xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_buf_item.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 
18 /*
19  * Check to see if a buffer matching the given parameters is already
20  * a part of the given transaction.
21  */
22 STATIC struct xfs_buf *
23 xfs_trans_buf_item_match(
24 	struct xfs_trans	*tp,
25 	struct xfs_buftarg	*target,
26 	struct xfs_buf_map	*map,
27 	int			nmaps)
28 {
29 	struct xfs_log_item	*lip;
30 	struct xfs_buf_log_item	*blip;
31 	int			len = 0;
32 	int			i;
33 
34 	for (i = 0; i < nmaps; i++)
35 		len += map[i].bm_len;
36 
37 	list_for_each_entry(lip, &tp->t_items, li_trans) {
38 		blip = (struct xfs_buf_log_item *)lip;
39 		if (blip->bli_item.li_type == XFS_LI_BUF &&
40 		    blip->bli_buf->b_target == target &&
41 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
42 		    blip->bli_buf->b_length == len) {
43 			ASSERT(blip->bli_buf->b_map_count == nmaps);
44 			return blip->bli_buf;
45 		}
46 	}
47 
48 	return NULL;
49 }
50 
51 /*
52  * Add the locked buffer to the transaction.
53  *
54  * The buffer must be locked, and it cannot be associated with any
55  * transaction.
56  *
57  * If the buffer does not yet have a buf log item associated with it,
58  * then allocate one for it.  Then add the buf item to the transaction.
59  */
60 STATIC void
61 _xfs_trans_bjoin(
62 	struct xfs_trans	*tp,
63 	struct xfs_buf		*bp,
64 	int			reset_recur)
65 {
66 	struct xfs_buf_log_item	*bip;
67 
68 	ASSERT(bp->b_transp == NULL);
69 
70 	/*
71 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
72 	 * it doesn't have one yet, then allocate one and initialize it.
73 	 * The checks to see if one is there are in xfs_buf_item_init().
74 	 */
75 	xfs_buf_item_init(bp, tp->t_mountp);
76 	bip = bp->b_log_item;
77 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 	if (reset_recur)
81 		bip->bli_recur = 0;
82 
83 	/*
84 	 * Take a reference for this transaction on the buf item.
85 	 */
86 	atomic_inc(&bip->bli_refcount);
87 
88 	/*
89 	 * Attach the item to the transaction so we can find it in
90 	 * xfs_trans_get_buf() and friends.
91 	 */
92 	xfs_trans_add_item(tp, &bip->bli_item);
93 	bp->b_transp = tp;
94 
95 }
96 
97 void
98 xfs_trans_bjoin(
99 	struct xfs_trans	*tp,
100 	struct xfs_buf		*bp)
101 {
102 	_xfs_trans_bjoin(tp, bp, 0);
103 	trace_xfs_trans_bjoin(bp->b_log_item);
104 }
105 
106 /*
107  * Get and lock the buffer for the caller if it is not already
108  * locked within the given transaction.  If it is already locked
109  * within the transaction, just increment its lock recursion count
110  * and return a pointer to it.
111  *
112  * If the transaction pointer is NULL, make this just a normal
113  * get_buf() call.
114  */
115 struct xfs_buf *
116 xfs_trans_get_buf_map(
117 	struct xfs_trans	*tp,
118 	struct xfs_buftarg	*target,
119 	struct xfs_buf_map	*map,
120 	int			nmaps,
121 	xfs_buf_flags_t		flags)
122 {
123 	xfs_buf_t		*bp;
124 	struct xfs_buf_log_item	*bip;
125 
126 	if (!tp)
127 		return xfs_buf_get_map(target, map, nmaps, flags);
128 
129 	/*
130 	 * If we find the buffer in the cache with this transaction
131 	 * pointer in its b_fsprivate2 field, then we know we already
132 	 * have it locked.  In this case we just increment the lock
133 	 * recursion count and return the buffer to the caller.
