xref: /openbmc/linux/fs/zonefs/file.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= filemap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_page	= generic_error_remove_page,
184 	.swap_activate		= zonefs_swap_activate,
185 };
186 
187 int zonefs_file_truncate(struct inode *inode, loff_t isize)
188 {
189 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
190 	struct zonefs_zone *z = zonefs_inode_zone(inode);
191 	loff_t old_isize;
192 	enum req_op op;
193 	int ret = 0;
194 
195 	/*
196 	 * Only sequential zone files can be truncated and truncation is allowed
197 	 * only down to a 0 size, which is equivalent to a zone reset, and to
198 	 * the maximum file size, which is equivalent to a zone finish.
199 	 */
200 	if (!zonefs_zone_is_seq(z))
201 		return -EPERM;
202 
203 	if (!isize)
204 		op = REQ_OP_ZONE_RESET;
205 	else if (isize == z->z_capacity)
206 		op = REQ_OP_ZONE_FINISH;
207 	else
208 		return -EPERM;
209 
210 	inode_dio_wait(inode);
211 
212 	/* Serialize against page faults */
213 	filemap_invalidate_lock(inode->i_mapping);
214 
215 	/* Serialize against zonefs_iomap_begin() */
216 	mutex_lock(&zi->i_truncate_mutex);
217 
218 	old_isize = i_size_read(inode);
219 	if (isize == old_isize)
220 		goto unlock;
221 
222 	ret = zonefs_inode_zone_mgmt(inode, op);
223 	if (ret)
224 		goto unlock;
225 
226 	/*
227 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
228 	 * take care of open zones.
229 	 */
230 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
231 		/*
232 		 * Truncating a zone to EMPTY or FULL is the equivalent of
233 		 * closing the zone. For a truncation to 0, we need to
234 		 * re-open the zone to ensure new writes can be processed.
235 		 * For a truncation to the maximum file size, the zone is
236 		 * closed and writes cannot be accepted anymore, so clear
237 		 * the open flag.
238 		 */
239 		if (!isize)
240 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
241 		else
242 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
243 	}
244 
245 	zonefs_update_stats(inode, isize);
246 	truncate_setsize(inode, isize);
247 	z->z_wpoffset = isize;
248 	zonefs_inode_account_active(inode);
249 
250 unlock:
251 	mutex_unlock(&zi->i_truncate_mutex);
252 	filemap_invalidate_unlock(inode->i_mapping);
253 
254 	return ret;
255 }
256 
257 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
258 			     int datasync)
259 {
260 	struct inode *inode = file_inode(file);
261 	int ret = 0;
262 
263 	if (unlikely(IS_IMMUTABLE(inode)))
264 		return -EPERM;
265 
266 	/*
267 	 * Since only direct writes are allowed in sequential files, page cache
268 	 * flush is needed only for conventional zone files.
269 	 */
270 	if (zonefs_inode_is_cnv(inode))
271 		ret = file_write_and_wait_range(file, start, end);
272 	if (!ret)
273 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
274 
275 	if (ret)
276 		zonefs_io_error(inode, true);
277 
278 	return ret;
279 }
280 
281 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
282 {
283 	struct inode *inode = file_inode(vmf->vma->vm_file);
284 	vm_fault_t ret;
285 
286 	if (unlikely(IS_IMMUTABLE(inode)))
287 		return VM_FAULT_SIGBUS;
288 
289 	/*
290 	 * Sanity check: only conventional zone files can have shared
291 	 * writeable mappings.
292 	 */
293 	if (zonefs_inode_is_seq(inode))
294 		return VM_FAULT_NOPAGE;
295 
296 	sb_start_pagefault(inode->i_sb);
297 	file_update_time(vmf->vma->vm_file);
298 
299 	/* Serialize against truncates */
300 	filemap_invalidate_lock_shared(inode->i_mapping);
301 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
302 	filemap_invalidate_unlock_shared(inode->i_mapping);
303 
304 	sb_end_pagefault(inode->i_sb);
305 	return ret;
306 }
307 
308 static const struct vm_operations_struct zonefs_file_vm_ops = {
309 	.fault		= filemap_fault,
310 	.map_pages	= filemap_map_pages,
311 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
312 };
313 
314 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
315 {
316 	/*
317 	 * Conventional zones accept random writes, so their files can support
318 	 * shared writable mappings. For sequential zone files, only read
319 	 * mappings are possible since there are no guarantees for write
320 	 * ordering between msync() and page cache writeback.
