xref: /openbmc/linux/fs/zonefs/file.c (revision 017cdefe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2022 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/iomap.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/blkdev.h>
13 #include <linux/statfs.h>
14 #include <linux/writeback.h>
15 #include <linux/quotaops.h>
16 #include <linux/seq_file.h>
17 #include <linux/parser.h>
18 #include <linux/uio.h>
19 #include <linux/mman.h>
20 #include <linux/sched/mm.h>
21 #include <linux/task_io_accounting_ops.h>
22 
23 #include "zonefs.h"
24 
25 #include "trace.h"
26 
27 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
28 				   loff_t length, unsigned int flags,
29 				   struct iomap *iomap, struct iomap *srcmap)
30 {
31 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
32 	struct zonefs_zone *z = zonefs_inode_zone(inode);
33 	struct super_block *sb = inode->i_sb;
34 	loff_t isize;
35 
36 	/*
37 	 * All blocks are always mapped below EOF. If reading past EOF,
38 	 * act as if there is a hole up to the file maximum size.
39 	 */
40 	mutex_lock(&zi->i_truncate_mutex);
41 	iomap->bdev = inode->i_sb->s_bdev;
42 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
43 	isize = i_size_read(inode);
44 	if (iomap->offset >= isize) {
45 		iomap->type = IOMAP_HOLE;
46 		iomap->addr = IOMAP_NULL_ADDR;
47 		iomap->length = length;
48 	} else {
49 		iomap->type = IOMAP_MAPPED;
50 		iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
51 		iomap->length = isize - iomap->offset;
52 	}
53 	mutex_unlock(&zi->i_truncate_mutex);
54 
55 	trace_zonefs_iomap_begin(inode, iomap);
56 
57 	return 0;
58 }
59 
60 static const struct iomap_ops zonefs_read_iomap_ops = {
61 	.iomap_begin	= zonefs_read_iomap_begin,
62 };
63 
64 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
65 				    loff_t length, unsigned int flags,
66 				    struct iomap *iomap, struct iomap *srcmap)
67 {
68 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 	struct zonefs_zone *z = zonefs_inode_zone(inode);
70 	struct super_block *sb = inode->i_sb;
71 	loff_t isize;
72 
73 	/* All write I/Os should always be within the file maximum size */
74 	if (WARN_ON_ONCE(offset + length > z->z_capacity))
75 		return -EIO;
76 
77 	/*
78 	 * Sequential zones can only accept direct writes. This is already
79 	 * checked when writes are issued, so warn if we see a page writeback
80 	 * operation.
81 	 */
82 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z) && !(flags & IOMAP_DIRECT)))
83 		return -EIO;
84 
85 	/*
86 	 * For conventional zones, all blocks are always mapped. For sequential
87 	 * zones, all blocks after always mapped below the inode size (zone
88 	 * write pointer) and unwriten beyond.
89 	 */
90 	mutex_lock(&zi->i_truncate_mutex);
91 	iomap->bdev = inode->i_sb->s_bdev;
92 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
93 	iomap->addr = (z->z_sector << SECTOR_SHIFT) + iomap->offset;
94 	isize = i_size_read(inode);
95 	if (iomap->offset >= isize) {
96 		iomap->type = IOMAP_UNWRITTEN;
97 		iomap->length = z->z_capacity - iomap->offset;
98 	} else {
99 		iomap->type = IOMAP_MAPPED;
100 		iomap->length = isize - iomap->offset;
101 	}
102 	mutex_unlock(&zi->i_truncate_mutex);
103 
104 	trace_zonefs_iomap_begin(inode, iomap);
105 
106 	return 0;
107 }
108 
109 static const struct iomap_ops zonefs_write_iomap_ops = {
110 	.iomap_begin	= zonefs_write_iomap_begin,
111 };
112 
113 static int zonefs_read_folio(struct file *unused, struct folio *folio)
114 {
115 	return iomap_read_folio(folio, &zonefs_read_iomap_ops);
116 }
117 
118 static void zonefs_readahead(struct readahead_control *rac)
119 {
120 	iomap_readahead(rac, &zonefs_read_iomap_ops);
121 }
122 
123 /*
124  * Map blocks for page writeback. This is used only on conventional zone files,
125  * which implies that the page range can only be within the fixed inode size.
