1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2022 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/iomap.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/blkdev.h> 13 #include <linux/statfs.h> 14 #include <linux/writeback.h> 15 #include <linux/quotaops.h> 16 #include <linux/seq_file.h> 17 #include <linux/parser.h> 18 #include <linux/uio.h> 19 #include <linux/mman.h> 20 #include <linux/sched/mm.h> 21 #include <linux/task_io_accounting_ops.h> 22 23 #include "zonefs.h" 24 25 #include "trace.h" 26 27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 28 loff_t length, unsigned int flags, 29 struct iomap *iomap, struct iomap *srcmap) 30 { 31 struct zonefs_inode_info *zi = ZONEFS_I(inode); 32 struct zonefs_zone *z = zonefs_inode_zone(inode); 33 struct super_block *sb = inode->i_sb; 34 loff_t isize; 35 36 /* 37 * All blocks are always mapped below EOF. If reading past EOF, 38 * act as if there is a hole up to the file maximum size. 39 */ 40 mutex_lock(&zi->i_truncate_mutex); 41 iomap->bdev = inode->i_sb->s_bdev; 42 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 43 isize = i_size_read(inode); 44 if (iomap->offset >= isize) { 45 iomap->type = IOMAP_HOLE; 46 iomap->addr = IOMAP_NULL_ADDR; 47 iomap->length = length; 48 } else { 49 iomap->type = IOMAP_MAPPED; 50 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 51 iomap->length = isize - iomap->offset; 52 } 53 mutex_unlock(&zi->i_truncate_mutex); 54 55 trace_zonefs_iomap_begin(inode, iomap); 56 57 return 0; 58 } 59 60 static const struct iomap_ops zonefs_read_iomap_ops = { 61 .iomap_begin = zonefs_read_iomap_begin, 62 }; 63 64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 65 loff_t length, unsigned int flags, 66 struct iomap *iomap, struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct zonefs_zone *z = zonefs_inode_zone(inode); 70 struct super_block *sb = inode->i_sb; 71 loff_t isize; 72 73 /* All write I/Os should always be within the file maximum size */ 74 if (WARN_ON_ONCE(offset + length > z->z_capacity)) 75 return -EIO; 76 77 /* 78 * Sequential zones can only accept direct writes. This is already 79 * checked when writes are issued, so warn if we see a page writeback 80 * operation. 81 */ 82 if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 iomap->bdev = inode->i_sb->s_bdev; 92 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 93 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 94 isize = i_size_read(inode); 95 if (iomap->offset >= isize) { 96 iomap->type = IOMAP_UNWRITTEN; 97 iomap->length = z->z_capacity - iomap->offset; 98 } else { 99 iomap->type = IOMAP_MAPPED; 100 iomap->length = isize - iomap->offset; 101 } 102 mutex_unlock(&zi->i_truncate_mutex); 103 104 trace_zonefs_iomap_begin(inode, iomap); 105 106 return 0; 107 } 108 109 static const struct iomap_ops zonefs_write_iomap_ops = { 110 .iomap_begin = zonefs_write_iomap_begin, 111 }; 112 113 static int zonefs_read_folio(struct file *unused, struct folio *folio) 114 { 115 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 116 } 117 118 static void zonefs_readahead(struct readahead_control *rac) 119 { 120 iomap_readahead(rac, &zonefs_read_iomap_ops); 121 } 122 123 /* 124 * Map blocks for page writeback. This is used only on conventional zone files, 125 * which implies that the page range can only be within the fixed inode size. 126 */ 127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 128 struct inode *inode, loff_t offset) 129 { 130 struct zonefs_zone *z = zonefs_inode_zone(inode); 131 132 if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) 133 return -EIO; 134 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 135 return -EIO; 136 137 /* If the mapping is already OK, nothing needs to be done */ 138 if (offset >= wpc->iomap.offset && 139 offset < wpc->iomap.offset + wpc->iomap.length) 140 return 0; 141 142 return zonefs_write_iomap_begin(inode, offset, 143 