xref: /openbmc/linux/fs/zonefs/file.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= iomap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_page	= generic_error_remove_page,
184 	.swap_activate		= zonefs_swap_activate,
185 };
186 
187 int zonefs_file_truncate(struct inode *inode, loff_t isize)
188 {
189 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
190 	struct zonefs_zone *z = zonefs_inode_zone(inode);
191 	loff_t old_isize;
192 	enum req_op op;
193 	int ret = 0;
194 
195 	/*
196 	 * Only sequential zone files can be truncated and truncation is allowed
197 	 * only down to a 0 size, which is equivalent to a zone reset, and to
198 	 * the maximum file size, which is equivalent to a zone finish.
199 	 */
200 	if (!zonefs_zone_is_seq(z))
201 		return -EPERM;
202 
203 	if (!isize)
204 		op = REQ_OP_ZONE_RESET;
205 	else if (isize == z->z_capacity)
206 		op = REQ_OP_ZONE_FINISH;
207 	else
208 		return -EPERM;
209 
210 	inode_dio_wait(inode);
211 
212 	/* Serialize against page faults */
213 	filemap_invalidate_lock(inode->i_mapping);
214 
215 	/* Serialize against zonefs_iomap_begin() */
216 	mutex_lock(&zi->i_truncate_mutex);
217 
218 	old_isize = i_size_read(inode);
219 	if (isize == old_isize)
220 		goto unlock;
221 
222 	ret = zonefs_inode_zone_mgmt(inode, op);
223 	if (ret)
224 		goto unlock;
225 
226 	/*
227 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
228 	 * take care of open zones.
229 	 */
230 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
231 		/*
232 		 * Truncating a zone to EMPTY or FULL is the equivalent of
233 		 * closing the zone. For a truncation to 0, we need to
234 		 * re-open the zone to ensure new writes can be processed.
235 		 * For a truncation to the maximum file size, the zone is
236 		 * closed and writes cannot be accepted anymore, so clear
237 		 * the open flag.
238 		 */
239 		if (!isize)
240 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
241 		else
242 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
243 	}
244 
245 	zonefs_update_stats(inode, isize);
246 	truncate_setsize(inode, isize);
247 	z->z_wpoffset = isize;
248 	zonefs_inode_account_active(inode);
249 
250 unlock:
251 	mutex_unlock(&zi->i_truncate_mutex);
252 	filemap_invalidate_unlock(inode->i_mapping);
253 
254 	return ret;
255 }
256 
257 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
258 			     int datasync)
259 {
260 	struct inode *inode = file_inode(file);
261 	int ret = 0;
262 
263 	if (unlikely(IS_IMMUTABLE(inode)))
264 		return -EPERM;
265 
266 	/*
267 	 * Since only direct writes are allowed in sequential files, page cache
268 	 * flush is needed only for conventional zone files.
269 	 */
270 	if (zonefs_inode_is_cnv(inode))
271 		ret = file_write_and_wait_range(file, start, end);
272 	if (!ret)
273 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
274 
275 	if (ret)
276 		zonefs_io_error(inode, true);
277 
278 	return ret;
279 }
280 
281 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
282 {
283 	struct inode *inode = file_inode(vmf->vma->vm_file);
284 	vm_fault_t ret;
285 
286 	if (unlikely(IS_IMMUTABLE(inode)))
287 		return VM_FAULT_SIGBUS;
288 
289 	/*
290 	 * Sanity check: only conventional zone files can have shared
291 	 * writeable mappings.
292 	 */
293 	if (zonefs_inode_is_seq(inode))
294 		return VM_FAULT_NOPAGE;
295 
296 	sb_start_pagefault(inode->i_sb);
297 	file_update_time(vmf->vma->vm_file);
298 
299 	/* Serialize against truncates */
300 	filemap_invalidate_lock_shared(inode->i_mapping);
301 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
302 	filemap_invalidate_unlock_shared(inode->i_mapping);
303 
304 	sb_end_pagefault(inode->i_sb);
305 	return ret;
306 }
307 
308 static const struct vm_operations_struct zonefs_file_vm_ops = {
309 	.fault		= filemap_fault,
310 	.map_pages	= filemap_map_pages,
311 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
312 };
313 
314 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
315 {
316 	/*
317 	 * Conventional zones accept random writes, so their files can support
318 	 * shared writable mappings. For sequential zone files, only read
319 	 * mappings are possible since there are no guarantees for write
320 	 * ordering between msync() and page cache writeback.