126  */
127 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
128 				   struct inode *inode, loff_t offset)
129 {
130 	struct zonefs_zone *z = zonefs_inode_zone(inode);
131 
132 	if (WARN_ON_ONCE(zonefs_zone_is_seq(z)))
133 		return -EIO;
134 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
135 		return -EIO;
136 
137 	/* If the mapping is already OK, nothing needs to be done */
138 	if (offset >= wpc->iomap.offset &&
139 	    offset < wpc->iomap.offset + wpc->iomap.length)
140 		return 0;
141 
142 	return zonefs_write_iomap_begin(inode, offset,
143 					z->z_capacity - offset,
144 					IOMAP_WRITE, &wpc->iomap, NULL);
145 }
146 
147 static const struct iomap_writeback_ops zonefs_writeback_ops = {
148 	.map_blocks		= zonefs_write_map_blocks,
149 };
150 
151 static int zonefs_writepages(struct address_space *mapping,
152 			     struct writeback_control *wbc)
153 {
154 	struct iomap_writepage_ctx wpc = { };
155 
156 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
157 }
158 
159 static int zonefs_swap_activate(struct swap_info_struct *sis,
160 				struct file *swap_file, sector_t *span)
161 {
162 	struct inode *inode = file_inode(swap_file);
163 
164 	if (zonefs_inode_is_seq(inode)) {
165 		zonefs_err(inode->i_sb,
166 			   "swap file: not a conventional zone file\n");
167 		return -EINVAL;
168 	}
169 
170 	return iomap_swapfile_activate(sis, swap_file, span,
171 				       &zonefs_read_iomap_ops);
172 }
173 
174 const struct address_space_operations zonefs_file_aops = {
175 	.read_folio		= zonefs_read_folio,
176 	.readahead		= zonefs_readahead,
177 	.writepages		= zonefs_writepages,
178 	.dirty_folio		= filemap_dirty_folio,
179 	.release_folio		= iomap_release_folio,
180 	.invalidate_folio	= iomap_invalidate_folio,
181 	.migrate_folio		= filemap_migrate_folio,
182 	.is_partially_uptodate	= iomap_is_partially_uptodate,
183 	.error_remove_page	= generic_error_remove_page,
184 	.direct_IO		= noop_direct_IO,
185 	.swap_activate		= zonefs_swap_activate,
186 };
187 
188 int zonefs_file_truncate(struct inode *inode, loff_t isize)
189 {
190 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
191 	struct zonefs_zone *z = zonefs_inode_zone(inode);
192 	loff_t old_isize;
193 	enum req_op op;
194 	int ret = 0;
195 
196 	/*
197 	 * Only sequential zone files can be truncated and truncation is allowed
198 	 * only down to a 0 size, which is equivalent to a zone reset, and to
199 	 * the maximum file size, which is equivalent to a zone finish.
200 	 */
201 	if (!zonefs_zone_is_seq(z))
202 		return -EPERM;
203 
204 	if (!isize)
205 		op = REQ_OP_ZONE_RESET;
206 	else if (isize == z->z_capacity)
207 		op = REQ_OP_ZONE_FINISH;
208 	else
209 		return -EPERM;
210 
211 	inode_dio_wait(inode);
212 
213 	/* Serialize against page faults */
214 	filemap_invalidate_lock(inode->i_mapping);
215 
216 	/* Serialize against zonefs_iomap_begin() */
217 	mutex_lock(&zi->i_truncate_mutex);
218 
219 	old_isize = i_size_read(inode);
220 	if (isize == old_isize)
221 		goto unlock;
222 
223 	ret = zonefs_inode_zone_mgmt(inode, op);
224 	if (ret)
225 		goto unlock;
226 
227 	/*
228 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
229 	 * take care of open zones.
230 	 */
231 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
232 		/*
233 		 * Truncating a zone to EMPTY or FULL is the equivalent of
234 		 * closing the zone. For a truncation to 0, we need to
235 		 * re-open the zone to ensure new writes can be processed.
236 		 * For a truncation to the maximum file size, the zone is
237 		 * closed and writes cannot be accepted anymore, so clear
238 		 * the open flag.
