xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_buf_item.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 
18 /*
19  * Check to see if a buffer matching the given parameters is already
20  * a part of the given transaction.
21  */
22 STATIC struct xfs_buf *
23 xfs_trans_buf_item_match(
24 	struct xfs_trans	*tp,
25 	struct xfs_buftarg	*target,
26 	struct xfs_buf_map	*map,
27 	int			nmaps)
28 {
29 	struct xfs_log_item	*lip;
30 	struct xfs_buf_log_item	*blip;
31 	int			len = 0;
32 	int			i;
33 
34 	for (i = 0; i < nmaps; i++)
35 		len += map[i].bm_len;
36 
37 	list_for_each_entry(lip, &tp->t_items, li_trans) {
38 		blip = (struct xfs_buf_log_item *)lip;
39 		if (blip->bli_item.li_type == XFS_LI_BUF &&
40 		    blip->bli_buf->b_target == target &&
41 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
42 		    blip->bli_buf->b_length == len) {
43 			ASSERT(blip->bli_buf->b_map_count == nmaps);
44 			return blip->bli_buf;
45 		}
46 	}
47 
48 	return NULL;
49 }
50 
51 /*
52  * Add the locked buffer to the transaction.
53  *
54  * The buffer must be locked, and it cannot be associated with any
55  * transaction.
56  *
57  * If the buffer does not yet have a buf log item associated with it,
58  * then allocate one for it.  Then add the buf item to the transaction.
59  */
60 STATIC void
61 _xfs_trans_bjoin(
62 	struct xfs_trans	*tp,
63 	struct xfs_buf		*bp,
64 	int			reset_recur)
65 {
66 	struct xfs_buf_log_item	*bip;
67 
68 	ASSERT(bp->b_transp == NULL);
69 
70 	/*
71 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
72 	 * it doesn't have one yet, then allocate one and initialize it.
73 	 * The checks to see if one is there are in xfs_buf_item_init().
74 	 */
75 	xfs_buf_item_init(bp, tp->t_mountp);
76 	bip = bp->b_log_item;
77 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 	if (reset_recur)
81 		bip->bli_recur = 0;
82 
83 	/*
84 	 * Take a reference for this transaction on the buf item.
85 	 */
86 	atomic_inc(&bip->bli_refcount);
87 
88 	/*
89 	 * Attach the item to the transaction so we can find it in
90 	 * xfs_trans_get_buf() and friends.
91 	 */
92 	xfs_trans_add_item(tp, &bip->bli_item);
93 	bp->b_transp = tp;
94 
95 }
96 
97 void
98 xfs_trans_bjoin(
99 	struct xfs_trans	*tp,
100 	struct xfs_buf		*bp)
101 {
102 	_xfs_trans_bjoin(tp, bp, 0);
103 	trace_xfs_trans_bjoin(bp->b_log_item);
104 }
105 
106 /*
107  * Get and lock the buffer for the caller if it is not already
108  * locked within the given transaction.  If it is already locked
109  * within the transaction, just increment its lock recursion count
110  * and return a pointer to it.
111  *
112  * If the transaction pointer is NULL, make this just a normal
113  * get_buf() call.
114  */
115 int
116 xfs_trans_get_buf_map(
117 	struct xfs_trans	*tp,
118 	struct xfs_buftarg	*target,
119 	struct xfs_buf_map	*map,
120 	int			nmaps,
121 	xfs_buf_flags_t		flags,
122 	struct xfs_buf		**bpp)
123 {
124 	xfs_buf_t		*bp;
125 	struct xfs_buf_log_item	*bip;
126 	int			error;
127 
128 	*bpp = NULL;
129 	if (!tp)
130 		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131 
132 	/*
133 	 * If we find the buffer in the cache with this transaction
134 	 * pointer in its b_fsprivate2 field, then we know we already
135 	 * have it locked.  In this case we just increment the lock
136 	 * recursion count and return the buffer to the caller.
