inode *inode = file_inode(file);
787 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
788 	loff_t limit = rlimit(RLIMIT_FSIZE);
789 	loff_t max_size = zi->i_max_size;
790 
791 	if (limit != RLIM_INFINITY) {
792 		if (pos >= limit) {
793 			send_sig(SIGXFSZ, current, 0);
794 			return -EFBIG;
795 		}
796 		count = min(count, limit - pos);
797 	}
798 
799 	if (!(file->f_flags & O_LARGEFILE))
800 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
801 
802 	if (unlikely(pos >= max_size))
803 		return -EFBIG;
804 
805 	return min(count, max_size - pos);
806 }
807 
808 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
809 {
810 	struct file *file = iocb->ki_filp;
811 	struct inode *inode = file_inode(file);
812 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
813 	loff_t count;
814 
815 	if (IS_SWAPFILE(inode))
816 		return -ETXTBSY;
817 
818 	if (!iov_iter_count(from))
819 		return 0;
820 
821 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
822 		return -EINVAL;
823 
824 	if (iocb->ki_flags & IOCB_APPEND) {
825 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
826 			return -EINVAL;
827 		mutex_lock(&zi->i_truncate_mutex);
828 		iocb->ki_pos = zi->i_wpoffset;
829 		mutex_unlock(&zi->i_truncate_mutex);
830 	}
831 
832 	count = zonefs_write_check_limits(file, iocb->ki_pos,
833 					  iov_iter_count(from));
834 	if (count < 0)
835 		return count;
836 
837 	iov_iter_truncate(from, count);
838 	return iov_iter_count(from);
839 }
840 
841 /*
842  * Handle direct writes. For sequential zone files, this is the only possible
843  * write path. For these files, check that the user is issuing writes
844  * sequentially from the end of the file. This code assumes that the block layer
845  * delivers write requests to the device in sequential order. This is always the
846  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
847  * elevator feature is being used (e.g. mq-deadline). The block layer always
848  * automatically select such an elevator for zoned block devices during the
849  * device initialization.
850  */
851 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
852 {
853 	struct inode *inode = file_inode(iocb->ki_filp);
854 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
855 	struct super_block *sb = inode->i_sb;
856 	bool sync = is_sync_kiocb(iocb);
857 	bool append = false;
858 	ssize_t ret, count;
859 
860 	/*
861 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
862 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
863 	 * on the inode lock but the second goes through but is now unaligned).
864 	 */
865 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
866 	    (iocb->ki_flags & IOCB_NOWAIT))
867 		return -EOPNOTSUPP;
868 
869 	if (iocb->ki_flags & IOCB_NOWAIT) {
870 		if (!inode_trylock(inode))
871 			return -EAGAIN;
872 	} else {
873 		inode_lock(inode);
874 	}
875 
876 	count = zonefs_write_checks(iocb, from);
877 	if (count <= 0) {
878 		ret = count;
879 		goto inode_unlock;
880 	}
881 
882 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
883 		ret = -EINVAL;
884 		goto inode_unlock;
885 	}
886 
887 	/* Enforce sequential writes (append only) in sequential zones */
888 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
889 		mutex_lock(&zi->i_truncate_mutex);
890 		if (iocb->ki_pos != zi->i_wpoffset) {
891 			mutex_unlock(&zi->i_truncate_mutex);
892 			ret = -EINVAL;
893 			goto inode_unlock;
894 		}
895 		mutex_unlock(&zi->i_truncate_mutex);
896 		append = sync;
897 	}
898 
899 	if (append)
900 		ret = zonefs_file_dio_append(iocb, from);
901 	else
902 		ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
903 				   &zonefs_write_dio_ops, 0, 0);
904 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
905 	    (ret > 0 || ret == -EIOCBQUEUED)) {
906 		if (ret > 0)
907 			count = ret;
908 
909 		/*
910 		 * Update the zone write pointer offset assuming the write
911 		 * operation succeeded. If it did not, the error recovery path
912 		 * will correct it. Also do active seq file accounting.