321 	 */
322 	if (zonefs_inode_is_seq(file_inode(file)) &&
323 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
324 		return -EINVAL;
325 
326 	file_accessed(file);
327 	vma->vm_ops = &zonefs_file_vm_ops;
328 
329 	return 0;
330 }
331 
332 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
333 {
334 	loff_t isize = i_size_read(file_inode(file));
335 
336 	/*
337 	 * Seeks are limited to below the zone size for conventional zones
338 	 * and below the zone write pointer for sequential zones. In both
339 	 * cases, this limit is the inode size.
340 	 */
341 	return generic_file_llseek_size(file, offset, whence, isize, isize);
342 }
343 
344 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
345 					int error, unsigned int flags)
346 {
347 	struct inode *inode = file_inode(iocb->ki_filp);
348 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
349 
350 	if (error) {
351 		zonefs_io_error(inode, true);
352 		return error;
353 	}
354 
355 	if (size && zonefs_inode_is_seq(inode)) {
356 		/*
357 		 * Note that we may be seeing completions out of order,
358 		 * but that is not a problem since a write completed
359 		 * successfully necessarily means that all preceding writes
360 		 * were also successful. So we can safely increase the inode
361 		 * size to the write end location.
362 		 */
363 		mutex_lock(&zi->i_truncate_mutex);
364 		if (i_size_read(inode) < iocb->ki_pos + size) {
365 			zonefs_update_stats(inode, iocb->ki_pos + size);
366 			zonefs_i_size_write(inode, iocb->ki_pos + size);
367 		}
368 		mutex_unlock(&zi->i_truncate_mutex);
369 	}
370 
371 	return 0;
372 }
373 
374 static const struct iomap_dio_ops zonefs_write_dio_ops = {
375 	.end_io		= zonefs_file_write_dio_end_io,
376 };
377 
378 /*
379  * Do not exceed the LFS limits nor the file zone size. If pos is under the
380  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
381  */
382 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
383 					loff_t count)
384 {
385 	struct inode *inode = file_inode(file);
386 	struct zonefs_zone *z = zonefs_inode_zone(inode);
387 	loff_t limit = rlimit(RLIMIT_FSIZE);
388 	loff_t max_size = z->z_capacity;
389 
390 	if (limit != RLIM_INFINITY) {
391 		if (pos >= limit) {
392 			send_sig(SIGXFSZ, current, 0);
393 			return -EFBIG;
394 		}
395 		count = min(count, limit - pos);
396 	}
397 
398 	if (!(file->f_flags & O_LARGEFILE))
399 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
400 
401 	if (unlikely(pos >= max_size))
402 		return -EFBIG;
403 
404 	return min(count, max_size - pos);
405 }
406 
407 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
408 {
409 	struct file *file = iocb->ki_filp;
410 	struct inode *inode = file_inode(file);
411 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
412 	struct zonefs_zone *z = zonefs_inode_zone(inode);
413 	loff_t count;
414 
415 	if (IS_SWAPFILE(inode))
416 		return -ETXTBSY;
417 
418 	if (!iov_iter_count(from))
419 		return 0;
420 
421 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
422 		return -EINVAL;
423 
424 	if (iocb->ki_flags & IOCB_APPEND) {
425 		if (zonefs_zone_is_cnv(z))
426 			return -EINVAL;
427 		mutex_lock(&zi->i_truncate_mutex);
428 		iocb->ki_pos = z->z_wpoffset;
429 		mutex_unlock(&zi->i_truncate_mutex);
430 	}
431 
432 	count = zonefs_write_check_limits(file, iocb->ki_pos,
433 					  iov_iter_count(from));
434 	if (count < 0)
435 		return count;
436 
437 	iov_iter_truncate(from, count);
438 	return iov_iter_count(from);
439 }
440 
441 /*
442  * Handle direct writes. For sequential zone files, this is the only possible
443  * write path. For these files, check that the user is issuing writes
444  * sequentially from the end of the file. This code assumes that the block layer
445  * delivers write requests to the device in sequential order. This is always the
446  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
447  * elevator feature is being used (e.g. mq-deadline). The block layer always
448  * automatically select such an elevator for zoned block devices during the
449  * device initialization.