239 		 */
240 		if (!isize)
241 			ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
242 		else
243 			z->z_flags &= ~ZONEFS_ZONE_OPEN;
244 	}
245 
246 	zonefs_update_stats(inode, isize);
247 	truncate_setsize(inode, isize);
248 	z->z_wpoffset = isize;
249 	zonefs_inode_account_active(inode);
250 
251 unlock:
252 	mutex_unlock(&zi->i_truncate_mutex);
253 	filemap_invalidate_unlock(inode->i_mapping);
254 
255 	return ret;
256 }
257 
258 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
259 			     int datasync)
260 {
261 	struct inode *inode = file_inode(file);
262 	int ret = 0;
263 
264 	if (unlikely(IS_IMMUTABLE(inode)))
265 		return -EPERM;
266 
267 	/*
268 	 * Since only direct writes are allowed in sequential files, page cache
269 	 * flush is needed only for conventional zone files.
270 	 */
271 	if (zonefs_inode_is_cnv(inode))
272 		ret = file_write_and_wait_range(file, start, end);
273 	if (!ret)
274 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
275 
276 	if (ret)
277 		zonefs_io_error(inode, true);
278 
279 	return ret;
280 }
281 
282 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
283 {
284 	struct inode *inode = file_inode(vmf->vma->vm_file);
285 	vm_fault_t ret;
286 
287 	if (unlikely(IS_IMMUTABLE(inode)))
288 		return VM_FAULT_SIGBUS;
289 
290 	/*
291 	 * Sanity check: only conventional zone files can have shared
292 	 * writeable mappings.
293 	 */
294 	if (zonefs_inode_is_seq(inode))
295 		return VM_FAULT_NOPAGE;
296 
297 	sb_start_pagefault(inode->i_sb);
298 	file_update_time(vmf->vma->vm_file);
299 
300 	/* Serialize against truncates */
301 	filemap_invalidate_lock_shared(inode->i_mapping);
302 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
303 	filemap_invalidate_unlock_shared(inode->i_mapping);
304 
305 	sb_end_pagefault(inode->i_sb);
306 	return ret;
307 }
308 
309 static const struct vm_operations_struct zonefs_file_vm_ops = {
310 	.fault		= filemap_fault,
311 	.map_pages	= filemap_map_pages,
312 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
313 };
314 
315 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
316 {
317 	/*
318 	 * Conventional zones accept random writes, so their files can support
319 	 * shared writable mappings. For sequential zone files, only read
320 	 * mappings are possible since there are no guarantees for write
321 	 * ordering between msync() and page cache writeback.
322 	 */
323 	if (zonefs_inode_is_seq(file_inode(file)) &&
324 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
325 		return -EINVAL;
326 
327 	file_accessed(file);
328 	vma->vm_ops = &zonefs_file_vm_ops;
329 
330 	return 0;
331 }
332 
333 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
334 {
335 	loff_t isize = i_size_read(file_inode(file));
336 
337 	/*
338 	 * Seeks are limited to below the zone size for conventional zones
339 	 * and below the zone write pointer for sequential zones. In both
340 	 * cases, this limit is the inode size.
341 	 */
342 	return generic_file_llseek_size(file, offset, whence, isize, isize);
343 }
344 
345 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
346 					int error, unsigned int flags)
347 {
348 	struct inode *inode = file_inode(iocb->ki_filp);
349 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
350 
351 	if (error) {
352 		zonefs_io_error(inode, true);
353 		return error;
354 	}
355 
356 	if (size && zonefs_inode_is_seq(inode)) {
357 		/*
358 		 * Note that we may be seeing completions out of order,
359 		 * but that is not a problem since a write completed
360 		 * successfully necessarily means that all preceding writes
361 		 * were also successful. So we can safely increase the inode
362 		 * size to the write end location.