913 		 */
914 		mutex_lock(&zi->i_truncate_mutex);
915 		zi->i_wpoffset += count;
916 		zonefs_account_active(inode);
917 		mutex_unlock(&zi->i_truncate_mutex);
918 	}
919 
920 inode_unlock:
921 	inode_unlock(inode);
922 
923 	return ret;
924 }
925 
926 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
927 					  struct iov_iter *from)
928 {
929 	struct inode *inode = file_inode(iocb->ki_filp);
930 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
931 	ssize_t ret;
932 
933 	/*
934 	 * Direct IO writes are mandatory for sequential zone files so that the
935 	 * write IO issuing order is preserved.
936 	 */
937 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
938 		return -EIO;
939 
940 	if (iocb->ki_flags & IOCB_NOWAIT) {
941 		if (!inode_trylock(inode))
942 			return -EAGAIN;
943 	} else {
944 		inode_lock(inode);
945 	}
946 
947 	ret = zonefs_write_checks(iocb, from);
948 	if (ret <= 0)
949 		goto inode_unlock;
950 
951 	ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
952 	if (ret > 0)
953 		iocb->ki_pos += ret;
954 	else if (ret == -EIO)
955 		zonefs_io_error(inode, true);
956 
957 inode_unlock:
958 	inode_unlock(inode);
959 	if (ret > 0)
960 		ret = generic_write_sync(iocb, ret);
961 
962 	return ret;
963 }
964 
965 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
966 {
967 	struct inode *inode = file_inode(iocb->ki_filp);
968 
969 	if (unlikely(IS_IMMUTABLE(inode)))
970 		return -EPERM;
971 
972 	if (sb_rdonly(inode->i_sb))
973 		return -EROFS;
974 
975 	/* Write operations beyond the zone size are not allowed */
976 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
977 		return -EFBIG;
978 
979 	if (iocb->ki_flags & IOCB_DIRECT) {
980 		ssize_t ret = zonefs_file_dio_write(iocb, from);
981 		if (ret != -ENOTBLK)
982 			return ret;
983 	}
984 
985 	return zonefs_file_buffered_write(iocb, from);
986 }
987 
988 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
989 				       int error, unsigned int flags)
990 {
991 	if (error) {
992 		zonefs_io_error(file_inode(iocb->ki_filp), false);
993 		return error;
994 	}
995 
996 	return 0;
997 }
998 
999 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1000 	.end_io			= zonefs_file_read_dio_end_io,
1001 };
1002 
1003 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1004 {
1005 	struct inode *inode = file_inode(iocb->ki_filp);
1006 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1007 	struct super_block *sb = inode->i_sb;
1008 	loff_t isize;
1009 	ssize_t ret;
1010 
1011 	/* Offline zones cannot be read */
1012 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1013 		return -EPERM;
1014 
1015 	if (iocb->ki_pos >= zi->i_max_size)
1016 		return 0;
1017 
1018 	if (iocb->ki_flags & IOCB_NOWAIT) {
1019 		if (!inode_trylock_shared(inode))
1020 			return -EAGAIN;
1021 	} else {
1022 		inode_lock_shared(inode);
1023 	}
1024 
1025 	/* Limit read operations to written data */
1026 	mutex_lock(&zi->i_truncate_mutex);
1027 	isize = i_size_read(inode);
1028 	if (iocb->ki_pos >= isize) {
1029 		mutex_unlock(&zi->i_truncate_mutex);
1030 		ret = 0;
1031 		goto inode_unlock;
1032 	}
1033 	iov_iter_truncate(to, isize - iocb->ki_pos);
1034 	mutex_unlock(&zi->i_truncate_mutex);
1035 
1036 	if (iocb->ki_flags & IOCB_DIRECT) {
1037 		size_t count = iov_iter_count(to);
1038 
1039 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1040 			ret = -EINVAL;
1041 			goto inode_unlock;
1042 		}
1043 		file_accessed(iocb->ki_filp);
1044 		ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
1045 				   &zonefs_read_dio_ops, 0, 0);
1046 	} else {
1047 		ret = generic_file_read_iter(iocb, to);
1048 		if (ret == -EIO)
1049 			zonefs_io_error(inode, false);
1050 	}
1051 
1052 inode_unlock:
1053 	inode_unlock_shared(inode);
1054 
1055 	return ret;
1056 }
1057 
1058 /*
1059  * Write open accounting is done only for sequential files.