450  */
451 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
452 {
453 	struct inode *inode = file_inode(iocb->ki_filp);
454 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
455 	struct zonefs_zone *z = zonefs_inode_zone(inode);
456 	struct super_block *sb = inode->i_sb;
457 	ssize_t ret, count;
458 
459 	/*
460 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
461 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
462 	 * on the inode lock but the second goes through but is now unaligned).
463 	 */
464 	if (zonefs_zone_is_seq(z) && !is_sync_kiocb(iocb) &&
465 	    (iocb->ki_flags & IOCB_NOWAIT))
466 		return -EOPNOTSUPP;
467 
468 	if (iocb->ki_flags & IOCB_NOWAIT) {
469 		if (!inode_trylock(inode))
470 			return -EAGAIN;
471 	} else {
472 		inode_lock(inode);
473 	}
474 
475 	count = zonefs_write_checks(iocb, from);
476 	if (count <= 0) {
477 		ret = count;
478 		goto inode_unlock;
479 	}
480 
481 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
482 		ret = -EINVAL;
483 		goto inode_unlock;
484 	}
485 
486 	/* Enforce sequential writes (append only) in sequential zones */
487 	if (zonefs_zone_is_seq(z)) {
488 		mutex_lock(&zi->i_truncate_mutex);
489 		if (iocb->ki_pos != z->z_wpoffset) {
490 			mutex_unlock(&zi->i_truncate_mutex);
491 			ret = -EINVAL;
492 			goto inode_unlock;
493 		}
494 		mutex_unlock(&zi->i_truncate_mutex);
495 	}
496 
497 	/*
498 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
499 	 * page invalidation. Overwrite that error code with EBUSY so that
500 	 * the user can make sense of the error.
501 	 */
502 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
503 			   &zonefs_write_dio_ops, 0, NULL, 0);
504 	if (ret == -ENOTBLK)
505 		ret = -EBUSY;
506 
507 	if (zonefs_zone_is_seq(z) &&
508 	    (ret > 0 || ret == -EIOCBQUEUED)) {
509 		if (ret > 0)
510 			count = ret;
511 
512 		/*
513 		 * Update the zone write pointer offset assuming the write
514 		 * operation succeeded. If it did not, the error recovery path
515 		 * will correct it. Also do active seq file accounting.
516 		 */
517 		mutex_lock(&zi->i_truncate_mutex);
518 		z->z_wpoffset += count;
519 		zonefs_inode_account_active(inode);
520 		mutex_unlock(&zi->i_truncate_mutex);
521 	}
522 
523 inode_unlock:
524 	inode_unlock(inode);
525 
526 	return ret;
527 }
528 
529 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
530 					  struct iov_iter *from)
531 {
532 	struct inode *inode = file_inode(iocb->ki_filp);
533 	ssize_t ret;
534 
535 	/*
536 	 * Direct IO writes are mandatory for sequential zone files so that the
537 	 * write IO issuing order is preserved.