321 	 */
322 	if (zonefs_inode_is_seq(file_inode(file)) &&
323 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
324 		return -EINVAL;
325 
326 	file_accessed(file);
327 	vma->vm_ops = &zonefs_file_vm_ops;
328 
329 	return 0;
330 }
331 
332 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
333 {
334 	loff_t isize = i_size_read(file_inode(file));
335 
336 	/*
337 	 * Seeks are limited to below the zone size for conventional zones
338 	 * and below the zone write pointer for sequential zones. In both
339 	 * cases, this limit is the inode size.
340 	 */
341 	return generic_file_llseek_size(file, offset, whence, isize, isize);
342 }
343 
344 struct zonefs_zone_append_bio {
345 	/* The target inode of the BIO */
346 	struct inode *inode;
347 
348 	/* For sync writes, the target append write offset */
349 	u64 append_offset;
350 
351 	/*
352 	 * This member must come last, bio_alloc_bioset will allocate enough
353 	 * bytes for entire zonefs_bio but relies on bio being last.
354 	 */
355 	struct bio bio;
356 };
357 
358 static inline struct zonefs_zone_append_bio *
359 zonefs_zone_append_bio(struct bio *bio)
360 {
361 	return container_of(bio, struct zonefs_zone_append_bio, bio);
362 }
363 
364 static void zonefs_file_zone_append_dio_bio_end_io(struct bio *bio)
365 {
366 	struct zonefs_zone_append_bio *za_bio = zonefs_zone_append_bio(bio);
367 	struct zonefs_zone *z = zonefs_inode_zone(za_bio->inode);
368 	sector_t za_sector;
369 
370 	if (bio->bi_status != BLK_STS_OK)
371 		goto bio_end;
372 
373 	/*
374 	 * If the file zone was written underneath the file system, the zone
375 	 * append operation can still succedd (if the zone is not full) but
376 	 * the write append location will not be where we expect it to be.
377 	 * Check that we wrote where we intended to, that is, at z->z_wpoffset.
378 	 */
379 	za_sector = z->z_sector + (za_bio->append_offset >> SECTOR_SHIFT);
380 	if (bio->bi_iter.bi_sector != za_sector) {
381 		zonefs_warn(za_bio->inode->i_sb,
382 			    "Invalid write sector %llu for zone at %llu\n",
383 			    bio->bi_iter.bi_sector, z->z_sector);
384 		bio->bi_status = BLK_STS_IOERR;
385 	}
386 
387 bio_end:
388 	iomap_dio_bio_end_io(bio);
389 }
390 
391 static void zonefs_file_zone_append_dio_submit_io(const struct iomap_iter *iter,
392 						  struct bio *bio,
393 						  loff_t file_offset)
394 {
395 	struct zonefs_zone_append_bio *za_bio = zonefs_zone_append_bio(bio);
396 	struct inode *inode = iter->inode;
397 	struct zonefs_zone *z = zonefs_inode_zone(inode);
398 
399 	/*
400 	 * Issue a zone append BIO to process sync dio writes. The append
401 	 * file offset is saved to check the zone append write location
402 	 * on completion of the BIO.
403 	 */
404 	za_bio->inode = inode;
405 	za_bio->append_offset = file_offset;
406 
407 	bio->bi_opf &= ~REQ_OP_WRITE;
408 	bio->bi_opf |= REQ_OP_ZONE_APPEND;
409 	bio->bi_iter.bi_sector = z->z_sector;
410 	bio->bi_end_io = zonefs_file_zone_append_dio_bio_end_io;
411 
412 	submit_bio(bio);
413 }
414 
415 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
416 					int error, unsigned int flags)
417 {
418 	struct inode *inode = file_inode(iocb->ki_filp);
419 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
420 
421 	if (error) {
422 		zonefs_io_error(inode, true);
423 		return error;
424 	}
425 
426 	if (size && zonefs_inode_is_seq(inode)) {
427 		/*
428 		 * Note that we may be seeing completions out of order,
429 		 * but that is not a problem since a write completed
430 		 * successfully necessarily means that all preceding writes
431 		 * were also successful. So we can safely increase the inode
432 		 * size to the write end location.
