1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Simple file system for zoned block devices exposing zones as files. 4 * 5 * Copyright (C) 2022 Western Digital Corporation or its affiliates. 6 */ 7 #include <linux/module.h> 8 #include <linux/pagemap.h> 9 #include <linux/iomap.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/blkdev.h> 13 #include <linux/statfs.h> 14 #include <linux/writeback.h> 15 #include <linux/quotaops.h> 16 #include <linux/seq_file.h> 17 #include <linux/parser.h> 18 #include <linux/uio.h> 19 #include <linux/mman.h> 20 #include <linux/sched/mm.h> 21 #include <linux/task_io_accounting_ops.h> 22 23 #include "zonefs.h" 24 25 #include "trace.h" 26 27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset, 28 loff_t length, unsigned int flags, 29 struct iomap *iomap, struct iomap *srcmap) 30 { 31 struct zonefs_inode_info *zi = ZONEFS_I(inode); 32 struct zonefs_zone *z = zonefs_inode_zone(inode); 33 struct super_block *sb = inode->i_sb; 34 loff_t isize; 35 36 /* 37 * All blocks are always mapped below EOF. If reading past EOF, 38 * act as if there is a hole up to the file maximum size. 39 */ 40 mutex_lock(&zi->i_truncate_mutex); 41 iomap->bdev = inode->i_sb->s_bdev; 42 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 43 isize = i_size_read(inode); 44 if (iomap->offset >= isize) { 45 iomap->type = IOMAP_HOLE; 46 iomap->addr = IOMAP_NULL_ADDR; 47 iomap->length = length; 48 } else { 49 iomap->type = IOMAP_MAPPED; 50 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 51 iomap->length = isize - iomap->offset; 52 } 53 mutex_unlock(&zi->i_truncate_mutex); 54 55 trace_zonefs_iomap_begin(inode, iomap); 56 57 return 0; 58 } 59 60 static const struct iomap_ops zonefs_read_iomap_ops = { 61 .iomap_begin = zonefs_read_iomap_begin, 62 }; 63 64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset, 65 loff_t length, unsigned int flags, 66 struct iomap *iomap, struct iomap *srcmap) 67 { 68 struct zonefs_inode_info *zi = ZONEFS_I(inode); 69 struct zonefs_zone *z = zonefs_inode_zone(inode); 70 struct super_block *sb = inode->i_sb; 71 loff_t isize; 72 73 /* All write I/Os should always be within the file maximum size */ 74 if (WARN_ON_ONCE(offset + length > z->z_capacity)) 75 return -EIO; 76 77 /* 78 * Sequential zones can only accept direct writes. This is already 79 * checked when writes are issued, so warn if we see a page writeback 80 * operation. 81 */ 82 if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT))) 83 return -EIO; 84 85 /* 86 * For conventional zones, all blocks are always mapped. For sequential 87 * zones, all blocks after always mapped below the inode size (zone 88 * write pointer) and unwriten beyond. 89 */ 90 mutex_lock(&zi->i_truncate_mutex); 91 iomap->bdev = inode->i_sb->s_bdev; 92 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize); 93 iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset; 94 isize = i_size_read(inode); 95 if (iomap->offset >= isize) { 96 iomap->type = IOMAP_UNWRITTEN; 97 iomap->length = z->z_capacity - iomap->offset; 98 } else { 99 iomap->type = IOMAP_MAPPED; 100 iomap->length = isize - iomap->offset; 101 } 102 mutex_unlock(&zi->i_truncate_mutex); 103 104 trace_zonefs_iomap_begin(inode, iomap); 105 106 return 0; 107 } 108 109 static const struct iomap_ops zonefs_write_iomap_ops = { 110 .iomap_begin = zonefs_write_iomap_begin, 111 }; 112 113 static int zonefs_read_folio(struct