538 	 */
539 	if (zonefs_inode_is_seq(inode))
540 		return -EIO;
541 
542 	if (iocb->ki_flags & IOCB_NOWAIT) {
543 		if (!inode_trylock(inode))
544 			return -EAGAIN;
545 	} else {
546 		inode_lock(inode);
547 	}
548 
549 	ret = zonefs_write_checks(iocb, from);
550 	if (ret <= 0)
551 		goto inode_unlock;
552 
553 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
554 	if (ret == -EIO)
555 		zonefs_io_error(inode, true);
556 
557 inode_unlock:
558 	inode_unlock(inode);
559 	if (ret > 0)
560 		ret = generic_write_sync(iocb, ret);
561 
562 	return ret;
563 }
564 
565 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
566 {
567 	struct inode *inode = file_inode(iocb->ki_filp);
568 	struct zonefs_zone *z = zonefs_inode_zone(inode);
569 
570 	if (unlikely(IS_IMMUTABLE(inode)))
571 		return -EPERM;
572 
573 	if (sb_rdonly(inode->i_sb))
574 		return -EROFS;
575 
576 	/* Write operations beyond the zone capacity are not allowed */
577 	if (iocb->ki_pos >= z->z_capacity)
578 		return -EFBIG;
579 
580 	if (iocb->ki_flags & IOCB_DIRECT) {
581 		ssize_t ret = zonefs_file_dio_write(iocb, from);
582 
583 		if (ret != -ENOTBLK)
584 			return ret;
585 	}
586 
587 	return zonefs_file_buffered_write(iocb, from);
588 }
589 
590 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
591 				       int error, unsigned int flags)
592 {
593 	if (error) {
594 		zonefs_io_error(file_inode(iocb->ki_filp), false);
595 		return error;
596 	}
597 
598 	return 0;
599 }
600 
601 static const struct iomap_dio_ops zonefs_read_dio_ops = {
602 	.end_io			= zonefs_file_read_dio_end_io,
603 };
604 
605 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
606 {
607 	struct inode *inode = file_inode(iocb->ki_filp);
608 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
609 	struct zonefs_zone *z = zonefs_inode_zone(inode);
610 	struct super_block *sb = inode->i_sb;
611 	loff_t isize;
612 	ssize_t ret;
613 
614 	/* Offline zones cannot be read */
615 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
616 		return -EPERM;
617 
618 	if (iocb->ki_pos >= z->z_capacity)
619 		return 0;
620 
621 	if (iocb->ki_flags & IOCB_NOWAIT) {
622 		if (!inode_trylock_shared(inode))
623 			return -EAGAIN;
624 	} else {
625 		inode_lock_shared(inode);
626 	}
627 
628 	/* Limit read operations to written data */
629 	mutex_lock(&zi->i_truncate_mutex);
630 	isize = i_size_read(inode);
631 	if (iocb->ki_pos >= isize) {
632 		mutex_unlock(&zi->i_truncate_mutex);
633 		ret = 0;
634 		goto inode_unlock;
635 	}
636 	iov_iter_truncate(to, isize - iocb->ki_pos);
637 	mutex_unlock(&zi->i_truncate_mutex);
638 
639 	if (iocb->ki_flags & IOCB_DIRECT) {
640 		size_t count = iov_iter_count(to);
641 
642 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
643 			ret = -EINVAL;
644 			goto inode_unlock;
645 		}
646 		file_accessed(iocb->ki_filp);
647 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
648 				   &zonefs_read_dio_ops, 0, NULL, 0);
649 	} else {
650 		ret = generic_file_read_iter(iocb, to);
651 		if (ret == -EIO)
652 			zonefs_io_error(inode, false);
653 	}
654 
655 inode_unlock:
656 	inode_unlock_shared(inode);
657 
658 	return ret;
659 }
660 
661 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
662 				       struct pipe_inode_info *pipe,
663 				       size_t len, unsigned int flags)
664 {
665 	struct inode *inode = file_inode(in);
666 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
667 	struct zonefs_zone *z = zonefs_inode_zone(inode);
668 	loff_t isize;
669 	ssize_t ret = 0;
670 
671 	/* Offline zones cannot be read */
672 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
673 		return -EPERM;
674 
675 	if (*ppos >= z->z_capacity)
676 		return 0;
677 
678 	inode_lock_shared(inode);
679 
680 	/* Limit read operations to written data */
681 	mutex_lock(&zi->i_truncate_mutex);
682 	isize = i_size_read(inode);
683 	if (*ppos >= isize)
684 		len = 0;
685 	else
686 		len = min_t(loff_t, len, isize - *ppos);
687 	mutex_unlock(&zi->i_truncate_mutex);
688 
689 	if (len > 0) {
690 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
691 		if (ret == -EIO)
692 			zonefs_io_error(inode, false);
693 	}
694 
695 	inode_unlock_shared(inode);
696 	return ret;
697 }
698 
699 /*
700  * Write open accounting is done only for sequential files.