1060  */
1061 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1062 					    struct file *file)
1063 {
1064 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1065 
1066 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1067 		return false;
1068 
1069 	if (!(file->f_mode & FMODE_WRITE))
1070 		return false;
1071 
1072 	return true;
1073 }
1074 
1075 static int zonefs_seq_file_write_open(struct inode *inode)
1076 {
1077 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1078 	int ret = 0;
1079 
1080 	mutex_lock(&zi->i_truncate_mutex);
1081 
1082 	if (!zi->i_wr_refcnt) {
1083 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1084 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1085 
1086 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1087 
1088 			if (wro > sbi->s_max_wro_seq_files) {
1089 				atomic_dec(&sbi->s_wro_seq_files);
1090 				ret = -EBUSY;
1091 				goto unlock;
1092 			}
1093 
1094 			if (i_size_read(inode) < zi->i_max_size) {
1095 				ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1096 				if (ret) {
1097 					atomic_dec(&sbi->s_wro_seq_files);
1098 					goto unlock;
1099 				}
1100 				zi->i_flags |= ZONEFS_ZONE_OPEN;
1101 				zonefs_account_active(inode);
1102 			}
1103 		}
1104 	}
1105 
1106 	zi->i_wr_refcnt++;
1107 
1108 unlock:
1109 	mutex_unlock(&zi->i_truncate_mutex);
1110 
1111 	return ret;
1112 }
1113 
1114 static int zonefs_file_open(struct inode *inode, struct file *file)
1115 {
1116 	int ret;
1117 
1118 	ret = generic_file_open(inode, file);
1119 	if (ret)
1120 		return ret;
1121 
1122 	if (zonefs_seq_file_need_wro(inode, file))
1123 		return zonefs_seq_file_write_open(inode);
1124 
1125 	return 0;
1126 }
1127 
1128 static void zonefs_seq_file_write_close(struct inode *inode)
1129 {
1130 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1131 	struct super_block *sb = inode->i_sb;
1132 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1133 	int ret = 0;
1134 
1135 	mutex_lock(&zi->i_truncate_mutex);
1136 
1137 	zi->i_wr_refcnt--;
1138 	if (zi->i_wr_refcnt)
1139 		goto unlock;
1140 
1141 	/*
1142 	 * The file zone may not be open anymore (e.g. the file was truncated to
1143 	 * its maximum size or it was fully written). For this case, we only
1144 	 * need to decrement the write open count.
1145 	 */
1146 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1147 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1148 		if (ret) {
1149 			__zonefs_io_error(inode, false);
1150 			/*
1151 			 * Leaving zones explicitly open may lead to a state
1152 			 * where most zones cannot be written (zone resources
1153 			 * exhausted). So take preventive action by remounting
1154 			 * read-only.
1155 			 */
1156 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1157 			    !(sb->s_flags & SB_RDONLY)) {
1158 				zonefs_warn(sb,
1159 					"closing zone at %llu failed %d\n",
1160 					zi->i_zsector, ret);
1161 				zonefs_warn(sb,
1162 					"remounting filesystem read-only\n");
1163 				sb->s_flags |= SB_RDONLY;
1164 			}
1165 			goto unlock;
1166 		}
1167 
1168 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1169 		zonefs_account_active(inode);
1170 	}
1171 
1172 	atomic_dec(&sbi->s_wro_seq_files);
1173 
1174 unlock:
1175 	mutex_unlock(&zi->i_truncate_mutex);
1176 }
1177 
1178 static int zonefs_file_release(struct inode *inode, struct file *file)
1179 {
1180 	/*
1181 	 * If we explicitly open a zone we must close it again as well, but the
1182 	 * zone management operation can fail (either due to an IO error or as
1183 	 * the zone has gone offline or read-only). Make sure we don't fail the
1184 	 * close(2) for user-space.