363 		 */
364 		mutex_lock(&zi->i_truncate_mutex);
365 		if (i_size_read(inode) < iocb->ki_pos + size) {
366 			zonefs_update_stats(inode, iocb->ki_pos + size);
367 			zonefs_i_size_write(inode, iocb->ki_pos + size);
368 		}
369 		mutex_unlock(&zi->i_truncate_mutex);
370 	}
371 
372 	return 0;
373 }
374 
375 static const struct iomap_dio_ops zonefs_write_dio_ops = {
376 	.end_io			= zonefs_file_write_dio_end_io,
377 };
378 
379 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
380 {
381 	struct inode *inode = file_inode(iocb->ki_filp);
382 	struct zonefs_zone *z = zonefs_inode_zone(inode);
383 	struct block_device *bdev = inode->i_sb->s_bdev;
384 	unsigned int max = bdev_max_zone_append_sectors(bdev);
385 	struct bio *bio;
386 	ssize_t size;
387 	int nr_pages;
388 	ssize_t ret;
389 
390 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
391 	iov_iter_truncate(from, max);
392 
393 	nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
394 	if (!nr_pages)
395 		return 0;
396 
397 	bio = bio_alloc(bdev, nr_pages,
398 			REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
399 	bio->bi_iter.bi_sector = z->z_sector;
400 	bio->bi_ioprio = iocb->ki_ioprio;
401 	if (iocb_is_dsync(iocb))
402 		bio->bi_opf |= REQ_FUA;
403 
404 	ret = bio_iov_iter_get_pages(bio, from);
405 	if (unlikely(ret))
406 		goto out_release;
407 
408 	size = bio->bi_iter.bi_size;
409 	task_io_account_write(size);
410 
411 	if (iocb->ki_flags & IOCB_HIPRI)
412 		bio_set_polled(bio, iocb);
413 
414 	ret = submit_bio_wait(bio);
415 
416 	/*
417 	 * If the file zone was written underneath the file system, the zone
418 	 * write pointer may not be where we expect it to be, but the zone
419 	 * append write can still succeed. So check manually that we wrote where
420 	 * we intended to, that is, at zi->i_wpoffset.
421 	 */
422 	if (!ret) {
423 		sector_t wpsector =
424 			z->z_sector + (z->z_wpoffset >> SECTOR_SHIFT);
425 
426 		if (bio->bi_iter.bi_sector != wpsector) {
427 			zonefs_warn(inode->i_sb,
428 				"Corrupted write pointer %llu for zone at %llu\n",
429 				wpsector, z->z_sector);
430 			ret = -EIO;
431 		}
432 	}
433 
434 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
435 	trace_zonefs_file_dio_append(inode, size, ret);
436 
437 out_release:
438 	bio_release_pages(bio, false);
439 	bio_put(bio);
440 
441 	if (ret >= 0) {
442 		iocb->ki_pos += size;
443 		return size;
444 	}
445 
446 	return ret;
447 }
448 
449 /*
450  * Do not exceed the LFS limits nor the file zone size. If pos is under the
451  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
452  */
453 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
454 					loff_t count)
455 {
456 	struct inode *inode = file_inode(file);
457 	struct zonefs_zone *z = zonefs_inode_zone(inode);
458 	loff_t limit = rlimit(RLIMIT_FSIZE);
459 	loff_t max_size = z->z_capacity;
460 
461 	if (limit != RLIM_INFINITY) {
462 		if (pos >= limit) {
463 			send_sig(SIGXFSZ, current, 0);
464 			return -EFBIG;
465 		}
466 		count = min(count, limit - pos);
467 	}
468 
469 	if (!(file->f_flags & O_LARGEFILE))
470 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
471 
472 	if (unlikely(pos >= max_size))
473 		return -EFBIG;
474 
475 	return min(count, max_size - pos);
476 }
477 
478 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
479 {
480 	struct file *file = iocb->ki_filp;
481 	struct inode *inode = file_inode(file);
482 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
483 	struct zonefs_zone *z = zonefs_inode_zone(inode);
484 	loff_t count;
485 
486 	if (IS_SWAPFILE(inode))
487 		return -ETXTBSY;
488 
489 	if (!iov_iter_count(from))
490 		return 0;
491 
492 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
493 		return -EINVAL;
494 
495 	if (iocb->ki_flags & IOCB_APPEND) {
496 		if (zonefs_zone_is_cnv(z))
497 			return -EINVAL;
498 		mutex_lock(&zi->i_truncate_mutex);
499 		iocb->ki_pos = z->z_wpoffset;
500 		mutex_unlock(&zi->i_truncate_mutex);
501 	}
502 
503 	count = zonefs_write_check_limits(file, iocb->ki_pos,
504 					  iov_iter_count(from));
505 	if (count < 0)
506 		return count;
507 
508 	iov_iter_truncate(from, count);
509 	return iov_iter_count(from);
510 }
511 
512 /*
513  * Handle direct writes. For sequential zone files, this is the only possible
514  * write path. For these files, check that the user is issuing writes
515  * sequentially from the end of the file. This code assumes that the block layer
516  * delivers write requests to the device in sequential order. This is always the
517  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
518  * elevator feature is being used (e.g. mq-deadline). The block layer always
519  * automatically select such an elevator for zoned block devices during the
520  * device initialization.