433 		 */
434 		mutex_lock(&zi->i_truncate_mutex);
435 		if (i_size_read(inode) < iocb->ki_pos + size) {
436 			zonefs_update_stats(inode, iocb->ki_pos + size);
437 			zonefs_i_size_write(inode, iocb->ki_pos + size);
438 		}
439 		mutex_unlock(&zi->i_truncate_mutex);
440 	}
441 
442 	return 0;
443 }
444 
445 static struct bio_set zonefs_zone_append_bio_set;
446 
447 static const struct iomap_dio_ops zonefs_zone_append_dio_ops = {
448 	.submit_io	= zonefs_file_zone_append_dio_submit_io,
449 	.end_io		= zonefs_file_write_dio_end_io,
450 	.bio_set	= &zonefs_zone_append_bio_set,
451 };
452 
453 static const struct iomap_dio_ops zonefs_write_dio_ops = {
454 	.end_io		= zonefs_file_write_dio_end_io,
455 };
456 
457 /*
458  * Do not exceed the LFS limits nor the file zone size. If pos is under the
459  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
460  */
461 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
462 					loff_t count)
463 {
464 	struct inode *inode = file_inode(file);
465 	struct zonefs_zone *z = zonefs_inode_zone(inode);
466 	loff_t limit = rlimit(RLIMIT_FSIZE);
467 	loff_t max_size = z->z_capacity;
468 
469 	if (limit != RLIM_INFINITY) {
470 		if (pos >= limit) {
471 			send_sig(SIGXFSZ, current, 0);
472 			return -EFBIG;
473 		}
474 		count = min(count, limit - pos);
475 	}
476 
477 	if (!(file->f_flags & O_LARGEFILE))
478 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
479 
480 	if (unlikely(pos >= max_size))
481 		return -EFBIG;
482 
483 	return min(count, max_size - pos);
484 }
485 
486 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
487 {
488 	struct file *file = iocb->ki_filp;
489 	struct inode *inode = file_inode(file);
490 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
491 	struct zonefs_zone *z = zonefs_inode_zone(inode);
492 	loff_t count;
493 
494 	if (IS_SWAPFILE(inode))
495 		return -ETXTBSY;
496 
497 	if (!iov_iter_count(from))
498 		return 0;
499 
500 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
501 		return -EINVAL;
502 
503 	if (iocb->ki_flags & IOCB_APPEND) {
504 		if (zonefs_zone_is_cnv(z))
505 			return -EINVAL;
506 		mutex_lock(&zi->i_truncate_mutex);
507 		iocb->ki_pos = z->z_wpoffset;
508 		mutex_unlock(&zi->i_truncate_mutex);
509 	}
510 
511 	count = zonefs_write_check_limits(file, iocb->ki_pos,
512 					  iov_iter_count(from));
513 	if (count < 0)
514 		return count;
515 
516 	iov_iter_truncate(from, count);
517 	return iov_iter_count(from);
518 }
519 
520 /*
521  * Handle direct writes. For sequential zone files, this is the only possible
522  * write path. For these files, check that the user is issuing writes
523  * sequentially from the end of the file. This code assumes that the block layer
524  * delivers write requests to the device in sequential order. This is always the
525  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
526  * elevator feature is being used (e.g. mq-deadline). The block layer always
527  * automatically select such an elevator for zoned block devices during the
528  * device initialization.
529  */
530 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
531 {
532 	struct inode *inode = file_inode(iocb->ki_filp);
533 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
534 	struct zonefs_zone *z = zonefs_inode_zone(inode);
535 	struct super_block *sb = inode->i_sb;
536 	const struct iomap_dio_ops *dio_ops;
537 	bool sync = is_sync_kiocb(iocb);
538 	bool append = false;
539 	ssize_t ret, count;
540 
541 	/*
542 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
543 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
544 	 * on the inode lock but the second goes through but is now unaligned).