1185 	 */
1186 	if (zonefs_seq_file_need_wro(inode, file))
1187 		zonefs_seq_file_write_close(inode);
1188 
1189 	return 0;
1190 }
1191 
1192 static const struct file_operations zonefs_file_operations = {
1193 	.open		= zonefs_file_open,
1194 	.release	= zonefs_file_release,
1195 	.fsync		= zonefs_file_fsync,
1196 	.mmap		= zonefs_file_mmap,
1197 	.llseek		= zonefs_file_llseek,
1198 	.read_iter	= zonefs_file_read_iter,
1199 	.write_iter	= zonefs_file_write_iter,
1200 	.splice_read	= generic_file_splice_read,
1201 	.splice_write	= iter_file_splice_write,
1202 	.iopoll		= iocb_bio_iopoll,
1203 };
1204 
1205 static struct kmem_cache *zonefs_inode_cachep;
1206 
1207 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1208 {
1209 	struct zonefs_inode_info *zi;
1210 
1211 	zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1212 	if (!zi)
1213 		return NULL;
1214 
1215 	inode_init_once(&zi->i_vnode);
1216 	mutex_init(&zi->i_truncate_mutex);
1217 	zi->i_wr_refcnt = 0;
1218 	zi->i_flags = 0;
1219 
1220 	return &zi->i_vnode;
1221 }
1222 
1223 static void zonefs_free_inode(struct inode *inode)
1224 {
1225 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1226 }
1227 
1228 /*
1229  * File system stat.
1230  */
1231 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1232 {
1233 	struct super_block *sb = dentry->d_sb;
1234 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1235 	enum zonefs_ztype t;
1236 
1237 	buf->f_type = ZONEFS_MAGIC;
1238 	buf->f_bsize = sb->s_blocksize;
1239 	buf->f_namelen = ZONEFS_NAME_MAX;
1240 
1241 	spin_lock(&sbi->s_lock);
1242 
1243 	buf->f_blocks = sbi->s_blocks;
1244 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1245 		buf->f_bfree = 0;
1246 	else
1247 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1248 	buf->f_bavail = buf->f_bfree;
1249 
1250 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1251 		if (sbi->s_nr_files[t])
1252 			buf->f_files += sbi->s_nr_files[t] + 1;
1253 	}
1254 	buf->f_ffree = 0;
1255 
1256 	spin_unlock(&sbi->s_lock);
1257 
1258 	buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1259 
1260 	return 0;
1261 }
1262 
1263 enum {
1264 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1265 	Opt_explicit_open, Opt_err,
1266 };
1267 
1268 static const match_table_t tokens = {
1269 	{ Opt_errors_ro,	"errors=remount-ro"},
1270 	{ Opt_errors_zro,	"errors=zone-ro"},
1271 	{ Opt_errors_zol,	"errors=zone-offline"},
1272 	{ Opt_errors_repair,	"errors=repair"},
1273 	{ Opt_explicit_open,	"explicit-open" },
1274 	{ Opt_err,		NULL}
1275 };
1276 
1277 static int zonefs_parse_options(struct super_block *sb, char *options)
1278 {
1279 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1280 	substring_t args[MAX_OPT_ARGS];
1281 	char *p;
1282 
1283 	if (!options)
1284 		return 0;
1285 
1286 	while ((p = strsep(&options, ",")) != NULL) {
1287 		int token;
1288 
1289 		if (!*p)
1290 			continue;
1291 
1292 		token = match_token(p, tokens, args);
1293 		switch (token) {
1294 		case Opt_errors_ro:
1295 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1296 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1297 			break;
1298 		case Opt_errors_zro:
1299 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1300 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1301 			break;
1302 		case Opt_errors_zol:
1303 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1304 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1305 			break;
1306 		case Opt_errors_repair:
1307 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1308 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1309 			break;
1310 		case Opt_explicit_open:
1311 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1312 			break;
1313 		default:
1314 			return -EINVAL;
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1322 {
1323 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1324 
1325 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1326 		seq_puts(seq, ",errors=remount-ro");
1327 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1328 		seq_puts(seq, ",errors=zone-ro");
1329 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1330 		seq_puts(seq, ",errors=zone-offline");