137 	 */
138 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 	if (bp != NULL) {
140 		ASSERT(xfs_buf_islocked(bp));
141 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
142 			xfs_buf_stale(bp);
143 			bp->b_flags |= XBF_DONE;
144 		}
145 
146 		ASSERT(bp->b_transp == tp);
147 		bip = bp->b_log_item;
148 		ASSERT(bip != NULL);
149 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 		bip->bli_recur++;
151 		trace_xfs_trans_get_buf_recur(bip);
152 		*bpp = bp;
153 		return 0;
154 	}
155 
156 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 	if (error)
158 		return error;
159 
160 	ASSERT(!bp->b_error);
161 
162 	_xfs_trans_bjoin(tp, bp, 1);
163 	trace_xfs_trans_get_buf(bp->b_log_item);
164 	*bpp = bp;
165 	return 0;
166 }
167 
168 /*
169  * Get and lock the superblock buffer of this file system for the
170  * given transaction.
171  *
172  * We don't need to use incore_match() here, because the superblock
173  * buffer is a private buffer which we keep a pointer to in the
174  * mount structure.
175  */
176 xfs_buf_t *
177 xfs_trans_getsb(
178 	xfs_trans_t		*tp,
179 	struct xfs_mount	*mp)
180 {
181 	xfs_buf_t		*bp;
182 	struct xfs_buf_log_item	*bip;
183 
184 	/*
185 	 * Default to just trying to lock the superblock buffer
186 	 * if tp is NULL.
187 	 */
188 	if (tp == NULL)
189 		return xfs_getsb(mp);
190 
191 	/*
192 	 * If the superblock buffer already has this transaction
193 	 * pointer in its b_fsprivate2 field, then we know we already
194 	 * have it locked.  In this case we just increment the lock
195 	 * recursion count and return the buffer to the caller.
196 	 */
197 	bp = mp->m_sb_bp;
198 	if (bp->b_transp == tp) {
199 		bip = bp->b_log_item;
200 		ASSERT(bip != NULL);
201 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
202 		bip->bli_recur++;
203 		trace_xfs_trans_getsb_recur(bip);
204 		return bp;
205 	}
206 
207 	bp = xfs_getsb(mp);
208 	if (bp == NULL)
209 		return NULL;
210 
211 	_xfs_trans_bjoin(tp, bp, 1);
212 	trace_xfs_trans_getsb(bp->b_log_item);
213 	return bp;
214 }
215 
216 /*
217  * Get and lock the buffer for the caller if it is not already
218  * locked within the given transaction.  If it has not yet been
219  * read in, read it from disk. If it is already locked
220  * within the transaction and already read in, just increment its
221  * lock recursion count and return a pointer to it.
222  *
223  * If the transaction pointer is NULL, make this just a normal
224  * read_buf() call.
225  */
226 int
227 xfs_trans_read_buf_map(
228 	struct xfs_mount	*mp,
229 	struct xfs_trans	*tp,
230 	struct xfs_buftarg	*target,
231 	struct xfs_buf_map	*map,
232 	int			nmaps,
233 	xfs_buf_flags_t		flags,
234 	struct xfs_buf		**bpp,
235 	const struct xfs_buf_ops *ops)
236 {
237 	struct xfs_buf		*bp = NULL;
238 	struct xfs_buf_log_item	*bip;
239 	int			error;
240 
241 	*bpp = NULL;
242 	/*
243 	 * If we find the buffer in the cache with this transaction
244 	 * pointer in its b_fsprivate2 field, then we know we already
245 	 * have it locked.  If it is already read in we just increment
246 	 * the lock recursion count and return the buffer to the caller.
247 	 * If the buffer is not yet read in, then we read it in, increment
248 	 * the lock recursion count, and return it to the caller.
249 	 */
250 	if (tp)
251 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
252 	if (bp) {
253 		ASSERT(xfs_buf_islocked(bp));
254 		ASSERT(bp->b_transp == tp);
255 		ASSERT(bp->b_log_item != NULL);
256 		ASSERT(!bp->b_error);
257 		ASSERT(bp->b_flags & XBF_DONE);
258 
259 		/*
260 		 * We never locked this buf ourselves, so we shouldn't
261 		 * brelse it either. Just get out.