file *unused, struct folio *folio) 114 { 115 return iomap_read_folio(folio, &zonefs_read_iomap_ops); 116 } 117 118 static void zonefs_readahead(struct readahead_control *rac) 119 { 120 iomap_readahead(rac, &zonefs_read_iomap_ops); 121 } 122 123 /* 124 * Map blocks for page writeback. This is used only on conventional zone files, 125 * which implies that the page range can only be within the fixed inode size. 126 */ 127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc, 128 struct inode *inode, loff_t offset) 129 { 130 struct zonefs_zone *z = zonefs_inode_zone(inode); 131 132 if (WARN_ON_ONCE(zonefs_zone_is_seq(z))) 133 return -EIO; 134 if (WARN_ON_ONCE(offset >= i_size_read(inode))) 135 return -EIO; 136 137 /* If the mapping is already OK, nothing needs to be done */ 138 if (offset >= wpc->iomap.offset && 139 offset < wpc->iomap.offset + wpc->iomap.length) 140 return 0; 141 142 return zonefs_write_iomap_begin(inode, offset, 143 z->z_capacity - offset, 144 IOMAP_WRITE, &wpc->iomap, NULL); 145 } 146 147 static const struct iomap_writeback_ops zonefs_writeback_ops = { 148 .map_blocks = zonefs_write_map_blocks, 149 }; 150 151 static int zonefs_writepages(struct address_space *mapping, 152 struct writeback_control *wbc) 153 { 154 struct iomap_writepage_ctx wpc = { }; 155 156 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops); 157 } 158 159 static int zonefs_swap_activate(struct swap_info_struct *sis, 160 struct file *swap_file, sector_t *span) 161 { 162 struct inode *inode = file_inode(swap_file); 163 164 if (zonefs_inode_is_seq(inode)) { 165 zonefs_err(inode->i_sb, 166 "swap file: not a conventional zone file\n"); 167 return -EINVAL; 168 } 169 170 return iomap_swapfile_activate(sis, swap_file, span, 171 &zonefs_read_iomap_ops); 172 } 173 174 const struct address_space_operations zonefs_file_aops = { 175 .read_folio = zonefs_read_folio, 176 .readahead = zonefs_readahead, 177 .writepages = zonefs_writepages, 178 .dirty_folio = filemap_dirty_folio, 179 .release_folio = iomap_release_folio, 180 .invalidate_folio = iomap_invalidate_folio, 181 .migrate_folio = filemap_migrate_folio, 182 .is_partially_uptodate = iomap_is_partially_uptodate, 183 .error_remove_page = generic_error_remove_page, 184 .swap_activate = zonefs_swap_activate, 185 }; 186 187 int zonefs_file_truncate(struct inode *inode, loff_t isize) 188 { 189 struct zonefs_inode_info *zi = ZONEFS_I(inode); 190 struct zonefs_zone *z = zonefs_inode_zone(inode); 191 loff_t old_isize; 192 enum req_op op; 193 int ret = 0; 194 195 /* 196 * Only sequential zone files can be truncated and truncation is allowed 197 * only down to a 0 size, which is equivalent to a zone reset, and to 198 * the maximum file size, which is equivalent to a zone finish. 199 */ 200 if (!zonefs_zone_is_seq(z)) 201 return -EPERM; 202 203 if (!isize) 204 op = REQ_OP_ZONE_RESET; 205 else if (isize == z->z_capacity) 206 op = REQ_OP_ZONE_FINISH; 207 else 208 return -EPERM; 209 210 inode_dio_wait(inode); 211 212 /* Serialize against page faults */ 213 filemap_invalidate_lock(inode->i_mapping); 214 215 /* Serialize against zonefs_iomap_begin() */ 216 mutex_lock(&zi->i_truncate_mutex); 217 218 old_isize = i_size_read(inode); 219 if (isize == old_isize) 220 goto unlock; 221 222 ret = zonefs_inode_zone_mgmt(inode, op); 223 if (ret) 224 goto unlock; 225 226 /* 227 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set, 228 * take care of open zones. 