701  */
702 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
703 					    struct file *file)
704 {
705 	if (zonefs_inode_is_cnv(inode))
706 		return false;
707 
708 	if (!(file->f_mode & FMODE_WRITE))
709 		return false;
710 
711 	return true;
712 }
713 
714 static int zonefs_seq_file_write_open(struct inode *inode)
715 {
716 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
717 	struct zonefs_zone *z = zonefs_inode_zone(inode);
718 	int ret = 0;
719 
720 	mutex_lock(&zi->i_truncate_mutex);
721 
722 	if (!zi->i_wr_refcnt) {
723 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
724 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
725 
726 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
727 
728 			if (sbi->s_max_wro_seq_files
729 			    && wro > sbi->s_max_wro_seq_files) {
730 				atomic_dec(&sbi->s_wro_seq_files);
731 				ret = -EBUSY;
732 				goto unlock;
733 			}
734 
735 			if (i_size_read(inode) < z->z_capacity) {
736 				ret = zonefs_inode_zone_mgmt(inode,
737 							     REQ_OP_ZONE_OPEN);
738 				if (ret) {
739 					atomic_dec(&sbi->s_wro_seq_files);
740 					goto unlock;
741 				}
742 				z->z_flags |= ZONEFS_ZONE_OPEN;
743 				zonefs_inode_account_active(inode);
744 			}
745 		}
746 	}
747 
748 	zi->i_wr_refcnt++;
749 
750 unlock:
751 	mutex_unlock(&zi->i_truncate_mutex);
752 
753 	return ret;
754 }
755 
756 static int zonefs_file_open(struct inode *inode, struct file *file)
757 {
758 	int ret;
759 
760 	file->f_mode |= FMODE_CAN_ODIRECT;
761 	ret = generic_file_open(inode, file);
762 	if (ret)
763 		return ret;
764 
765 	if (zonefs_seq_file_need_wro(inode, file))
766 		return zonefs_seq_file_write_open(inode);
767 
768 	return 0;
769 }
770 
771 static void zonefs_seq_file_write_close(struct inode *inode)
772 {
773 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
774 	struct zonefs_zone *z = zonefs_inode_zone(inode);
775 	struct super_block *sb = inode->i_sb;
776 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
777 	int ret = 0;
778 
779 	mutex_lock(&zi->i_truncate_mutex);
780 
781 	zi->i_wr_refcnt--;
782 	if (zi->i_wr_refcnt)
783 		goto unlock;
784 
785 	/*
786 	 * The file zone may not be open anymore (e.g. the file was truncated to
787 	 * its maximum size or it was fully written). For this case, we only
788 	 * need to decrement the write open count.
789 	 */
790 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
791 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
792 		if (ret) {
793 			__zonefs_io_error(inode, false);
794 			/*
795 			 * Leaving zones explicitly open may lead to a state
796 			 * where most zones cannot be written (zone resources
797 			 * exhausted). So take preventive action by remounting
798 			 * read-only.
799 			 */
800 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
801 			    !(sb->s_flags & SB_RDONLY)) {
802 				zonefs_warn(sb,
803 					"closing zone at %llu failed %d\n",
804 					z->z_sector, ret);
805 				zonefs_warn(sb,
806 					"remounting filesystem read-only\n");
807 				sb->s_flags |= SB_RDONLY;
808 			}
809 			goto unlock;
810 		}
811 
812 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
813 		zonefs_inode_account_active(inode);
814 	}
815 
816 	atomic_dec(&sbi->s_wro_seq_files);
817 
818 unlock:
819 	mutex_unlock(&zi->i_truncate_mutex);
820 }
821 
822 static int zonefs_file_release(struct inode *inode, struct file *file)
823 {
824 	/*
825 	 * If we explicitly open a zone we must close it again as well, but the
826 	 * zone management operation can fail (either due to an IO error or as
827 	 * the zone has gone offline or read-only). Make sure we don't fail the
828 	 * close(2) for user-space.
829 	 */
830 	if (zonefs_seq_file_need_wro(inode, file))
831 		zonefs_seq_file_write_close(inode);
832 
833 	return 0;
834 }
835 
836 const struct file_operations zonefs_file_operations = {
837 	.open		= zonefs_file_open,
838 	.release	= zonefs_file_release,
839 	.fsync		= zonefs_file_fsync,
840 	.mmap		= zonefs_file_mmap,
841 	.llseek		= zonefs_file_llseek,
842 	.read_iter	= zonefs_file_read_iter,
843 	.write_iter	= zonefs_file_write_iter,
844 	.splice_read	= zonefs_file_splice_read,
845 	.splice_write	= iter_file_splice_write,
846 	.iopoll		= iocb_bio_iopoll,
847 };
848