1331 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1332 		seq_puts(seq, ",errors=repair");
1333 
1334 	return 0;
1335 }
1336 
1337 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1338 {
1339 	sync_filesystem(sb);
1340 
1341 	return zonefs_parse_options(sb, data);
1342 }
1343 
1344 static const struct super_operations zonefs_sops = {
1345 	.alloc_inode	= zonefs_alloc_inode,
1346 	.free_inode	= zonefs_free_inode,
1347 	.statfs		= zonefs_statfs,
1348 	.remount_fs	= zonefs_remount,
1349 	.show_options	= zonefs_show_options,
1350 };
1351 
1352 static const struct inode_operations zonefs_dir_inode_operations = {
1353 	.lookup		= simple_lookup,
1354 	.setattr	= zonefs_inode_setattr,
1355 };
1356 
1357 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1358 				  enum zonefs_ztype type)
1359 {
1360 	struct super_block *sb = parent->i_sb;
1361 
1362 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1363 	inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1364 	inode->i_op = &zonefs_dir_inode_operations;
1365 	inode->i_fop = &simple_dir_operations;
1366 	set_nlink(inode, 2);
1367 	inc_nlink(parent);
1368 }
1369 
1370 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1371 				  enum zonefs_ztype type)
1372 {
1373 	struct super_block *sb = inode->i_sb;
1374 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1375 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1376 	int ret;
1377 
1378 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1379 	inode->i_mode = S_IFREG | sbi->s_perm;
1380 
1381 	zi->i_ztype = type;
1382 	zi->i_zsector = zone->start;
1383 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1384 
1385 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1386 			       zone->capacity << SECTOR_SHIFT);
1387 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1388 
1389 	inode->i_uid = sbi->s_uid;
1390 	inode->i_gid = sbi->s_gid;
1391 	inode->i_size = zi->i_wpoffset;
1392 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1393 
1394 	inode->i_op = &zonefs_file_inode_operations;
1395 	inode->i_fop = &zonefs_file_operations;
1396 	inode->i_mapping->a_ops = &zonefs_file_aops;
1397 
1398 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1399 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1400 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1401 
1402 	mutex_lock(&zi->i_truncate_mutex);
1403 
1404 	/*
1405 	 * For sequential zones, make sure that any open zone is closed first
1406 	 * to ensure that the initial number of open zones is 0, in sync with
1407 	 * the open zone accounting done when the mount option
1408 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1409 	 */
1410 	if (type == ZONEFS_ZTYPE_SEQ &&
1411 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1412 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1413 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1414 		if (ret)
1415 			goto unlock;
1416 	}
1417 
1418 	zonefs_account_active(inode);
1419 
1420 unlock:
1421 	mutex_unlock(&zi->i_truncate_mutex);
1422 
1423 	return 0;
1424 }
1425 
1426 static struct dentry *zonefs_create_inode(struct dentry *parent,
1427 					const char *name, struct blk_zone *zone,
1428 					enum zonefs_ztype type)
1429 {
1430 	struct inode *dir = d_inode(parent);
1431 	struct dentry *dentry;
1432 	struct inode *inode;
1433 	int ret;
1434 
1435 	dentry = d_alloc_name(parent, name);
1436 	if (!dentry)
1437 		return NULL;
1438 
1439 	inode = new_inode(parent->d_sb);
1440 	if (!inode)
1441 		goto dput;
1442 
1443 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1444 	if (zone) {
1445 		ret = zonefs_init_file_inode(inode, zone, type);
1446 		if (ret) {
1447 			iput(inode);
1448 			goto dput;
1449 		}
1450 	} else {
1451 		zonefs_init_dir_inode(dir, inode, type);
1452 	}
1453 
1454 	d_add(dentry, inode);
1455 	dir->i_size++;
1456 
1457 	return dentry;
1458 
1459 dput:
1460 	dput(dentry);
1461 
1462 	return NULL;
1463 }
1464 
1465 struct zonefs_zone_data {
1466 	struct super_block	*sb;
1467 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1468 	struct blk_zone		*zones;
1469 };
1470 
1471 /*
1472  * Create a zone group and populate it with zone files.