z->z_capacity - offset, 144 IOMAP_WRITE, &wpc->iomap, NULL); 145 } 146 147 static const struct iomap_writeback_ops zonefs_writeback_ops = { 148 .map_blocks = zonefs_write_map_blocks, 149 }; 150 151 static int zonefs_writepages(struct address_space *mapping, 152 struct writeback_control *wbc) 153 { 154 struct iomap_writepage_ctx wpc = { }; 155 156 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 157 } 158 159 static int zonefs_swap_activate(struct swap_info_struct *sis, 160 struct file *swap_file, sector_t *span) 161 { 162 struct inode *inode = file_inode(swap_file); 163 164 if (zonefs_inode_is_seq(inode)) { 165 zonefs_err(inode->i_sb, 166 "swap file: not a conventional zone file\n"); 167 return -EINVAL; 168 } 169 170 return iomap_swapfile_activate(sis, swap_file, span, 171 &zonefs_read_iomap_ops); 172 } 173 174 const struct address_space_operations zonefs_file_aops = { 175 .read_folio = zonefs_read_folio, 176 .readahead = zonefs_readahead, 177 .writepages = zonefs_writepages, 178 .dirty_folio = filemap_dirty_folio, 179 .release_folio = iomap_release_folio, 180 .invalidate_folio = iomap_invalidate_folio, 181 .migrate_folio = filemap_migrate_folio, 182 .is_partially_uptodate = iomap_is_partially_uptodate, 183 .error_remove_page = generic_error_remove_page, 184 .swap_activate = zonefs_swap_activate, 185 }; 186 187 int zonefs_file_truncate(struct inode *inode, loff_t isize) 188 { 189 struct zonefs_inode_info *zi = ZONEFS_I(inode); 190 struct zonefs_zone *z = zonefs_inode_zone(inode); 191 loff_t old_isize; 192 enum req_op op; 193 int ret = 0; 194 195 /* 196 * Only sequential zone files can be truncated and truncation is allowed 197 * only down to a 0 size, which is equivalent to a zone reset, and to 198 * the maximum file size, which is equivalent to a zone finish. 199 */ 200 if (!zonefs_zone_is_seq(z)) 201 return -EPERM; 202 203 if (!isize) 204 op = REQ_OP_ZONE_RESET; 205 else if (isize == z->z_capacity) 206 op = REQ_OP_ZONE_FINISH; 207 else 208 return -EPERM; 209 210 inode_dio_wait(inode); 211 212 /* Serialize against page faults */ 213 filemap_invalidate_lock(inode->i_mapping); 214 215 /* Serialize against zonefs_iomap_begin() */ 216 mutex_lock(&zi->i_truncate_mutex); 217 218 old_isize = i_size_read(inode); 219 if (isize == old_isize) 220 goto unlock; 221 222 ret = zonefs_inode_zone_mgmt(inode, op); 223 if (ret) 224 goto unlock; 225 226 /* 227 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 228 * take care of open zones. 229 */ 230 if (z->z_flags & ZONEFS_ZONE_OPEN) { 231 /* 232 * Truncating a zone to EMPTY or FULL is the equivalent of 233 * closing the zone. For a truncation to 0, we need to 234 * re-open the zone to ensure new writes can be processed. 235 * For a truncation to the maximum file size, the zone is 236 * closed and writes cannot be accepted anymore, so clear 237 * the open flag. 238 */ 239 if (!isize) 240 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 241 else 242 z->z_flags &= ~ZONEFS_ZONE_OPEN; 243 } 244 245 zonefs_update_stats(inode, isize); 246 truncate_setsize(inode, isize); 247 z->z_wpoffset = isize; 248 zonefs_inode_account_active(inode); 249 250 unlock: 251 mutex_unlock(&zi->i_truncate_mutex); 252 filemap_invalidate_unlock(inode->i_mapping); 253 254 return ret; 255 } 256 257 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 258 int datasync) 259 { 260 struct inode *inode = file_inode(file); 261 int ret = 0; 262 263 if (unlikely(IS_IMMUTABLE(inode))) 264 return -EPERM; 265 266 /* 267 * Since only direct writes are allowed in sequential files, page cache 268 * flush is needed only for conventional zone files. 269 */ 270 if (zonefs_inode_is_cnv(inode)) 271 ret = file_write_and_wait_range(file, start, end); 272 if (!ret) 273 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 274 275 if (ret) 276 zonefs_io_error(inode, true); 277 278 return ret; 279 } 280 281 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 282 { 283 struct inode *inode = file_inode(vmf->vma->vm_file); 284 vm_fault_t ret; 285 286 if (unlikely(IS_IMMUTABLE(inode))) 287 return VM_FAULT_SIGBUS; 288 289 /* 290 * Sanity check: only conventional zone files can have shared 291 * writeable mappings. 