229 */ 230 if (z->z_flags & ZONEFS_ZONE_OPEN) { 231 /* 232 * Truncating a zone to EMPTY or FULL is the equivalent of 233 * closing the zone. For a truncation to 0, we need to 234 * re-open the zone to ensure new writes can be processed. 235 * For a truncation to the maximum file size, the zone is 236 * closed and writes cannot be accepted anymore, so clear 237 * the open flag. 238 */ 239 if (!isize) 240 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN); 241 else 242 z->z_flags &= ~ZONEFS_ZONE_OPEN; 243 } 244 245 zonefs_update_stats(inode, isize); 246 truncate_setsize(inode, isize); 247 z->z_wpoffset = isize; 248 zonefs_inode_account_active(inode); 249 250 unlock: 251 mutex_unlock(&zi->i_truncate_mutex); 252 filemap_invalidate_unlock(inode->i_mapping); 253 254 return ret; 255 } 256 257 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end, 258 int datasync) 259 { 260 struct inode *inode = file_inode(file); 261 int ret = 0; 262 263 if (unlikely(IS_IMMUTABLE(inode))) 264 return -EPERM; 265 266 /* 267 * Since only direct writes are allowed in sequential files, page cache 268 * flush is needed only for conventional zone files. 269 */ 270 if (zonefs_inode_is_cnv(inode)) 271 ret = file_write_and_wait_range(file, start, end); 272 if (!ret) 273 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 274 275 if (ret) 276 zonefs_io_error(inode, true); 277 278 return ret; 279 } 280 281 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf) 282 { 283 struct inode *inode = file_inode(vmf->vma->vm_file); 284 vm_fault_t ret; 285 286 if (unlikely(IS_IMMUTABLE(inode))) 287 return VM_FAULT_SIGBUS; 288 289 /* 290 * Sanity check: only conventional zone files can have shared 291 * writeable mappings. 292 */ 293 if (zonefs_inode_is_seq(inode)) 294 return VM_FAULT_NOPAGE; 295 296 sb_start_pagefault(inode->i_sb); 297 file_update_time(vmf->vma->vm_file); 298 299 /* Serialize against truncates */ 300 filemap_invalidate_lock_shared(inode->i_mapping); 301 ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops); 302 filemap_invalidate_unlock_shared(inode->i_mapping); 303 304 sb_end_pagefault(inode->i_sb); 305 return ret; 306 } 307 308 static const struct vm_operations_struct zonefs_file_vm_ops = { 309 .fault = filemap_fault, 310 .map_pages = filemap_map_pages, 311 .page_mkwrite = zonefs_filemap_page_mkwrite, 312 }; 313 314 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma) 315 { 316 /* 317 * Conventional zones accept random writes, so their files can support 318 * shared writable mappings. For sequential zone files, only read 319 * mappings are possible since there are no guarantees for write 320 * ordering between msync() and page cache writeback. 321 */ 322 if (zonefs_inode_is_seq(file_inode(file)) && 323 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 324 return -EINVAL; 325 326 file_accessed(file); 327 vma->vm_ops = &zonefs_file_vm_ops; 328 329 return 0; 330 } 331 332 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence) 333 { 334 loff_t isize = i_size_read(file_inode(file)); 335 336 /* 337 * Seeks are limited to below the zone size for conventional zones 338 * and below the zone write pointer for sequential zones. In both 339 * cases, this limit is the inode size. 340 */ 341 return generic_file_llseek_size(file, offset, whence, isize, isize); 342 } 343 344 struct zonefs_zone_append_bio { 345 /* The target inode