134 	 */
135 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
136 	if (bp != NULL) {
137 		ASSERT(xfs_buf_islocked(bp));
138 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
139 			xfs_buf_stale(bp);
140 			bp->b_flags |= XBF_DONE;
141 		}
142 
143 		ASSERT(bp->b_transp == tp);
144 		bip = bp->b_log_item;
145 		ASSERT(bip != NULL);
146 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
147 		bip->bli_recur++;
148 		trace_xfs_trans_get_buf_recur(bip);
149 		return bp;
150 	}
151 
152 	bp = xfs_buf_get_map(target, map, nmaps, flags);
153 	if (bp == NULL) {
154 		return NULL;
155 	}
156 
157 	ASSERT(!bp->b_error);
158 
159 	_xfs_trans_bjoin(tp, bp, 1);
160 	trace_xfs_trans_get_buf(bp->b_log_item);
161 	return bp;
162 }
163 
164 /*
165  * Get and lock the superblock buffer of this file system for the
166  * given transaction.
167  *
168  * We don't need to use incore_match() here, because the superblock
169  * buffer is a private buffer which we keep a pointer to in the
170  * mount structure.
171  */
172 xfs_buf_t *
173 xfs_trans_getsb(
174 	xfs_trans_t		*tp,
175 	struct xfs_mount	*mp)
176 {
177 	xfs_buf_t		*bp;
178 	struct xfs_buf_log_item	*bip;
179 
180 	/*
181 	 * Default to just trying to lock the superblock buffer
182 	 * if tp is NULL.
183 	 */
184 	if (tp == NULL)
185 		return xfs_getsb(mp);
186 
187 	/*
188 	 * If the superblock buffer already has this transaction
189 	 * pointer in its b_fsprivate2 field, then we know we already
190 	 * have it locked.  In this case we just increment the lock
191 	 * recursion count and return the buffer to the caller.
192 	 */
193 	bp = mp->m_sb_bp;
194 	if (bp->b_transp == tp) {
195 		bip = bp->b_log_item;
196 		ASSERT(bip != NULL);
197 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
198 		bip->bli_recur++;
199 		trace_xfs_trans_getsb_recur(bip);
200 		return bp;
201 	}
202 
203 	bp = xfs_getsb(mp);
204 	if (bp == NULL)
205 		return NULL;
206 
207 	_xfs_trans_bjoin(tp, bp, 1);
208 	trace_xfs_trans_getsb(bp->b_log_item);
209 	return bp;
210 }
211 
212 /*
213  * Get and lock the buffer for the caller if it is not already
214  * locked within the given transaction.  If it has not yet been
215  * read in, read it from disk. If it is already locked
216  * within the transaction and already read in, just increment its
217  * lock recursion count and return a pointer to it.
218  *
219  * If the transaction pointer is NULL, make this just a normal
220  * read_buf() call.
221  */
222 int
223 xfs_trans_read_buf_map(
224 	struct xfs_mount	*mp,
225 	struct xfs_trans	*tp,
226 	struct xfs_buftarg	*target,
227 	struct xfs_buf_map	*map,
228 	int			nmaps,
229 	xfs_buf_flags_t		flags,
230 	struct xfs_buf		**bpp,
231 	const struct xfs_buf_ops *ops)
232 {
233 	struct xfs_buf		*bp = NULL;
234 	struct xfs_buf_log_item	*bip;
235 	int			error;
236 
237 	*bpp = NULL;
238 	/*
239 	 * If we find the buffer in the cache with this transaction
240 	 * pointer in its b_fsprivate2 field, then we know we already
241 	 * have it locked.  If it is already read in we just increment
242 	 * the lock recursion count and return the buffer to the caller.
243 	 * If the buffer is not yet read in, then we read it in, increment
244 	 * the lock recursion count, and return it to the caller.
245 	 */
246 	if (tp)
247 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
248 	if (bp) {
249 		ASSERT(xfs_buf_islocked(bp));
250 		ASSERT(bp->b_transp == tp);
251 		ASSERT(bp->b_log_item != NULL);
252 		ASSERT(!bp->b_error);
253 		ASSERT(bp->b_flags & XBF_DONE);
254 
255 		/*
256 		 * We never locked this buf ourselves, so we shouldn't
257 		 * brelse it either. Just get out.