262 		 */
263 		if (XFS_FORCED_SHUTDOWN(mp)) {
264 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
265 			return -EIO;
266 		}
267 
268 		/*
269 		 * Check if the caller is trying to read a buffer that is
270 		 * already attached to the transaction yet has no buffer ops
271 		 * assigned.  Ops are usually attached when the buffer is
272 		 * attached to the transaction, or by the read caller if
273 		 * special circumstances.  That didn't happen, which is not
274 		 * how this is supposed to go.
275 		 *
276 		 * If the buffer passes verification we'll let this go, but if
277 		 * not we have to shut down.  Let the transaction cleanup code
278 		 * release this buffer when it kills the tranaction.
279 		 */
280 		ASSERT(bp->b_ops != NULL);
281 		error = xfs_buf_reverify(bp, ops);
282 		if (error) {
283 			xfs_buf_ioerror_alert(bp, __return_address);
284 
285 			if (tp->t_flags & XFS_TRANS_DIRTY)
286 				xfs_force_shutdown(tp->t_mountp,
287 						SHUTDOWN_META_IO_ERROR);
288 
289 			/* bad CRC means corrupted metadata */
290 			if (error == -EFSBADCRC)
291 				error = -EFSCORRUPTED;
292 			return error;
293 		}
294 
295 		bip = bp->b_log_item;
296 		bip->bli_recur++;
297 
298 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
299 		trace_xfs_trans_read_buf_recur(bip);
300 		ASSERT(bp->b_ops != NULL || ops == NULL);
301 		*bpp = bp;
302 		return 0;
303 	}
304 
305 	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
306 			__return_address);
307 	switch (error) {
308 	case 0:
309 		break;
310 	default:
311 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
312 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
313 		/* fall through */
314 	case -ENOMEM:
315 	case -EAGAIN:
316 		return error;
317 	}
318 
319 	if (XFS_FORCED_SHUTDOWN(mp)) {
320 		xfs_buf_relse(bp);
321 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
322 		return -EIO;
323 	}
324 
325 	if (tp) {
326 		_xfs_trans_bjoin(tp, bp, 1);
327 		trace_xfs_trans_read_buf(bp->b_log_item);
328 	}
329 	ASSERT(bp->b_ops != NULL || ops == NULL);
330 	*bpp = bp;
331 	return 0;
332 
333 }
334 
335 /* Has this buffer been dirtied by anyone? */
336 bool
337 xfs_trans_buf_is_dirty(
338 	struct xfs_buf		*bp)
339 {
340 	struct xfs_buf_log_item	*bip = bp->b_log_item;
341 
342 	if (!bip)
343 		return false;
344 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
345 	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
346 }
347 
348 /*
349  * Release a buffer previously joined to the transaction. If the buffer is
350  * modified within this transaction, decrement the recursion count but do not
351  * release the buffer even if the count goes to 0. If the buffer is not modified
352  * within the transaction, decrement the recursion count and release the buffer
353  * if the recursion count goes to 0.
354  *
355  * If the buffer is to be released and it was not already dirty before this
356  * transaction began, then also free the buf_log_item associated with it.
357  *
358  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
359  */
360 void
361 xfs_trans_brelse(
362 	struct xfs_trans	*tp,
363 	struct xfs_buf		*bp)
364 {
365 	struct xfs_buf_log_item	*bip = bp->b_log_item;
366 
367 	ASSERT(bp->b_transp == tp);
368 
369 	if (!tp) {
370 		xfs_buf_relse(bp);
371 		return;
372 	}
373 
374 	trace_xfs_trans_brelse(bip);
375 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
376 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
377 
378 	/*
379 	 * If the release is for a recursive lookup, then decrement the count
380 	 * and return.
381 	 */
382 	if (bip->bli_recur > 0) {
383 		bip->bli_recur--;
384 		return;
385 	}
386 
387 	/*
388 	 * If the buffer is invalidated or dirty in this transaction, we can't
389 	 * release it until we commit.
390 	 */
391 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
392 		return;
393 	if (bip->bli_flags & XFS_BLI_STALE)
394 		return;
395 
396 	/*
397 	 * Unlink the log item from the transaction and clear the hold flag, if
398 	 * set. We wouldn't want the next user of the buffer to get confused.