of the BIO */ 346 struct inode *inode; 347 348 /* For sync writes, the target append write offset */ 349 u64 append_offset; 350 351 /* 352 * This member must come last, bio_alloc_bioset will allocate enough 353 * bytes for entire zonefs_bio but relies on bio being last. 354 */ 355 struct bio bio; 356 }; 357 358 static inline struct zonefs_zone_append_bio * 359 zonefs_zone_append_bio(struct bio *bio) 360 { 361 return container_of(bio, struct zonefs_zone_append_bio, bio); 362 } 363 364 static void zonefs_file_zone_append_dio_bio_end_io(struct bio *bio) 365 { 366 struct zonefs_zone_append_bio *za_bio = zonefs_zone_append_bio(bio); 367 struct zonefs_zone *z = zonefs_inode_zone(za_bio->inode); 368 sector_t za_sector; 369 370 if (bio->bi_status != BLK_STS_OK) 371 goto bio_end; 372 373 /* 374 * If the file zone was written underneath the file system, the zone 375 * append operation can still succedd (if the zone is not full) but 376 * the write append location will not be where we expect it to be. 377 * Check that we wrote where we intended to, that is, at z->z_wpoffset. 378 */ 379 za_sector = z->z_sector + (za_bio->append_offset >> SECTOR_SHIFT); 380 if (bio->bi_iter.bi_sector != za_sector) { 381 zonefs_warn(za_bio->inode->i_sb, 382 "Invalid write sector %llu for zone at %llu\n", 383 bio->bi_iter.bi_sector, z->z_sector); 384 bio->bi_status = BLK_STS_IOERR; 385 } 386 387 bio_end: 388 iomap_dio_bio_end_io(bio); 389 } 390 391 static void zonefs_file_zone_append_dio_submit_io(const struct iomap_iter *iter, 392 struct bio *bio, 393 loff_t file_offset) 394 { 395 struct zonefs_zone_append_bio *za_bio = zonefs_zone_append_bio(bio); 396 struct inode *inode = iter->inode; 397 struct zonefs_zone *z = zonefs_inode_zone(inode); 398 399 /* 400 * Issue a zone append BIO to process sync dio writes. The append 401 * file offset is saved to check the zone append write location 402 * on completion of the BIO. 403 */ 404 za_bio->inode = inode; 405 za_bio->append_offset = file_offset; 406 407 bio->bi_opf &= ~REQ_OP_WRITE; 408 bio->bi_opf |= REQ_OP_ZONE_APPEND; 409 bio->bi_iter.bi_sector = z->z_sector; 410 bio->bi_end_io = zonefs_file_zone_append_dio_bio_end_io; 411 412 submit_bio(bio); 413 } 414 415 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size, 416 int error, unsigned int flags) 417 { 418 struct inode *inode = file_inode(iocb->ki_filp); 419 struct zonefs_inode_info *zi = ZONEFS_I(inode); 420 421 if (error) { 422 zonefs_io_error(inode, true); 423 return error; 424 } 425 426 if (size && zonefs_inode_is_seq(inode)) { 427 /* 428 * Note that we may be seeing completions out of order, 429 * but that is not a problem since a write completed 430 * successfully necessarily means that all preceding writes 431 * were also successful. So we can safely increase the inode 432 * size to the write end location. 433 */ 434 mutex_lock(&zi->i_truncate_mutex); 435 if (i_size_read(inode) < iocb->ki_pos + size) { 436 zonefs_update_stats(inode, iocb->ki_pos + size); 437 zonefs_i_size_write(inode, iocb->ki_pos + size); 438 } 439 mutex_unlock(&zi->i_truncate_mutex); 440 } 441 442 return 0; 443 } 444 445 static struct bio_set zonefs_zone_append_bio_set; 446 447 static const struct iomap_dio_ops zonefs_zone_append_dio_ops = { 448 .submit_io = zonefs_file_zone_append_dio_submit_io, 449 .end_io = zonefs_file_write_dio_end_io, 450 .bio_set = &zonefs_zone_append_bio_set, 451 }; 452 453 static const struct iomap_dio_ops zonefs_write_dio_ops = { 454 .end_io = zonefs_file_write_dio_end_io, 455 }; 456 457 /* 458 * Do not exceed the LFS limits nor the file zone size. If pos is under the 459 * limit it becomes a short access. If it exceeds the limit, return -EFBIG. 