545 	 */
546 	if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT))
547 		return -EOPNOTSUPP;
548 
549 	if (iocb->ki_flags & IOCB_NOWAIT) {
550 		if (!inode_trylock(inode))
551 			return -EAGAIN;
552 	} else {
553 		inode_lock(inode);
554 	}
555 
556 	count = zonefs_write_checks(iocb, from);
557 	if (count <= 0) {
558 		ret = count;
559 		goto inode_unlock;
560 	}
561 
562 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
563 		ret = -EINVAL;
564 		goto inode_unlock;
565 	}
566 
567 	/* Enforce sequential writes (append only) in sequential zones */
568 	if (zonefs_zone_is_seq(z)) {
569 		mutex_lock(&zi->i_truncate_mutex);
570 		if (iocb->ki_pos != z->z_wpoffset) {
571 			mutex_unlock(&zi->i_truncate_mutex);
572 			ret = -EINVAL;
573 			goto inode_unlock;
574 		}
575 		mutex_unlock(&zi->i_truncate_mutex);
576 		append = sync;
577 	}
578 
579 	if (append) {
580 		unsigned int max = bdev_max_zone_append_sectors(sb->s_bdev);
581 
582 		max = ALIGN_DOWN(max << SECTOR_SHIFT, sb->s_blocksize);
583 		iov_iter_truncate(from, max);
584 
585 		dio_ops = &zonefs_zone_append_dio_ops;
586 	} else {
587 		dio_ops = &zonefs_write_dio_ops;
588 	}
589 
590 	/*
591 	 * iomap_dio_rw() may return ENOTBLK if there was an issue with
592 	 * page invalidation. Overwrite that error code with EBUSY so that
593 	 * the user can make sense of the error.
594 	 */
595 	ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
596 			   dio_ops, 0, NULL, 0);
597 	if (ret == -ENOTBLK)
598 		ret = -EBUSY;
599 
600 	if (zonefs_zone_is_seq(z) &&
601 	    (ret > 0 || ret == -EIOCBQUEUED)) {
602 		if (ret > 0)
603 			count = ret;
604 
605 		/*
606 		 * Update the zone write pointer offset assuming the write
607 		 * operation succeeded. If it did not, the error recovery path
608 		 * will correct it. Also do active seq file accounting.
609 		 */
610 		mutex_lock(&zi->i_truncate_mutex);
611 		z->z_wpoffset += count;
612 		zonefs_inode_account_active(inode);
613 		mutex_unlock(&zi->i_truncate_mutex);
614 	}
615 
616 inode_unlock:
617 	inode_unlock(inode);
618 
619 	return ret;
620 }
621 
622 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
623 					  struct iov_iter *from)
624 {
625 	struct inode *inode = file_inode(iocb->ki_filp);
626 	ssize_t ret;
627 
628 	/*
629 	 * Direct IO writes are mandatory for sequential zone files so that the
630 	 * write IO issuing order is preserved.
631 	 */
632 	if (zonefs_inode_is_seq(inode))
633 		return -EIO;
634 
635 	if (iocb->ki_flags & IOCB_NOWAIT) {
636 		if (!inode_trylock(inode))
637 			return -EAGAIN;
638 	} else {
639 		inode_lock(inode);
640 	}
641 
642 	ret = zonefs_write_checks(iocb, from);
643 	if (ret <= 0)
644 		goto inode_unlock;
645 
646 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
647 	if (ret > 0)
648 		iocb->ki_pos += ret;
649 	else if (ret == -EIO)
650 		zonefs_io_error(inode, true);
651 
652 inode_unlock:
653 	inode_unlock(inode);
654 	if (ret > 0)
655 		ret = generic_write_sync(iocb, ret);
656 
657 	return ret;
658 }
659 
660 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
661 {
662 	struct inode *inode = file_inode(iocb->ki_filp);
663 	struct zonefs_zone *z = zonefs_inode_zone(inode);
664 
665 	if (unlikely(IS_IMMUTABLE(inode)))
666 		return -EPERM;
667 
668 	if (sb_rdonly(inode->i_sb))
669 		return -EROFS;
670 
671 	/* Write operations beyond the zone capacity are not allowed */