292 */ 293 if (zonefs_inode_is_seq(inode)) 294 return VM_FAULT_NOPAGE; 295 296 sb_start_pagefault(inode->i_sb); 297 file_update_time(vmf->vma->vm_file); 298 299 /* Serialize against truncates */ 300 filemap_invalidate_lock_shared(inode->i_mapping); 301 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 302 filemap_invalidate_unlock_shared(inode->i_mapping); 303 304 sb_end_pagefault(inode->i_sb); 305 return ret; 306 } 307 308 static const struct vm_operations_struct zonefs_file_vm_ops = { 309 .fault = filemap_fault, 310 .map_pages = filemap_map_pages, 311 .page_mkwrite = zonefs_filemap_page_mkwrite, 312 }; 313 314 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 315 { 316 /* 317 * Conventional zones accept random writes, so their files can support 318 * shared writable mappings. For sequential zone files, only read 319 * mappings are possible since there are no guarantees for write 320 * ordering between msync() and page cache writeback. 321 */ 322 if (zonefs_inode_is_seq(file_inode(file)) && 323 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 324 return -EINVAL; 325 326 file_accessed(file); 327 vma->vm_ops = &zonefs_file_vm_ops; 328 329 return 0; 330 } 331 332 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 333 { 334 loff_t isize = i_size_read(file_inode(file)); 335 336 /* 337 * Seeks are limited to below the zone size for conventional zones 338 * and below the zone write pointer for sequential zones. In both 339 * cases, this limit is the inode size. 340 */ 341 return generic_file_llseek_size(file, offset, whence, isize, isize); 342 } 343 344 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 345 int error, unsigned int flags) 346 { 347 struct inode *inode = file_inode(iocb->ki_filp); 348 struct zonefs_inode_info *zi = ZONEFS_I(inode); 349 350 if (error) { 351 zonefs_io_error(inode, true); 352 return error; 353 } 354 355 if (size && zonefs_inode_is_seq(inode)) { 356 /* 357 * Note that we may be seeing completions out of order, 358 * but that is not a problem since a write completed 359 * successfully necessarily means that all preceding writes 360 * were also successful. So we can safely increase the inode 361 * size to the write end location. 362 */ 363 mutex_lock(&zi->i_truncate_mutex); 364 if (i_size_read(inode) < iocb->ki_pos + size) { 365 zonefs_update_stats(inode, iocb->ki_pos + size); 366 zonefs_i_size_write(inode, iocb->ki_pos + size); 367 } 368 mutex_unlock(&zi->i_truncate_mutex); 369 } 370 371 return 0; 372 } 373 374 static const struct iomap_dio_ops zonefs_write_dio_ops = { 375 .end_io = zonefs_file_write_dio_end_io, 376 }; 377 378 /* 379 * Do not exceed the LFS limits nor the file zone size. If pos is under the 380 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 381 */ 382 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 383 loff_t count) 384 { 385 struct inode *inode = file_inode(file); 386 struct zonefs_zone *z = zonefs_inode_zone(inode); 387 loff_t limit = rlimit(RLIMIT_FSIZE); 388 loff_t max_size = z->z_capacity; 389 390 if (limit != RLIM_INFINITY) { 391 if (pos >= limit) { 392 send_sig(SIGXFSZ, current, 0); 393 return -EFBIG; 394 } 395 count = min(count, limit - pos); 396 } 397 398 if (!