1473  */
1474 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1475 				enum zonefs_ztype type)
1476 {
1477 	struct super_block *sb = zd->sb;
1478 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1479 	struct blk_zone *zone, *next, *end;
1480 	const char *zgroup_name;
1481 	char *file_name;
1482 	struct dentry *dir;
1483 	unsigned int n = 0;
1484 	int ret;
1485 
1486 	/* If the group is empty, there is nothing to do */
1487 	if (!zd->nr_zones[type])
1488 		return 0;
1489 
1490 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1491 	if (!file_name)
1492 		return -ENOMEM;
1493 
1494 	if (type == ZONEFS_ZTYPE_CNV)
1495 		zgroup_name = "cnv";
1496 	else
1497 		zgroup_name = "seq";
1498 
1499 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1500 	if (!dir) {
1501 		ret = -ENOMEM;
1502 		goto free;
1503 	}
1504 
1505 	/*
1506 	 * The first zone contains the super block: skip it.
1507 	 */
1508 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1509 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1510 
1511 		next = zone + 1;
1512 		if (zonefs_zone_type(zone) != type)
1513 			continue;
1514 
1515 		/*
1516 		 * For conventional zones, contiguous zones can be aggregated
1517 		 * together to form larger files. Note that this overwrites the
1518 		 * length of the first zone of the set of contiguous zones
1519 		 * aggregated together. If one offline or read-only zone is
1520 		 * found, assume that all zones aggregated have the same
1521 		 * condition.
1522 		 */
1523 		if (type == ZONEFS_ZTYPE_CNV &&
1524 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1525 			for (; next < end; next++) {
1526 				if (zonefs_zone_type(next) != type)
1527 					break;
1528 				zone->len += next->len;
1529 				zone->capacity += next->capacity;
1530 				if (next->cond == BLK_ZONE_COND_READONLY &&
1531 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1532 					zone->cond = BLK_ZONE_COND_READONLY;
1533 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1534 					zone->cond = BLK_ZONE_COND_OFFLINE;
1535 			}
1536 			if (zone->capacity != zone->len) {
1537 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1538 				ret = -EINVAL;
1539 				goto free;
1540 			}
1541 		}
1542 
1543 		/*
1544 		 * Use the file number within its group as file name.
1545 		 */
1546 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1547 		if (!zonefs_create_inode(dir, file_name, zone, type)) {
1548 			ret = -ENOMEM;
1549 			goto free;
1550 		}
1551 
1552 		n++;
1553 	}
1554 
1555 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1556 		    zgroup_name, n, n > 1 ? "s" : "");
1557 
1558 	sbi->s_nr_files[type] = n;
1559 	ret = 0;
1560 
1561 free:
1562 	kfree(file_name);
1563 
1564 	return ret;
1565 }
1566 
1567 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1568 				   void *data)
1569 {
1570 	struct zonefs_zone_data *zd = data;
1571 
1572 	/*
1573 	 * Count the number of usable zones: the first zone at index 0 contains
1574 	 * the super block and is ignored.
1575 	 */
1576 	switch (zone->type) {
1577 	case BLK_ZONE_TYPE_CONVENTIONAL:
1578 		zone->wp = zone->start + zone->len;
1579 		if (idx)
1580 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1581 		break;
1582 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1583 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1584 		if (idx)
1585 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1586 		break;
1587 	default:
1588 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1589 			   zone->type);
1590 		return -EIO;
1591 	}
1592 
1593 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1594 
1595 	return 0;
1596 }
1597 
1598 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1599 {
1600 	struct block_device *bdev = zd->sb->s_bdev;
1601 	int ret;
1602 
1603 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1604 			     sizeof(struct blk_zone), GFP_KERNEL);
1605 	if (!zd->zones)
1606 		return -ENOMEM;
1607 
1608 	/* Get zones information from the device */
1609 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1610 				  zonefs_get_zone_info_cb, zd);
1611 	if (ret < 0) {
1612 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1613 		return ret;
1614 	}
1615 
1616 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1617 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1618 			   ret, blkdev_nr_zones(bdev->bd_disk));
1619 		return -EIO;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1626 {
1627 	kvfree(zd->zones);
1628 }
1629 
1630 /*
1631  * Read super block information from the device.