672 	if (iocb->ki_pos >= z->z_capacity)
673 		return -EFBIG;
674 
675 	if (iocb->ki_flags & IOCB_DIRECT) {
676 		ssize_t ret = zonefs_file_dio_write(iocb, from);
677 
678 		if (ret != -ENOTBLK)
679 			return ret;
680 	}
681 
682 	return zonefs_file_buffered_write(iocb, from);
683 }
684 
685 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
686 				       int error, unsigned int flags)
687 {
688 	if (error) {
689 		zonefs_io_error(file_inode(iocb->ki_filp), false);
690 		return error;
691 	}
692 
693 	return 0;
694 }
695 
696 static const struct iomap_dio_ops zonefs_read_dio_ops = {
697 	.end_io			= zonefs_file_read_dio_end_io,
698 };
699 
700 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
701 {
702 	struct inode *inode = file_inode(iocb->ki_filp);
703 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
704 	struct zonefs_zone *z = zonefs_inode_zone(inode);
705 	struct super_block *sb = inode->i_sb;
706 	loff_t isize;
707 	ssize_t ret;
708 
709 	/* Offline zones cannot be read */
710 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
711 		return -EPERM;
712 
713 	if (iocb->ki_pos >= z->z_capacity)
714 		return 0;
715 
716 	if (iocb->ki_flags & IOCB_NOWAIT) {
717 		if (!inode_trylock_shared(inode))
718 			return -EAGAIN;
719 	} else {
720 		inode_lock_shared(inode);
721 	}
722 
723 	/* Limit read operations to written data */
724 	mutex_lock(&zi->i_truncate_mutex);
725 	isize = i_size_read(inode);
726 	if (iocb->ki_pos >= isize) {
727 		mutex_unlock(&zi->i_truncate_mutex);
728 		ret = 0;
729 		goto inode_unlock;
730 	}
731 	iov_iter_truncate(to, isize - iocb->ki_pos);
732 	mutex_unlock(&zi->i_truncate_mutex);
733 
734 	if (iocb->ki_flags & IOCB_DIRECT) {
735 		size_t count = iov_iter_count(to);
736 
737 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
738 			ret = -EINVAL;
739 			goto inode_unlock;
740 		}
741 		file_accessed(iocb->ki_filp);
742 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
743 				   &zonefs_read_dio_ops, 0, NULL, 0);
744 	} else {
745 		ret = generic_file_read_iter(iocb, to);
746 		if (ret == -EIO)
747 			zonefs_io_error(inode, false);
748 	}
749 
750 inode_unlock:
751 	inode_unlock_shared(inode);
752 
753 	return ret;
754 }
755 
756 static ssize_t zonefs_file_splice_read(struct file *in, loff_t *ppos,
757 				       struct pipe_inode_info *pipe,
758 				       size_t len, unsigned int flags)
759 {
760 	struct inode *inode = file_inode(in);
761 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
762 	struct zonefs_zone *z = zonefs_inode_zone(inode);
763 	loff_t isize;
764 	ssize_t ret = 0;
765 
766 	/* Offline zones cannot be read */
767 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
768 		return -EPERM;
769 
770 	if (*ppos >= z->z_capacity)
771 		return 0;
772 
773 	inode_lock_shared(inode);
774 
775 	/* Limit read operations to written data */
776 	mutex_lock(&zi->i_truncate_mutex);
777 	isize = i_size_read(inode);
778 	if (*ppos >= isize)
779 		len = 0;
780 	else
781 		len = min_t(loff_t, len, isize - *ppos);
782 	mutex_unlock(&zi->i_truncate_mutex);
783 
784 	if (len > 0) {
785 		ret = filemap_splice_read(in, ppos, pipe, len, flags);
786 		if (ret == -EIO)
787 			zonefs_io_error(inode, false);
788 	}
789 
790 	inode_unlock_shared(inode);
791 	return ret;
792 }
793 
794 /*
795  * Write open accounting is done only for sequential files.