521  */
522 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
523 {
524 	struct inode *inode = file_inode(iocb->ki_filp);
525 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
526 	struct zonefs_zone *z = zonefs_inode_zone(inode);
527 	struct super_block *sb = inode->i_sb;
528 	bool sync = is_sync_kiocb(iocb);
529 	bool append = false;
530 	ssize_t ret, count;
531 
532 	/*
533 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
534 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
535 	 * on the inode lock but the second goes through but is now unaligned).
536 	 */
537 	if (zonefs_zone_is_seq(z) && !sync && (iocb->ki_flags & IOCB_NOWAIT))
538 		return -EOPNOTSUPP;
539 
540 	if (iocb->ki_flags & IOCB_NOWAIT) {
541 		if (!inode_trylock(inode))
542 			return -EAGAIN;
543 	} else {
544 		inode_lock(inode);
545 	}
546 
547 	count = zonefs_write_checks(iocb, from);
548 	if (count <= 0) {
549 		ret = count;
550 		goto inode_unlock;
551 	}
552 
553 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
554 		ret = -EINVAL;
555 		goto inode_unlock;
556 	}
557 
558 	/* Enforce sequential writes (append only) in sequential zones */
559 	if (zonefs_zone_is_seq(z)) {
560 		mutex_lock(&zi->i_truncate_mutex);
561 		if (iocb->ki_pos != z->z_wpoffset) {
562 			mutex_unlock(&zi->i_truncate_mutex);
563 			ret = -EINVAL;
564 			goto inode_unlock;
565 		}
566 		mutex_unlock(&zi->i_truncate_mutex);
567 		append = sync;
568 	}
569 
570 	if (append)
571 		ret = zonefs_file_dio_append(iocb, from);
572 	else
573 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
574 				   &zonefs_write_dio_ops, 0, NULL, 0);
575 	if (zonefs_zone_is_seq(z) &&
576 	    (ret > 0 || ret == -EIOCBQUEUED)) {
577 		if (ret > 0)
578 			count = ret;
579 
580 		/*
581 		 * Update the zone write pointer offset assuming the write
582 		 * operation succeeded. If it did not, the error recovery path
583 		 * will correct it. Also do active seq file accounting.
584 		 */
585 		mutex_lock(&zi->i_truncate_mutex);
586 		z->z_wpoffset += count;
587 		zonefs_inode_account_active(inode);
588 		mutex_unlock(&zi->i_truncate_mutex);
589 	}
590 
591 inode_unlock:
592 	inode_unlock(inode);
593 
594 	return ret;
595 }
596 
597 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
598 					  struct iov_iter *from)
599 {
600 	struct inode *inode = file_inode(iocb->ki_filp);
601 	ssize_t ret;
602 
603 	/*
604 	 * Direct IO writes are mandatory for sequential zone files so that the
605 	 * write IO issuing order is preserved.