258 		 */
259 		if (XFS_FORCED_SHUTDOWN(mp)) {
260 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
261 			return -EIO;
262 		}
263 
264 		/*
265 		 * Check if the caller is trying to read a buffer that is
266 		 * already attached to the transaction yet has no buffer ops
267 		 * assigned.  Ops are usually attached when the buffer is
268 		 * attached to the transaction, or by the read caller if
269 		 * special circumstances.  That didn't happen, which is not
270 		 * how this is supposed to go.
271 		 *
272 		 * If the buffer passes verification we'll let this go, but if
273 		 * not we have to shut down.  Let the transaction cleanup code
274 		 * release this buffer when it kills the tranaction.
275 		 */
276 		ASSERT(bp->b_ops != NULL);
277 		error = xfs_buf_reverify(bp, ops);
278 		if (error) {
279 			xfs_buf_ioerror_alert(bp, __func__);
280 
281 			if (tp->t_flags & XFS_TRANS_DIRTY)
282 				xfs_force_shutdown(tp->t_mountp,
283 						SHUTDOWN_META_IO_ERROR);
284 
285 			/* bad CRC means corrupted metadata */
286 			if (error == -EFSBADCRC)
287 				error = -EFSCORRUPTED;
288 			return error;
289 		}
290 
291 		bip = bp->b_log_item;
292 		bip->bli_recur++;
293 
294 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
295 		trace_xfs_trans_read_buf_recur(bip);
296 		ASSERT(bp->b_ops != NULL || ops == NULL);
297 		*bpp = bp;
298 		return 0;
299 	}
300 
301 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
302 	if (!bp) {
303 		if (!(flags & XBF_TRYLOCK))
304 			return -ENOMEM;
305 		return tp ? 0 : -EAGAIN;
306 	}
307 
308 	/*
309 	 * If we've had a read error, then the contents of the buffer are
310 	 * invalid and should not be used. To ensure that a followup read tries
311 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
312 	 * mark the buffer stale. This ensures that anyone who has a current
313 	 * reference to the buffer will interpret it's contents correctly and
314 	 * future cache lookups will also treat it as an empty, uninitialised
315 	 * buffer.
316 	 */
317 	if (bp->b_error) {
318 		error = bp->b_error;
319 		if (!XFS_FORCED_SHUTDOWN(mp))
320 			xfs_buf_ioerror_alert(bp, __func__);
321 		bp->b_flags &= ~XBF_DONE;
322 		xfs_buf_stale(bp);
323 
324 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
325 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
326 		xfs_buf_relse(bp);
327 
328 		/* bad CRC means corrupted metadata */
329 		if (error == -EFSBADCRC)
330 			error = -EFSCORRUPTED;
331 		return error;
332 	}
333 
334 	if (XFS_FORCED_SHUTDOWN(mp)) {
335 		xfs_buf_relse(bp);
336 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
337 		return -EIO;
338 	}
339 
340 	if (tp) {
341 		_xfs_trans_bjoin(tp, bp, 1);
342 		trace_xfs_trans_read_buf(bp->b_log_item);
343 	}
344 	ASSERT(bp->b_ops != NULL || ops == NULL);
345 	*bpp = bp;
346 	return 0;
347 
348 }
349 
350 /* Has this buffer been dirtied by anyone? */
351 bool
352 xfs_trans_buf_is_dirty(
353 	struct xfs_buf		*bp)
354 {
355 	struct xfs_buf_log_item	*bip = bp->b_log_item;
356 
357 	if (!bip)
358 		return false;
359 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360 	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
361 }
362 
363 /*
364  * Release a buffer previously joined to the transaction. If the buffer is
365  * modified within this transaction, decrement the recursion count but do not
366  * release the buffer even if the count goes to 0. If the buffer is not modified
367  * within the transaction, decrement the recursion count and release the buffer
368  * if the recursion count goes to 0.
369  *
370  * If the buffer is to be released and it was not already dirty before this
371  * transaction began, then also free the buf_log_item associated with it.