796  */
797 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
798 					    struct file *file)
799 {
800 	if (zonefs_inode_is_cnv(inode))
801 		return false;
802 
803 	if (!(file->f_mode & FMODE_WRITE))
804 		return false;
805 
806 	return true;
807 }
808 
809 static int zonefs_seq_file_write_open(struct inode *inode)
810 {
811 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
812 	struct zonefs_zone *z = zonefs_inode_zone(inode);
813 	int ret = 0;
814 
815 	mutex_lock(&zi->i_truncate_mutex);
816 
817 	if (!zi->i_wr_refcnt) {
818 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
819 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
820 
821 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
822 
823 			if (sbi->s_max_wro_seq_files
824 			    && wro > sbi->s_max_wro_seq_files) {
825 				atomic_dec(&sbi->s_wro_seq_files);
826 				ret = -EBUSY;
827 				goto unlock;
828 			}
829 
830 			if (i_size_read(inode) < z->z_capacity) {
831 				ret = zonefs_inode_zone_mgmt(inode,
832 							     REQ_OP_ZONE_OPEN);
833 				if (ret) {
834 					atomic_dec(&sbi->s_wro_seq_files);
835 					goto unlock;
836 				}
837 				z->z_flags |= ZONEFS_ZONE_OPEN;
838 				zonefs_inode_account_active(inode);
839 			}
840 		}
841 	}
842 
843 	zi->i_wr_refcnt++;
844 
845 unlock:
846 	mutex_unlock(&zi->i_truncate_mutex);
847 
848 	return ret;
849 }
850 
851 static int zonefs_file_open(struct inode *inode, struct file *file)
852 {
853 	int ret;
854 
855 	file->f_mode |= FMODE_CAN_ODIRECT;
856 	ret = generic_file_open(inode, file);
857 	if (ret)
858 		return ret;
859 
860 	if (zonefs_seq_file_need_wro(inode, file))
861 		return zonefs_seq_file_write_open(inode);
862 
863 	return 0;
864 }
865 
866 static void zonefs_seq_file_write_close(struct inode *inode)
867 {
868 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
869 	struct zonefs_zone *z = zonefs_inode_zone(inode);
870 	struct super_block *sb = inode->i_sb;
871 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
872 	int ret = 0;
873 
874 	mutex_lock(&zi->i_truncate_mutex);
875 
876 	zi->i_wr_refcnt--;
877 	if (zi->i_wr_refcnt)
878 		goto unlock;
879 
880 	/*
881 	 * The file zone may not be open anymore (e.g. the file was truncated to
882 	 * its maximum size or it was fully written). For this case, we only
883 	 * need to decrement the write open count.
884 	 */
885 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
886 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
887 		if (ret) {
888 			__zonefs_io_error(inode, false);
889 			/*
890 			 * Leaving zones explicitly open may lead to a state
891 			 * where most zones cannot be written (zone resources
892 			 * exhausted). So take preventive action by remounting
893 			 * read-only.
894 			 */
895 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
896 			    !(sb->s_flags & SB_RDONLY)) {
897 				zonefs_warn(sb,
898 					"closing zone at %llu failed %d\n",
899 					z->z_sector, ret);
900 				zonefs_warn(sb,
901 					"remounting filesystem read-only\n");
902 				sb->s_flags |= SB_RDONLY;
903 			}
904 			goto unlock;
905 		}
906 
907 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
908 		zonefs_inode_account_active(inode);
909 	}
910 
911 	atomic_dec(&sbi->s_wro_seq_files);
912 
913 unlock:
914 	mutex_unlock(&zi->i_truncate_mutex);
915 }
916 
917 static int zonefs_file_release(struct inode *inode, struct file *file)
918 {
919 	/*
920 	 * If we explicitly open a zone we must close it again as well, but the
921 	 * zone management operation can fail (either due to an IO error or as
922 	 * the zone has gone offline or read-only). Make sure we don't fail the
923 	 * close(2) for user-space.
924 	 */
925 	if (zonefs_seq_file_need_wro(inode, file))
926 		zonefs_seq_file_write_close(inode);
927 
928 	return 0;
929 }
930 
931 const struct file_operations zonefs_file_operations = {
932 	.open		= zonefs_file_open,
933 	.release	= zonefs_file_release,
934 	.fsync		= zonefs_file_fsync,
935 	.mmap		= zonefs_file_mmap,
936 	.llseek		= zonefs_file_llseek,
937 	.read_iter	= zonefs_file_read_iter,
938 	.write_iter	= zonefs_file_write_iter,
939 	.splice_read	= zonefs_file_splice_read,
940 	.splice_write	= iter_file_splice_write,
941 	.iopoll		= iocb_bio_iopoll,
942 };
943 
944 int zonefs_file_bioset_init(void)
945 {
946 	return bioset_init(&zonefs_zone_append_bio_set, BIO_POOL_SIZE,
947 			   offsetof(struct zonefs_zone_append_bio, bio),
948 			   BIOSET_NEED_BVECS);
949 }
950 
951 void zonefs_file_bioset_exit(void)
952 {
953 	bioset_exit(&zonefs_zone_append_bio_set);
954 }
955