399 	 */
400 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
401 	xfs_trans_del_item(&bip->bli_item);
402 	bip->bli_flags &= ~XFS_BLI_HOLD;
403 
404 	/* drop the reference to the bli */
405 	xfs_buf_item_put(bip);
406 
407 	bp->b_transp = NULL;
408 	xfs_buf_relse(bp);
409 }
410 
411 /*
412  * Mark the buffer as not needing to be unlocked when the buf item's
413  * iop_committing() routine is called.  The buffer must already be locked
414  * and associated with the given transaction.
415  */
416 /* ARGSUSED */
417 void
418 xfs_trans_bhold(
419 	xfs_trans_t		*tp,
420 	xfs_buf_t		*bp)
421 {
422 	struct xfs_buf_log_item	*bip = bp->b_log_item;
423 
424 	ASSERT(bp->b_transp == tp);
425 	ASSERT(bip != NULL);
426 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
427 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
428 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
429 
430 	bip->bli_flags |= XFS_BLI_HOLD;
431 	trace_xfs_trans_bhold(bip);
432 }
433 
434 /*
435  * Cancel the previous buffer hold request made on this buffer
436  * for this transaction.
437  */
438 void
439 xfs_trans_bhold_release(
440 	xfs_trans_t		*tp,
441 	xfs_buf_t		*bp)
442 {
443 	struct xfs_buf_log_item	*bip = bp->b_log_item;
444 
445 	ASSERT(bp->b_transp == tp);
446 	ASSERT(bip != NULL);
447 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
448 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
449 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
450 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
451 
452 	bip->bli_flags &= ~XFS_BLI_HOLD;
453 	trace_xfs_trans_bhold_release(bip);
454 }
455 
456 /*
457  * Mark a buffer dirty in the transaction.
458  */
459 void
460 xfs_trans_dirty_buf(
461 	struct xfs_trans	*tp,
462 	struct xfs_buf		*bp)
463 {
464 	struct xfs_buf_log_item	*bip = bp->b_log_item;
465 
466 	ASSERT(bp->b_transp == tp);
467 	ASSERT(bip != NULL);
468 
469 	/*
470 	 * Mark the buffer as needing to be written out eventually,
471 	 * and set its iodone function to remove the buffer's buf log
472 	 * item from the AIL and free it when the buffer is flushed
473 	 * to disk.
474 	 */
475 	bp->b_flags |= XBF_DONE;
476 
477 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
478 
479 	/*
480 	 * If we invalidated the buffer within this transaction, then
481 	 * cancel the invalidation now that we're dirtying the buffer
482 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
483 	 * because we have a reference to the buffer this entire time.
484 	 */
485 	if (bip->bli_flags & XFS_BLI_STALE) {
486 		bip->bli_flags &= ~XFS_BLI_STALE;
487 		ASSERT(bp->b_flags & XBF_STALE);
488 		bp->b_flags &= ~XBF_STALE;
489 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
490 	}
491 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
492 
493 	tp->t_flags |= XFS_TRANS_DIRTY;
494 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
495 }
496 
497 /*
498  * This is called to mark bytes first through last inclusive of the given
499  * buffer as needing to be logged when the transaction is committed.
500  * The buffer must already be associated with the given transaction.
501  *
502  * First and last are numbers relative to the beginning of this buffer,
503  * so the first byte in the buffer is numbered 0 regardless of the
504  * value of b_blkno.
505  */
506 void
507 xfs_trans_log_buf(
508 	struct xfs_trans	*tp,
509 	struct xfs_buf		*bp,
510 	uint			first,
511 	uint			last)
512 {
513 	struct xfs_buf_log_item	*bip = bp->b_log_item;
514 
515 	ASSERT(first <= last && last < BBTOB(bp->b_length));
516 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
517 
518 	xfs_trans_dirty_buf(tp, bp);
519 
520 	trace_xfs_trans_log_buf(bip);
521 	xfs_buf_item_log(bip, first, last);
522 }
523 
524 
525 /*
526  * Invalidate a buffer that is being used within a transaction.
527  *
528  * Typically this is because the blocks in the buffer are being freed, so we
529  * need to prevent it from being written out when we're done.  Allowing it
530  * to be written again might overwrite data in the free blocks if they are
531  * reallocated to a file.