(file->f_flags & O_LARGEFILE)) 399 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 400 401 if (unlikely(pos >= max_size)) 402 return -EFBIG; 403 404 return min(count, max_size - pos); 405 } 406 407 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 408 { 409 struct file *file = iocb->ki_filp; 410 struct inode *inode = file_inode(file); 411 struct zonefs_inode_info *zi = ZONEFS_I(inode); 412 struct zonefs_zone *z = zonefs_inode_zone(inode); 413 loff_t count; 414 415 if (IS_SWAPFILE(inode)) 416 return -ETXTBSY; 417 418 if (!iov_iter_count(from)) 419 return 0; 420 421 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 422 return -EINVAL; 423 424 if (iocb->ki_flags & IOCB_APPEND) { 425 if (zonefs_zone_is_cnv(z)) 426 return -EINVAL; 427 mutex_lock(&zi->i_truncate_mutex); 428 iocb->ki_pos = z->z_wpoffset; 429 mutex_unlock(&zi->i_truncate_mutex); 430 } 431 432 count = zonefs_write_check_limits(file, iocb->ki_pos, 433 iov_iter_count(from)); 434 if (count < 0) 435 return count; 436 437 iov_iter_truncate(from, count); 438 return iov_iter_count(from); 439 } 440 441 /* 442 * Handle direct writes. For sequential zone files, this is the only possible 443 * write path. For these files, check that the user is issuing writes 444 * sequentially from the end of the file. This code assumes that the block layer 445 * delivers write requests to the device in sequential order. This is always the 446 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 447 * elevator feature is being used (e.g. mq-deadline). The block layer always 448 * automatically select such an elevator for zoned block devices during the 449 * device initialization. 450 */ 451 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 452 { 453 struct inode *inode = file_inode(iocb->ki_filp); 454 struct zonefs_inode_info *zi = ZONEFS_I(inode); 455 struct zonefs_zone *z = zonefs_inode_zone(inode); 456 struct super_block *sb = inode->i_sb; 457 ssize_t ret, count; 458 459 /* 460 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 461 * as this can cause write reordering (e.g. the first aio gets EAGAIN 462 * on the inode lock but the second goes through but is now unaligned). 463 */ 464 if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) && 465 (iocb->ki_flags & IOCB_NOWAIT)) 466 return -EOPNOTSUPP; 467 468 if (iocb->ki_flags & IOCB_NOWAIT) { 469 if (!inode_trylock(inode)) 470 return -EAGAIN; 471 } else { 472 inode_lock(inode); 473 } 474 475 count = zonefs_write_checks(iocb, from); 476 if (count <= 0) { 477 ret = count; 478 goto inode_unlock; 479 } 480 481 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 482 ret = -EINVAL; 483 goto inode_unlock; 484 } 485 486 /* Enforce sequential writes (append only) in sequential zones */ 487 if (zonefs_zone_is_seq(z)) { 488 mutex_lock(&zi->i_truncate_mutex); 489 if (iocb->ki_pos != z->z_wpoffset) { 490 mutex_unlock(&zi->i_truncate_mutex); 491 ret = -EINVAL; 492 goto inode_unlock; 493 } 494 mutex_unlock(&zi->i_truncate_mutex); 495 } 496 497 /* 498 * iomap_dio_rw() may return ENOTBLK if there was an issue with 499 * page invalidation. Overwrite that error code with EBUSY so that 500 * the user can make sense of the error. 501 */ 502 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 503 &zonefs_write_dio_ops, 0, NULL, 0); 504 if (ret == -ENOTBLK) 505 ret = -EBUSY; 506 507 if (zonefs_zone_is_seq(z) && 508 (ret > 0 || ret == -EIOCBQUEUED)) { 509 if (ret > 0) 510 count = ret; 511 512 /* 513 * Update the zone write pointer offset assuming the write 514 * operation succeeded. If it did not, the error recovery path 515 * will correct it. Also do active seq file accounting. 516 */ 517 mutex_lock(&zi->i_truncate_mutex); 518 z->z_wpoffset += count; 519 zonefs_inode_account_active(inode); 520 mutex_unlock(&zi->i_truncate_mutex); 521 } 522 523 inode_unlock: 524 inode_unlock(inode); 525 526 return ret; 527 } 528 529 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 530 struct iov_iter *from) 531 { 532 struct inode *inode = file_inode(iocb->ki_filp); 533 ssize_t ret; 534 535 /* 536 * Direct IO writes are mandatory for sequential zone files so that the 537 * write IO issuing order is preserved. 