1632  */
1633 static int zonefs_read_super(struct super_block *sb)
1634 {
1635 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1636 	struct zonefs_super *super;
1637 	u32 crc, stored_crc;
1638 	struct page *page;
1639 	struct bio_vec bio_vec;
1640 	struct bio bio;
1641 	int ret;
1642 
1643 	page = alloc_page(GFP_KERNEL);
1644 	if (!page)
1645 		return -ENOMEM;
1646 
1647 	bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1648 	bio.bi_iter.bi_sector = 0;
1649 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1650 
1651 	ret = submit_bio_wait(&bio);
1652 	if (ret)
1653 		goto free_page;
1654 
1655 	super = kmap(page);
1656 
1657 	ret = -EINVAL;
1658 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1659 		goto unmap;
1660 
1661 	stored_crc = le32_to_cpu(super->s_crc);
1662 	super->s_crc = 0;
1663 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1664 	if (crc != stored_crc) {
1665 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1666 			   crc, stored_crc);
1667 		goto unmap;
1668 	}
1669 
1670 	sbi->s_features = le64_to_cpu(super->s_features);
1671 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1672 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1673 			   sbi->s_features);
1674 		goto unmap;
1675 	}
1676 
1677 	if (sbi->s_features & ZONEFS_F_UID) {
1678 		sbi->s_uid = make_kuid(current_user_ns(),
1679 				       le32_to_cpu(super->s_uid));
1680 		if (!uid_valid(sbi->s_uid)) {
1681 			zonefs_err(sb, "Invalid UID feature\n");
1682 			goto unmap;
1683 		}
1684 	}
1685 
1686 	if (sbi->s_features & ZONEFS_F_GID) {
1687 		sbi->s_gid = make_kgid(current_user_ns(),
1688 				       le32_to_cpu(super->s_gid));
1689 		if (!gid_valid(sbi->s_gid)) {
1690 			zonefs_err(sb, "Invalid GID feature\n");
1691 			goto unmap;
1692 		}
1693 	}
1694 
1695 	if (sbi->s_features & ZONEFS_F_PERM)
1696 		sbi->s_perm = le32_to_cpu(super->s_perm);
1697 
1698 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1699 		zonefs_err(sb, "Reserved area is being used\n");
1700 		goto unmap;
1701 	}
1702 
1703 	import_uuid(&sbi->s_uuid, super->s_uuid);
1704 	ret = 0;
1705 
1706 unmap:
1707 	kunmap(page);
1708 free_page:
1709 	__free_page(page);
1710 
1711 	return ret;
1712 }
1713 
1714 /*
1715  * Check that the device is zoned. If it is, get the list of zones and create
1716  * sub-directories and files according to the device zone configuration and
1717  * format options.
1718  */
1719 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1720 {
1721 	struct zonefs_zone_data zd;
1722 	struct zonefs_sb_info *sbi;
1723 	struct inode *inode;
1724 	enum zonefs_ztype t;
1725 	int ret;
1726 
1727 	if (!bdev_is_zoned(sb->s_bdev)) {
1728 		zonefs_err(sb, "Not a zoned block device\n");
1729 		return -EINVAL;
1730 	}
1731 
1732 	/*
1733 	 * Initialize super block information: the maximum file size is updated
1734 	 * when the zone files are created so that the format option
1735 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1736 	 * beyond the zone size is taken into account.
1737 	 */
1738 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1739 	if (!sbi)
1740 		return -ENOMEM;
1741 
1742 	spin_lock_init(&sbi->s_lock);
1743 	sb->s_fs_info = sbi;
1744 	sb->s_magic = ZONEFS_MAGIC;
1745 	sb->s_maxbytes = 0;
1746 	sb->s_op = &zonefs_sops;
1747 	sb->s_time_gran	= 1;
1748 
1749 	/*
1750 	 * The block size is set to the device zone write granularity to ensure
1751 	 * that write operations are always aligned according to the device
1752 	 * interface constraints.