532  *
533  * We prevent the buffer from being written out by marking it stale.  We can't
534  * get rid of the buf log item at this point because the buffer may still be
535  * pinned by another transaction.  If that is the case, then we'll wait until
536  * the buffer is committed to disk for the last time (we can tell by the ref
537  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
538  * keep the buffer locked so that the buffer and buf log item are not reused.
539  *
540  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
541  * the buf item.  This will be used at recovery time to determine that copies
542  * of the buffer in the log before this should not be replayed.
543  *
544  * We mark the item descriptor and the transaction dirty so that we'll hold
545  * the buffer until after the commit.
546  *
547  * Since we're invalidating the buffer, we also clear the state about which
548  * parts of the buffer have been logged.  We also clear the flag indicating
549  * that this is an inode buffer since the data in the buffer will no longer
550  * be valid.
551  *
552  * We set the stale bit in the buffer as well since we're getting rid of it.
553  */
554 void
555 xfs_trans_binval(
556 	xfs_trans_t		*tp,
557 	xfs_buf_t		*bp)
558 {
559 	struct xfs_buf_log_item	*bip = bp->b_log_item;
560 	int			i;
561 
562 	ASSERT(bp->b_transp == tp);
563 	ASSERT(bip != NULL);
564 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
565 
566 	trace_xfs_trans_binval(bip);
567 
568 	if (bip->bli_flags & XFS_BLI_STALE) {
569 		/*
570 		 * If the buffer is already invalidated, then
571 		 * just return.
572 		 */
573 		ASSERT(bp->b_flags & XBF_STALE);
574 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
575 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
576 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
577 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
578 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
579 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
580 		return;
581 	}
582 
583 	xfs_buf_stale(bp);
584 
585 	bip->bli_flags |= XFS_BLI_STALE;
586 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
587 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
588 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
589 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
590 	for (i = 0; i < bip->bli_format_count; i++) {
591 		memset(bip->bli_formats[i].blf_data_map, 0,
592 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
593 	}
594 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
595 	tp->t_flags |= XFS_TRANS_DIRTY;
596 }
597 
598 /*
599  * This call is used to indicate that the buffer contains on-disk inodes which
600  * must be handled specially during recovery.  They require special handling
601  * because only the di_next_unlinked from the inodes in the buffer should be
602  * recovered.  The rest of the data in the buffer is logged via the inodes
603  * themselves.
604  *
605  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
606  * transferred to the buffer's log format structure so that we'll know what to
607  * do at recovery time.
608  */
609 void
610 xfs_trans_inode_buf(
611 	xfs_trans_t		*tp,
612 	xfs_buf_t		*bp)
613 {
614 	struct xfs_buf_log_item	*bip = bp->b_log_item;
615 
616 	ASSERT(bp->b_transp == tp);
617 	ASSERT(bip != NULL);
618 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
619 
620 	bip->bli_flags |= XFS_BLI_INODE_BUF;
621 	bp->b_flags |= _XBF_INODES;
622 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
623 }
624 
625 /*
626  * This call is used to indicate that the buffer is going to
627  * be staled and was an inode buffer. This means it gets
628  * special processing during unpin - where any inodes
629  * associated with the buffer should be removed from ail.
630  * There is also special processing during recovery,
631  * any replay of the inodes in the buffer needs to be
632  * prevented as the buffer may have been reused.
633  */
634 void
635 xfs_trans_stale_inode_buf(
636 	xfs_trans_t		*tp,
637 	xfs_buf_t		*bp)
638 {
639 	struct xfs_buf_log_item	*bip = bp->b_log_item;
640 
641 	ASSERT(bp->b_transp == tp);
642 	ASSERT(bip != NULL);
643 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
644 
645 	bip->bli_flags |= XFS_BLI_STALE_INODE;
646 	bp->b_flags |= _XBF_INODES;
647 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
648 }
649 
650 /*
651  * Mark the buffer as being one which contains newly allocated
652  * inodes.  We need to make sure that even if this buffer is
653  * relogged as an 'inode buf' we still recover all of the inode
654  * images in the face of a crash.  This works in coordination with
655  * xfs_buf_item_committed() to ensure that the buffer remains in the
656  * AIL at its original location even after it has been relogged.