606 	 */
607 	if (zonefs_inode_is_seq(inode))
608 		return -EIO;
609 
610 	if (iocb->ki_flags & IOCB_NOWAIT) {
611 		if (!inode_trylock(inode))
612 			return -EAGAIN;
613 	} else {
614 		inode_lock(inode);
615 	}
616 
617 	ret = zonefs_write_checks(iocb, from);
618 	if (ret <= 0)
619 		goto inode_unlock;
620 
621 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
622 	if (ret > 0)
623 		iocb->ki_pos += ret;
624 	else if (ret == -EIO)
625 		zonefs_io_error(inode, true);
626 
627 inode_unlock:
628 	inode_unlock(inode);
629 	if (ret > 0)
630 		ret = generic_write_sync(iocb, ret);
631 
632 	return ret;
633 }
634 
635 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
636 {
637 	struct inode *inode = file_inode(iocb->ki_filp);
638 	struct zonefs_zone *z = zonefs_inode_zone(inode);
639 
640 	if (unlikely(IS_IMMUTABLE(inode)))
641 		return -EPERM;
642 
643 	if (sb_rdonly(inode->i_sb))
644 		return -EROFS;
645 
646 	/* Write operations beyond the zone capacity are not allowed */
647 	if (iocb->ki_pos >= z->z_capacity)
648 		return -EFBIG;
649 
650 	if (iocb->ki_flags & IOCB_DIRECT) {
651 		ssize_t ret = zonefs_file_dio_write(iocb, from);
652 
653 		if (ret != -ENOTBLK)
654 			return ret;
655 	}
656 
657 	return zonefs_file_buffered_write(iocb, from);
658 }
659 
660 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
661 				       int error, unsigned int flags)
662 {
663 	if (error) {
664 		zonefs_io_error(file_inode(iocb->ki_filp), false);
665 		return error;
666 	}
667 
668 	return 0;
669 }
670 
671 static const struct iomap_dio_ops zonefs_read_dio_ops = {
672 	.end_io			= zonefs_file_read_dio_end_io,
673 };
674 
675 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
676 {
677 	struct inode *inode = file_inode(iocb->ki_filp);
678 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
679 	struct zonefs_zone *z = zonefs_inode_zone(inode);
680 	struct super_block *sb = inode->i_sb;
681 	loff_t isize;
682 	ssize_t ret;
683 
684 	/* Offline zones cannot be read */
685 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
686 		return -EPERM;
687 
688 	if (iocb->ki_pos >= z->z_capacity)
689 		return 0;
690 
691 	if (iocb->ki_flags & IOCB_NOWAIT) {
692 		if (!inode_trylock_shared(inode))
693 			return -EAGAIN;
694 	} else {
695 		inode_lock_shared(inode);
696 	}
697 
698 	/* Limit read operations to written data */
699 	mutex_lock(&zi->i_truncate_mutex);
700 	isize = i_size_read(inode);
701 	if (iocb->ki_pos >= isize) {
702 		mutex_unlock(&zi->i_truncate_mutex);
703 		ret = 0;
704 		goto inode_unlock;
705 	}
706 	iov_iter_truncate(to, isize - iocb->ki_pos);
707 	mutex_unlock(&zi->i_truncate_mutex);
708 
709 	if (iocb->ki_flags & IOCB_DIRECT) {
710 		size_t count = iov_iter_count(to);
711 
712 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
713 			ret = -EINVAL;
714 			goto inode_unlock;
715 		}
716 		file_accessed(iocb->ki_filp);
717 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
718 				   &zonefs_read_dio_ops, 0, NULL, 0);
719 	} else {
720 		ret = generic_file_read_iter(iocb, to);
721 		if (ret == -EIO)
722 			zonefs_io_error(inode, false);
723 	}
724 
725 inode_unlock:
726 	inode_unlock_shared(inode);
727 
728 	return ret;
729 }
730 
731 /*
732  * Write open accounting is done only for sequential files.