460 */ 461 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos, 462 loff_t count) 463 { 464 struct inode *inode = file_inode(file); 465 struct zonefs_zone *z = zonefs_inode_zone(inode); 466 loff_t limit = rlimit(RLIMIT_FSIZE); 467 loff_t max_size = z->z_capacity; 468 469 if (limit != RLIM_INFINITY) { 470 if (pos >= limit) { 471 send_sig(SIGXFSZ, current, 0); 472 return -EFBIG; 473 } 474 count = min(count, limit - pos); 475 } 476 477 if (!(file->f_flags & O_LARGEFILE)) 478 max_size = min_t(loff_t, MAX_NON_LFS, max_size); 479 480 if (unlikely(pos >= max_size)) 481 return -EFBIG; 482 483 return min(count, max_size - pos); 484 } 485 486 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from) 487 { 488 struct file *file = iocb->ki_filp; 489 struct inode *inode = file_inode(file); 490 struct zonefs_inode_info *zi = ZONEFS_I(inode); 491 struct zonefs_zone *z = zonefs_inode_zone(inode); 492 loff_t count; 493 494 if (IS_SWAPFILE(inode)) 495 return -ETXTBSY; 496 497 if (!iov_iter_count(from)) 498 return 0; 499 500 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 501 return -EINVAL; 502 503 if (iocb->ki_flags & IOCB_APPEND) { 504 if (zonefs_zone_is_cnv(z)) 505 return -EINVAL; 506 mutex_lock(&zi->i_truncate_mutex); 507 iocb->ki_pos = z->z_wpoffset; 508 mutex_unlock(&zi->i_truncate_mutex); 509 } 510 511 count = zonefs_write_check_limits(file, iocb->ki_pos, 512 iov_iter_count(from)); 513 if (count < 0) 514 return count; 515 516 iov_iter_truncate(from, count); 517 return iov_iter_count(from); 518 } 519 520 /* 521 * Handle direct writes. For sequential zone files, this is the only possible 522 * write path. For these files, check that the user is issuing writes 523 * sequentially from the end of the file. This code assumes that the block layer 524 * delivers write requests to the device in sequential order. This is always the 525 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE 526 * elevator feature is being used (e.g. mq-deadline). The block layer always 527 * automatically select such an elevator for zoned block devices during the 528 * device initialization. 529 */ 530 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from) 531 { 532 struct inode *inode = file_inode(iocb->ki_filp); 533 struct zonefs_inode_info *zi = ZONEFS_I(inode); 534 struct zonefs_zone *z = zonefs_inode_zone(inode); 535 struct super_block *sb = inode->i_sb; 536 const struct iomap_dio_ops *dio_ops; 537 bool sync = is_sync_kiocb(iocb); 538 bool append = false; 539 ssize_t ret, count; 540 541 /* 542 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT 543 * as this can cause write reordering (e.g. the first aio gets EAGAIN 544 * on the inode lock but the second goes through but is now unaligned). 