657  */
658 /* ARGSUSED */
659 void
660 xfs_trans_inode_alloc_buf(
661 	xfs_trans_t		*tp,
662 	xfs_buf_t		*bp)
663 {
664 	struct xfs_buf_log_item	*bip = bp->b_log_item;
665 
666 	ASSERT(bp->b_transp == tp);
667 	ASSERT(bip != NULL);
668 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
669 
670 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
671 	bp->b_flags |= _XBF_INODES;
672 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673 }
674 
675 /*
676  * Mark the buffer as ordered for this transaction. This means that the contents
677  * of the buffer are not recorded in the transaction but it is tracked in the
678  * AIL as though it was. This allows us to record logical changes in
679  * transactions rather than the physical changes we make to the buffer without
680  * changing writeback ordering constraints of metadata buffers.
681  */
682 bool
683 xfs_trans_ordered_buf(
684 	struct xfs_trans	*tp,
685 	struct xfs_buf		*bp)
686 {
687 	struct xfs_buf_log_item	*bip = bp->b_log_item;
688 
689 	ASSERT(bp->b_transp == tp);
690 	ASSERT(bip != NULL);
691 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
692 
693 	if (xfs_buf_item_dirty_format(bip))
694 		return false;
695 
696 	bip->bli_flags |= XFS_BLI_ORDERED;
697 	trace_xfs_buf_item_ordered(bip);
698 
699 	/*
700 	 * We don't log a dirty range of an ordered buffer but it still needs
701 	 * to be marked dirty and that it has been logged.
702 	 */
703 	xfs_trans_dirty_buf(tp, bp);
704 	return true;
705 }
706 
707 /*
708  * Set the type of the buffer for log recovery so that it can correctly identify
709  * and hence attach the correct buffer ops to the buffer after replay.
710  */
711 void
712 xfs_trans_buf_set_type(
713 	struct xfs_trans	*tp,
714 	struct xfs_buf		*bp,
715 	enum xfs_blft		type)
716 {
717 	struct xfs_buf_log_item	*bip = bp->b_log_item;
718 
719 	if (!tp)
720 		return;
721 
722 	ASSERT(bp->b_transp == tp);
723 	ASSERT(bip != NULL);
724 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
725 
726 	xfs_blft_to_flags(&bip->__bli_format, type);
727 }
728 
729 void
730 xfs_trans_buf_copy_type(
731 	struct xfs_buf		*dst_bp,
732 	struct xfs_buf		*src_bp)
733 {
734 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
735 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
736 	enum xfs_blft		type;
737 
738 	type = xfs_blft_from_flags(&sbip->__bli_format);
739 	xfs_blft_to_flags(&dbip->__bli_format, type);
740 }
741 
742 /*
743  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
744  * dquots. However, unlike in inode buffer recovery, dquot buffers get
745  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
746  * The only thing that makes dquot buffers different from regular
747  * buffers is that we must not replay dquot bufs when recovering
748  * if a _corresponding_ quotaoff has happened. We also have to distinguish
749  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
750  * can be turned off independently.
751  */
752 /* ARGSUSED */
753 void
754 xfs_trans_dquot_buf(
755 	xfs_trans_t		*tp,
756 	xfs_buf_t		*bp,
757 	uint			type)
758 {
759 	struct xfs_buf_log_item	*bip = bp->b_log_item;
760 
761 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
762 	       type == XFS_BLF_PDQUOT_BUF ||
763 	       type == XFS_BLF_GDQUOT_BUF);
764 
765 	bip->__bli_format.blf_flags |= type;
766 
767 	switch (type) {
768 	case XFS_BLF_UDQUOT_BUF:
769 		type = XFS_BLFT_UDQUOT_BUF;
770 		break;
771 	case XFS_BLF_PDQUOT_BUF:
772 		type = XFS_BLFT_PDQUOT_BUF;
773 		break;
774 	case XFS_BLF_GDQUOT_BUF:
775 		type = XFS_BLFT_GDQUOT_BUF;
776 		break;
777 	default:
778 		type = XFS_BLFT_UNKNOWN_BUF;
779 		break;
780 	}
781 
782 	bp->b_flags |= _XBF_DQUOTS;
783 	xfs_trans_buf_set_type(tp, bp, type);
784 }
785