1753 	 */
1754 	sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1755 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1756 	sbi->s_uid = GLOBAL_ROOT_UID;
1757 	sbi->s_gid = GLOBAL_ROOT_GID;
1758 	sbi->s_perm = 0640;
1759 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1760 
1761 	atomic_set(&sbi->s_wro_seq_files, 0);
1762 	sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1763 	if (!sbi->s_max_wro_seq_files &&
1764 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1765 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1766 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1767 	}
1768 
1769 	atomic_set(&sbi->s_active_seq_files, 0);
1770 	sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1771 
1772 	ret = zonefs_read_super(sb);
1773 	if (ret)
1774 		return ret;
1775 
1776 	ret = zonefs_parse_options(sb, data);
1777 	if (ret)
1778 		return ret;
1779 
1780 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1781 	zd.sb = sb;
1782 	ret = zonefs_get_zone_info(&zd);
1783 	if (ret)
1784 		goto cleanup;
1785 
1786 	ret = zonefs_sysfs_register(sb);
1787 	if (ret)
1788 		goto cleanup;
1789 
1790 	zonefs_info(sb, "Mounting %u zones",
1791 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1792 
1793 	/* Create root directory inode */
1794 	ret = -ENOMEM;
1795 	inode = new_inode(sb);
1796 	if (!inode)
1797 		goto cleanup;
1798 
1799 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1800 	inode->i_mode = S_IFDIR | 0555;
1801 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1802 	inode->i_op = &zonefs_dir_inode_operations;
1803 	inode->i_fop = &simple_dir_operations;
1804 	set_nlink(inode, 2);
1805 
1806 	sb->s_root = d_make_root(inode);
1807 	if (!sb->s_root)
1808 		goto cleanup;
1809 
1810 	/* Create and populate files in zone groups directories */
1811 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1812 		ret = zonefs_create_zgroup(&zd, t);
1813 		if (ret)
1814 			break;
1815 	}
1816 
1817 cleanup:
1818 	zonefs_cleanup_zone_info(&zd);
1819 
1820 	return ret;
1821 }
1822 
1823 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1824 				   int flags, const char *dev_name, void *data)
1825 {
1826 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1827 }
1828 
1829 static void zonefs_kill_super(struct super_block *sb)
1830 {
1831 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1832 
1833 	if (sb->s_root)
1834 		d_genocide(sb->s_root);
1835 
1836 	zonefs_sysfs_unregister(sb);
1837 	kill_block_super(sb);
1838 	kfree(sbi);
1839 }
1840 
1841 /*
1842  * File system definition and registration.
1843  */
1844 static struct file_system_type zonefs_type = {
1845 	.owner		= THIS_MODULE,
1846 	.name		= "zonefs",
1847 	.mount		= zonefs_mount,
1848 	.kill_sb	= zonefs_kill_super,
1849 	.fs_flags	= FS_REQUIRES_DEV,
1850 };
1851 
1852 static int __init zonefs_init_inodecache(void)
1853 {
1854 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1855 			sizeof(struct zonefs_inode_info), 0,
1856 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1857 			NULL);
1858 	if (zonefs_inode_cachep == NULL)
1859 		return -ENOMEM;
1860 	return 0;
1861 }
1862 
1863 static void zonefs_destroy_inodecache(void)
1864 {
1865 	/*
1866 	 * Make sure all delayed rcu free inodes are flushed before we
1867 	 * destroy the inode cache.
1868 	 */
1869 	rcu_barrier();
1870 	kmem_cache_destroy(zonefs_inode_cachep);
1871 }
1872 
1873 static int __init zonefs_init(void)
1874 {
1875 	int ret;
1876 
1877 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1878 
1879 	ret = zonefs_init_inodecache();
1880 	if (ret)
1881 		return ret;
1882 
1883 	ret = register_filesystem(&zonefs_type);
1884 	if (ret)
1885 		goto destroy_inodecache;
1886 
1887 	ret = zonefs_sysfs_init();
1888 	if (ret)
1889 		goto unregister_fs;
1890 
1891 	return 0;
1892 
1893 unregister_fs:
1894 	unregister_filesystem(&zonefs_type);
1895 destroy_inodecache:
1896 	zonefs_destroy_inodecache();
1897 
1898 	return ret;
1899 }
1900 
1901 static void __exit zonefs_exit(void)
1902 {
1903 	zonefs_sysfs_exit();
1904 	zonefs_destroy_inodecache();
1905 	unregister_filesystem(&zonefs_type);
1906 }
1907 
1908 MODULE_AUTHOR("Damien Le Moal");
1909 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1910 MODULE_LICENSE("GPL");
1911 MODULE_ALIAS_FS("zonefs");
1912 module_init(zonefs_init);
1913 module_exit(zonefs_exit);
1914