545 */ 546 if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT)) 547 return -EOPNOTSUPP; 548 549 if (iocb->ki_flags & IOCB_NOWAIT) { 550 if (!inode_trylock(inode)) 551 return -EAGAIN; 552 } else { 553 inode_lock(inode); 554 } 555 556 count = zonefs_write_checks(iocb, from); 557 if (count <= 0) { 558 ret = count; 559 goto inode_unlock; 560 } 561 562 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 563 ret = -EINVAL; 564 goto inode_unlock; 565 } 566 567 /* Enforce sequential writes (append only) in sequential zones */ 568 if (zonefs_zone_is_seq(z)) { 569 mutex_lock(&zi->i_truncate_mutex); 570 if (iocb->ki_pos != z->z_wpoffset) { 571 mutex_unlock(&zi->i_truncate_mutex); 572 ret = -EINVAL; 573 goto inode_unlock; 574 } 575 mutex_unlock(&zi->i_truncate_mutex); 576 append = sync; 577 } 578 579 if (append) { 580 unsigned int max = bdev_max_zone_append_sectors(sb->s_bdev); 581 582 max = ALIGN_DOWN(max << SECTOR_SHIFT, sb->s_blocksize); 583 iov_iter_truncate(from, max); 584 585 dio_ops = &zonefs_zone_append_dio_ops; 586 } else { 587 dio_ops = &zonefs_write_dio_ops; 588 } 589 590 /* 591 * iomap_dio_rw() may return ENOTBLK if there was an issue with 592 * page invalidation. Overwrite that error code with EBUSY so that 593 * the user can make sense of the error. 594 */ 595 ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops, 596 dio_ops, 0, NULL, 0); 597 if (ret == -ENOTBLK) 598 ret = -EBUSY; 599 600 if (zonefs_zone_is_seq(z) && 601 (ret > 0 || ret == -EIOCBQUEUED)) { 602 if (ret > 0) 603 count = ret; 604 605 /* 606 * Update the zone write pointer offset assuming the write 607 * operation succeeded. If it did not, the error recovery path 608 * will correct it. Also do active seq file accounting. 609 */ 610 mutex_lock(&zi->i_truncate_mutex); 611 z->z_wpoffset += count; 612 zonefs_inode_account_active(inode); 613 mutex_unlock(&zi->i_truncate_mutex); 614 } 615 616 inode_unlock: 617 inode_unlock(inode); 618 619 return ret; 620 } 621 622 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb, 623 struct iov_iter *from) 624 { 625 struct inode *inode = file_inode(iocb->ki_filp); 626 ssize_t ret; 627 628 /* 629 * Direct IO writes are mandatory for sequential zone files so that the 630 * write IO issuing order is preserved. 631 */ 632 if (zonefs_inode_is_seq(inode)) 633 return -EIO; 634 635 if (iocb->ki_flags & IOCB_NOWAIT) { 636 if (!inode_trylock(inode)) 637 return -EAGAIN; 638 } else { 639 inode_lock(inode); 640 } 641 642 ret = zonefs_write_checks(iocb, from); 643 if (ret <= 0) 644 goto inode_unlock; 645 646 ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops); 647 if (ret > 0) 648 iocb->ki_pos += ret; 649 else if (ret == -EIO) 650 zonefs_io_error(inode, true); 651 652 inode_unlock: 653 inode_unlock(inode); 654 if (ret > 0) 655 ret = generic_write_sync(iocb, ret); 656 657 return ret; 658 } 659 660 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 661 { 662 struct inode *inode = file_inode(iocb->ki_filp); 663 struct zonefs_zone *z = zonefs_inode_zone(inode); 664 665 if (unlikely(IS_IMMUTABLE(inode))) 666 return -EPERM; 667 668 if (sb_rdonly(inode->i_sb)) 669 return -EROFS; 670 671 /* Write operations beyond the zone capacity are not allowed */ 672 if (iocb->ki_pos >= z->z_capacity) 673 return -EFBIG; 674 675 if (iocb->ki_flags & IOCB_DIRECT) { 676 ssize_t ret = zonefs_file_dio_write(iocb, from); 677 678 if (ret != -ENOTBLK) 679 return ret; 680 } 681 682 return zonefs_file_buffered_write(iocb, from); 683 } 684 685 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size, 686 int error, unsigned int flags) 687 { 688 if (error) { 689 zonefs_io_error(file_inode(iocb->ki_filp), false); 690 return error; 691 } 692 693 return 0; 694 } 695 696 static const struct iomap_dio_ops zonefs_read_dio_ops = { 697 .end_io = zonefs_file_read_dio_end_io, 