538 */ 539 if (zonefs_inode_is_seq(inode)) 540 return -EIO; 541 542 if (iocb->ki_flags & IOCB_NOWAIT) { 543 if (!inode_trylock(inode)) 544 return -EAGAIN; 545 } else { 546 inode_lock(inode); 547 } 548 549 ret = zonefs_write_checks(iocb, from); 550 if (ret <= 0) 551 goto inode_unlock; 552 553 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 554 if (ret == -EIO) 555 zonefs_io_error(inode, true); 556 557 inode_unlock: 558 inode_unlock(inode); 559 if (ret > 0) 560 ret = generic_write_sync(iocb, ret); 561 562 return ret; 563 } 564 565 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 566 { 567 struct inode *inode = file_inode(iocb->ki_filp); 568 struct zonefs_zone *z = zonefs_inode_zone(inode); 569 570 if (unlikely(IS_IMMUTABLE(inode))) 571 return -EPERM; 572 573 if (sb_rdonly(inode->i_sb)) 574 return -EROFS; 575 576 /* Write operations beyond the zone capacity are not allowed */ 577 if (iocb->ki_pos >= z->z_capacity) 578 return -EFBIG; 579 580 if (iocb->ki_flags & IOCB_DIRECT) { 581 ssize_t ret = zonefs_file_dio_write(iocb, from); 582 583 if (ret != -ENOTBLK) 584 return ret; 585 } 586 587 return zonefs_file_buffered_write(iocb, from); 588 } 589 590 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 591 int error, unsigned int flags) 592 { 593 if (error) { 594 zonefs_io_error(file_inode(iocb->ki_filp), false); 595 return error; 596 } 597 598 return 0; 599 } 600 601 static const struct iomap_dio_ops zonefs_read_dio_ops = { 602 .end_io = zonefs_file_read_dio_end_io, 603 }; 604 605 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 606 { 607 struct inode *inode = file_inode(iocb->ki_filp); 608 struct zonefs_inode_info *zi = ZONEFS_I(inode); 609 struct zonefs_zone *z = zonefs_inode_zone(inode); 610 struct super_block *sb = inode->i_sb; 611 loff_t isize; 612 ssize_t ret; 613 614 /* Offline zones cannot be read */ 615 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 616 return -EPERM; 617 618 if (iocb->ki_pos >= z->z_capacity) 619 return 0; 620 621 if (iocb->ki_flags & IOCB_NOWAIT) { 622 if (!inode_trylock_shared(inode)) 623 return -EAGAIN; 624 } else { 625 inode_lock_shared(inode); 626 } 627 628 /* Limit read operations to written data */ 629 mutex_lock(&zi->i_truncate_mutex); 630 isize = i_size_read(inode); 631 if (iocb->ki_pos >= isize) { 632 mutex_unlock(&zi->i_truncate_mutex); 633 ret = 0; 634 goto inode_unlock; 635 } 636 iov_iter_truncate(to, isize - iocb->ki_pos); 637 mutex_unlock(&zi->i_truncate_mutex); 638 639 if (iocb->ki_flags & IOCB_DIRECT) { 640 size_t count = iov_iter_count(to); 641 642 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 643 ret = -EINVAL; 644 goto inode_unlock; 645 } 646 file_accessed(iocb->ki_filp); 647 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 648 &zonefs_read_dio_ops, 0, NULL, 0); 649 } else { 650 ret = generic_file_read_iter(iocb, to); 651 if (ret == -EIO) 652 zonefs_io_error(inode, false); 653 } 654 655 inode_unlock: 656 inode_unlock_shared(inode); 657 658 return ret; 659 } 660 661 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos, 662 struct pipe_inode_info *pipe, 663 size_t len, unsigned int flags) 664 { 665 struct inode *inode = file_inode(in); 666 struct zonefs_inode_info *zi = ZONEFS_I(inode); 667 struct zonefs_zone *z = zonefs_inode_zone(inode); 668 loff_t isize; 669 ssize_t ret = 0; 670 671 /* Offline zones cannot be read */ 672 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 673 return -EPERM; 674 675 if (*ppos >= z->z_capacity) 676 return 0; 677 678 inode_lock_shared(inode); 679 680 /* Limit read operations to written data */ 681 mutex_lock(&zi->i_truncate_mutex); 682 isize = i_size_read(inode); 683 if (*ppos >= isize) 684 len = 0; 685 else 686 len = min_t(loff_t, len, isize - *ppos); 687 mutex_unlock(&zi->i_truncate_mutex); 688 689 if (len > 0) { 690 ret = filemap_splice_read(in, ppos, pipe, len, flags); 691 if (ret == -EIO) 692 zonefs_io_error(inode, false); 693 } 694 695 inode_unlock_shared(inode); 696 return ret; 697 } 698 699 /* 700 * Write open accounting is done only for sequential files. 