733  */
734 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
735 					    struct file *file)
736 {
737 	if (zonefs_inode_is_cnv(inode))
738 		return false;
739 
740 	if (!(file->f_mode & FMODE_WRITE))
741 		return false;
742 
743 	return true;
744 }
745 
746 static int zonefs_seq_file_write_open(struct inode *inode)
747 {
748 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
749 	struct zonefs_zone *z = zonefs_inode_zone(inode);
750 	int ret = 0;
751 
752 	mutex_lock(&zi->i_truncate_mutex);
753 
754 	if (!zi->i_wr_refcnt) {
755 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
756 		unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
757 
758 		if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
759 
760 			if (sbi->s_max_wro_seq_files
761 			    && wro > sbi->s_max_wro_seq_files) {
762 				atomic_dec(&sbi->s_wro_seq_files);
763 				ret = -EBUSY;
764 				goto unlock;
765 			}
766 
767 			if (i_size_read(inode) < z->z_capacity) {
768 				ret = zonefs_inode_zone_mgmt(inode,
769 							     REQ_OP_ZONE_OPEN);
770 				if (ret) {
771 					atomic_dec(&sbi->s_wro_seq_files);
772 					goto unlock;
773 				}
774 				z->z_flags |= ZONEFS_ZONE_OPEN;
775 				zonefs_inode_account_active(inode);
776 			}
777 		}
778 	}
779 
780 	zi->i_wr_refcnt++;
781 
782 unlock:
783 	mutex_unlock(&zi->i_truncate_mutex);
784 
785 	return ret;
786 }
787 
788 static int zonefs_file_open(struct inode *inode, struct file *file)
789 {
790 	int ret;
791 
792 	ret = generic_file_open(inode, file);
793 	if (ret)
794 		return ret;
795 
796 	if (zonefs_seq_file_need_wro(inode, file))
797 		return zonefs_seq_file_write_open(inode);
798 
799 	return 0;
800 }
801 
802 static void zonefs_seq_file_write_close(struct inode *inode)
803 {
804 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
805 	struct zonefs_zone *z = zonefs_inode_zone(inode);
806 	struct super_block *sb = inode->i_sb;
807 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
808 	int ret = 0;
809 
810 	mutex_lock(&zi->i_truncate_mutex);
811 
812 	zi->i_wr_refcnt--;
813 	if (zi->i_wr_refcnt)
814 		goto unlock;
815 
816 	/*
817 	 * The file zone may not be open anymore (e.g. the file was truncated to
818 	 * its maximum size or it was fully written). For this case, we only
819 	 * need to decrement the write open count.
820 	 */
821 	if (z->z_flags & ZONEFS_ZONE_OPEN) {
822 		ret = zonefs_inode_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
823 		if (ret) {
824 			__zonefs_io_error(inode, false);
825 			/*
826 			 * Leaving zones explicitly open may lead to a state
827 			 * where most zones cannot be written (zone resources
828 			 * exhausted). So take preventive action by remounting
829 			 * read-only.
830 			 */
831 			if (z->z_flags & ZONEFS_ZONE_OPEN &&
832 			    !(sb->s_flags & SB_RDONLY)) {
833 				zonefs_warn(sb,
834 					"closing zone at %llu failed %d\n",
835 					z->z_sector, ret);
836 				zonefs_warn(sb,
837 					"remounting filesystem read-only\n");
838 				sb->s_flags |= SB_RDONLY;
839 			}
840 			goto unlock;
841 		}
842 
843 		z->z_flags &= ~ZONEFS_ZONE_OPEN;
844 		zonefs_inode_account_active(inode);
845 	}
846 
847 	atomic_dec(&sbi->s_wro_seq_files);
848 
849 unlock:
850 	mutex_unlock(&zi->i_truncate_mutex);
851 }
852 
853 static int zonefs_file_release(struct inode *inode, struct file *file)
854 {
855 	/*
856 	 * If we explicitly open a zone we must close it again as well, but the
857 	 * zone management operation can fail (either due to an IO error or as
858 	 * the zone has gone offline or read-only). Make sure we don't fail the
859 	 * close(2) for user-space.
860 	 */
861 	if (zonefs_seq_file_need_wro(inode, file))
862 		zonefs_seq_file_write_close(inode);
863 
864 	return 0;
865 }
866 
867 const struct file_operations zonefs_file_operations = {
868 	.open		= zonefs_file_open,
869 	.release	= zonefs_file_release,
870 	.fsync		= zonefs_file_fsync,
871 	.mmap		= zonefs_file_mmap,
872 	.llseek		= zonefs_file_llseek,
873 	.read_iter	= zonefs_file_read_iter,
874 	.write_iter	= zonefs_file_write_iter,
875 	.splice_read	= generic_file_splice_read,
876 	.splice_write	= iter_file_splice_write,
877 	.iopoll		= iocb_bio_iopoll,
878 };
879