698 }; 699 700 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 701 { 702 struct inode *inode = file_inode(iocb->ki_filp); 703 struct zonefs_inode_info *zi = ZONEFS_I(inode); 704 struct zonefs_zone *z = zonefs_inode_zone(inode); 705 struct super_block *sb = inode->i_sb; 706 loff_t isize; 707 ssize_t ret; 708 709 /* Offline zones cannot be read */ 710 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 711 return -EPERM; 712 713 if (iocb->ki_pos >= z->z_capacity) 714 return 0; 715 716 if (iocb->ki_flags & IOCB_NOWAIT) { 717 if (!inode_trylock_shared(inode)) 718 return -EAGAIN; 719 } else { 720 inode_lock_shared(inode); 721 } 722 723 /* Limit read operations to written data */ 724 mutex_lock(&zi->i_truncate_mutex); 725 isize = i_size_read(inode); 726 if (iocb->ki_pos >= isize) { 727 mutex_unlock(&zi->i_truncate_mutex); 728 ret = 0; 729 goto inode_unlock; 730 } 731 iov_iter_truncate(to, isize - iocb->ki_pos); 732 mutex_unlock(&zi->i_truncate_mutex); 733 734 if (iocb->ki_flags & IOCB_DIRECT) { 735 size_t count = iov_iter_count(to); 736 737 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) { 738 ret = -EINVAL; 739 goto inode_unlock; 740 } 741 file_accessed(iocb->ki_filp); 742 ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops, 743 &zonefs_read_dio_ops, 0, NULL, 0); 744 } else { 745 ret = generic_file_read_iter(iocb, to); 746 if (ret == -EIO) 747 zonefs_io_error(inode, false); 748 } 749 750 inode_unlock: 751 inode_unlock_shared(inode); 752 753 return ret; 754 } 755 756 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos, 757 struct pipe_inode_info *pipe, 758 size_t len, unsigned int flags) 759 { 760 struct inode *inode = file_inode(in); 761 struct zonefs_inode_info *zi = ZONEFS_I(inode); 762 struct zonefs_zone *z = zonefs_inode_zone(inode); 763 loff_t isize; 764 ssize_t ret = 0; 765 766 /* Offline zones cannot be read */ 767 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777))) 768 return -EPERM; 769 770 if (*ppos >= z->z_capacity) 771 return 0; 772 773 inode_lock_shared(inode); 774 775 /* Limit read operations to written data */ 776 mutex_lock(&zi->i_truncate_mutex); 777 isize = i_size_read(inode); 778 if (*ppos >= isize) 779 len = 0; 780 else 781 len = min_t(loff_t, len, isize - *ppos); 782 mutex_unlock(&zi->i_truncate_mutex); 783 784 if (len > 0) { 785 ret = filemap_splice_read(in, ppos, pipe, len, flags); 786 if (ret == -EIO) 787 zonefs_io_error(inode, false); 788 } 789 790 inode_unlock_shared(inode); 791 return ret; 792 } 793 794 /* 795 * Write open accounting is done only for sequential files. 796 */ 797 static inline bool zonefs_seq_file_need_wro(struct inode *inode, 798 struct file *file) 799 { 800 if (zonefs_inode_is_cnv(inode)) 801 return false; 802 803 if (!(file->f_mode & FMODE_WRITE)) 804 return false; 805 806 return true; 807 } 808 809 static int zonefs_seq_file_write_open(struct inode *inode) 810 { 811 struct zonefs_inode_info *zi = ZONEFS_I(inode); 812 struct zonefs_zone *z = zonefs_inode_zone(inode); 813 int ret = 0; 814 815 mutex_lock(&zi->i_truncate_mutex); 816 817 if (!zi->i_wr_refcnt) { 818 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb); 819 unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files); 820 821 if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) { 822 823 if (sbi->s_max_wro_seq_files 824 && wro > sbi->s_max_wro_seq_files) { 825 atomic_dec(&sbi->s_wro_seq_files); 