701 */ 702 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 703 struct file *file) 704 { 705 if (zonefs_inode_is_cnv(inode)) 706 return false; 707 708 if (!(file->f_mode & FMODE_WRITE)) 709 return false; 710 711 return true; 712 } 713 714 static int zonefs_seq_file_write_open(struct inode *inode) 715 { 716 struct zonefs_inode_info *zi = ZONEFS_I(inode); 717 struct zonefs_zone *z = zonefs_inode_zone(inode); 718 int ret = 0; 719 720 mutex_lock(&zi->i_truncate_mutex); 721 722 if (!zi->i_wr_refcnt) { 723 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 724 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 725 726 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 727 728 if (sbi->s_max_wro_seq_files 729 && wro > sbi->s_max_wro_seq_files) { 730 atomic_dec(&sbi->s_wro_seq_files); 731 ret = -EBUSY; 732 goto unlock; 733 } 734 735 if (i_size_read(inode) < z->z_capacity) { 736 ret = zonefs_inode_zone_mgmt(inode, 737 REQ_OP_ZONE_OPEN); 738 if (ret) { 739 atomic_dec(&sbi->s_wro_seq_files); 740 goto unlock; 741 } 742 z->z_flags |= ZONEFS_ZONE_OPEN; 743 zonefs_inode_account_active(inode); 744 } 745 } 746 } 747 748 zi->i_wr_refcnt++; 749 750 unlock: 751 mutex_unlock(&zi->i_truncate_mutex); 752 753 return ret; 754 } 755 756 static int zonefs_file_open(struct inode *inode, struct file *file) 757 { 758 int ret; 759 760 file->f_mode |= FMODE_CAN_ODIRECT; 761 ret = generic_file_open(inode, file); 762 if (ret) 763 return ret; 764 765 if (zonefs_seq_file_need_wro(inode, file)) 766 return zonefs_seq_file_write_open(inode); 767 768 return 0; 769 } 770 771 static void zonefs_seq_file_write_close(struct inode *inode) 772 { 773 struct zonefs_inode_info *zi = ZONEFS_I(inode); 774 struct zonefs_zone *z = zonefs_inode_zone(inode); 775 struct super_block *sb = inode->i_sb; 776 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 777 int ret = 0; 778 779 mutex_lock(&zi->i_truncate_mutex); 780 781 zi->i_wr_refcnt--; 782 if (zi->i_wr_refcnt) 783 goto unlock; 784 785 /* 786 * The file zone may not be open anymore (e.g. the file was truncated to 787 * its maximum size or it was fully written). For this case, we only 788 * need to decrement the write open count. 789 */ 790 if (z->z_flags & ZONEFS_ZONE_OPEN) { 791 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 792 if (ret) { 793 __zonefs_io_error(inode, false); 794 /* 795 * Leaving zones explicitly open may lead to a state 796 * where most zones cannot be written (zone resources 797 * exhausted). So take preventive action by remounting 798 * read-only. 799 */ 800 if (z->z_flags & ZONEFS_ZONE_OPEN && 801 !(sb->s_flags & SB_RDONLY)) { 802 zonefs_warn(sb, 803 "closing zone at %llu failed %d\n", 804 z->z_sector, ret); 805 zonefs_warn(sb, 806 "remounting filesystem read-only\n"); 807 sb->s_flags |= SB_RDONLY; 808 } 809 goto unlock; 810 } 811 812 z->z_flags &= ~ZONEFS_ZONE_OPEN; 813 zonefs_inode_account_active(inode); 814 } 815 816 atomic_dec(&sbi->s_wro_seq_files); 817 818 unlock: 819 mutex_unlock(&zi->i_truncate_mutex); 820 } 821 822 static int zonefs_file_release(struct inode *inode, struct file *file) 823 { 824 /* 825 * If we explicitly open a zone we must close it again as well, but the 826 * zone management operation can fail (either due to an IO error or as 827 * the zone has gone offline or read-only). Make sure we don't fail the 828 * close(2) for user-space. 829 */ 830 if (zonefs_seq_file_need_wro(inode, file)) 831 zonefs_seq_file_write_close(inode); 832 833 return 0; 834 } 835 836 const struct file_operations zonefs_file_operations = { 837 .open = zonefs_file_open, 838 .release = zonefs_file_release, 839 .fsync = zonefs_file_fsync, 840 .mmap = zonefs_file_mmap, 841 .llseek = zonefs_file_llseek, 842 .read_iter = zonefs_file_read_iter, 843 .write_iter = zonefs_file_write_iter, 844 .splice_read = zonefs_file_splice_read, 845 .splice_write = iter_file_splice_write, 846 .iopoll = iocb_bio_iopoll, 847 }; 848