826 ret = -EBUSY; 827 goto unlock; 828 } 829 830 if (i_size_read(inode) < z->z_capacity) { 831 ret = zonefs_inode_zone_mgmt(inode, 832 REQ_OP_ZONE_OPEN); 833 if (ret) { 834 atomic_dec(&sbi->s_wro_seq_files); 835 goto unlock; 836 } 837 z->z_flags |= ZONEFS_ZONE_OPEN; 838 zonefs_inode_account_active(inode); 839 } 840 } 841 } 842 843 zi->i_wr_refcnt++; 844 845 unlock: 846 mutex_unlock(&zi->i_truncate_mutex); 847 848 return ret; 849 } 850 851 static int zonefs_file_open(struct inode *inode, struct file *file) 852 { 853 int ret; 854 855 file->f_mode |= FMODE_CAN_ODIRECT; 856 ret = generic_file_open(inode, file); 857 if (ret) 858 return ret; 859 860 if (zonefs_seq_file_need_wro(inode, file)) 861 return zonefs_seq_file_write_open(inode); 862 863 return 0; 864 } 865 866 static void zonefs_seq_file_write_close(struct inode *inode) 867 { 868 struct zonefs_inode_info *zi = ZONEFS_I(inode); 869 struct zonefs_zone *z = zonefs_inode_zone(inode); 870 struct super_block *sb = inode->i_sb; 871 struct zonefs_sb_info *sbi = ZONEFS_SB(sb); 872 int ret = 0; 873 874 mutex_lock(&zi->i_truncate_mutex); 875 876 zi->i_wr_refcnt--; 877 if (zi->i_wr_refcnt) 878 goto unlock; 879 880 /* 881 * The file zone may not be open anymore (e.g. the file was truncated to 882 * its maximum size or it was fully written). For this case, we only 883 * need to decrement the write open count. 884 */ 885 if (z->z_flags & ZONEFS_ZONE_OPEN) { 886 ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE); 887 if (ret) { 888 __zonefs_io_error(inode, false); 889 /* 890 * Leaving zones explicitly open may lead to a state 891 * where most zones cannot be written (zone resources 892 * exhausted). So take preventive action by remounting 893 * read-only. 894 */ 895 if (z->z_flags & ZONEFS_ZONE_OPEN && 896 !(sb->s_flags & SB_RDONLY)) { 897 zonefs_warn(sb, 898 "closing zone at %llu failed %d\n", 899 z->z_sector, ret); 900 zonefs_warn(sb, 901 "remounting filesystem read-only\n"); 902 sb->s_flags |= SB_RDONLY; 903 } 904 goto unlock; 905 } 906 907 z->z_flags &= ~ZONEFS_ZONE_OPEN; 908 zonefs_inode_account_active(inode); 909 } 910 911 atomic_dec(&sbi->s_wro_seq_files); 912 913 unlock: 914 mutex_unlock(&zi->i_truncate_mutex); 915 } 916 917 static int zonefs_file_release(struct inode *inode, struct file *file) 918 { 919 /* 920 * If we explicitly open a zone we must close it again as well, but the 921 * zone management operation can fail (either due to an IO error or as 922 * the zone has gone offline or read-only). Make sure we don't fail the 923 * close(2) for user-space. 924 */ 925 if (zonefs_seq_file_need_wro(inode, file)) 926 zonefs_seq_file_write_close(inode); 927 928 return 0; 929 } 930 931 const struct file_operations zonefs_file_operations = { 932 .open = zonefs_file_open, 933 .release = zonefs_file_release, 934 .fsync = zonefs_file_fsync, 935 .mmap = zonefs_file_mmap, 936 .llseek = zonefs_file_llseek, 937 .read_iter = zonefs_file_read_iter, 938 .write_iter = zonefs_file_write_iter, 939 .splice_read = zonefs_file_splice_read, 940 .splice_write = iter_file_splice_write, 941 .iopoll = iocb_bio_iopoll, 942 }; 943 944 int zonefs_file_bioset_init(void) 945 { 946 return bioset_init(&zonefs_zone_append_bio_set, BIO_POOL_SIZE, 947 offsetof(struct zonefs_zone_append_bio, bio), 948 BIOSET_NEED_BVECS); 949 } 950 951 void zonefs_file_bioset_exit(void) 952 { 953 bioset_exit(&zonefs_zone_append_bio_set); 954 } 955