372  *
373  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
374  */
375 void
376 xfs_trans_brelse(
377 	struct xfs_trans	*tp,
378 	struct xfs_buf		*bp)
379 {
380 	struct xfs_buf_log_item	*bip = bp->b_log_item;
381 
382 	ASSERT(bp->b_transp == tp);
383 
384 	if (!tp) {
385 		xfs_buf_relse(bp);
386 		return;
387 	}
388 
389 	trace_xfs_trans_brelse(bip);
390 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
391 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
392 
393 	/*
394 	 * If the release is for a recursive lookup, then decrement the count
395 	 * and return.
396 	 */
397 	if (bip->bli_recur > 0) {
398 		bip->bli_recur--;
399 		return;
400 	}
401 
402 	/*
403 	 * If the buffer is invalidated or dirty in this transaction, we can't
404 	 * release it until we commit.
405 	 */
406 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
407 		return;
408 	if (bip->bli_flags & XFS_BLI_STALE)
409 		return;
410 
411 	/*
412 	 * Unlink the log item from the transaction and clear the hold flag, if
413 	 * set. We wouldn't want the next user of the buffer to get confused.
414 	 */
415 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
416 	xfs_trans_del_item(&bip->bli_item);
417 	bip->bli_flags &= ~XFS_BLI_HOLD;
418 
419 	/* drop the reference to the bli */
420 	xfs_buf_item_put(bip);
421 
422 	bp->b_transp = NULL;
423 	xfs_buf_relse(bp);
424 }
425 
426 /*
427  * Mark the buffer as not needing to be unlocked when the buf item's
428  * iop_committing() routine is called.  The buffer must already be locked
429  * and associated with the given transaction.
430  */
431 /* ARGSUSED */
432 void
433 xfs_trans_bhold(
434 	xfs_trans_t		*tp,
435 	xfs_buf_t		*bp)
436 {
437 	struct xfs_buf_log_item	*bip = bp->b_log_item;
438 
439 	ASSERT(bp->b_transp == tp);
440 	ASSERT(bip != NULL);
441 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
442 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
443 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
444 
445 	bip->bli_flags |= XFS_BLI_HOLD;
446 	trace_xfs_trans_bhold(bip);
447 }
448 
449 /*
450  * Cancel the previous buffer hold request made on this buffer
451  * for this transaction.
452  */
453 void
454 xfs_trans_bhold_release(
455 	xfs_trans_t		*tp,
456 	xfs_buf_t		*bp)
457 {
458 	struct xfs_buf_log_item	*bip = bp->b_log_item;
459 
460 	ASSERT(bp->b_transp == tp);
461 	ASSERT(bip != NULL);
462 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
463 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
464 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
465 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
466 
467 	bip->bli_flags &= ~XFS_BLI_HOLD;
468 	trace_xfs_trans_bhold_release(bip);
469 }
470 
471 /*
472  * Mark a buffer dirty in the transaction.
473  */
474 void
475 xfs_trans_dirty_buf(
476 	struct xfs_trans	*tp,
477 	struct xfs_buf		*bp)
478 {
479 	struct xfs_buf_log_item	*bip = bp->b_log_item;
480 
481 	ASSERT(bp->b_transp == tp);
482 	ASSERT(bip != NULL);
483 	ASSERT(bp->b_iodone == NULL ||
484 	       bp->b_iodone == xfs_buf_iodone_callbacks);
485 
486 	/*
487 	 * Mark the buffer as needing to be written out eventually,
488 	 * and set its iodone function to remove the buffer's buf log
489 	 * item from the AIL and free it when the buffer is flushed
490 	 * to disk.  See xfs_buf_attach_iodone() for more details
491 	 * on li_cb and xfs_buf_iodone_callbacks().
492 	 * If we end up aborting this transaction, we trap this buffer
493 	 * inside the b_bdstrat callback so that this won't get written to
494 	 * disk.
495 	 */
496 	bp->b_flags |= XBF_DONE;
497 
498 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
499 	bp->b_iodone = xfs_buf_iodone_callbacks;
500 	bip->bli_item.li_cb = xfs_buf_iodone;
501 
502 	/*
503 	 * If we invalidated the buffer within this transaction, then
504 	 * cancel the invalidation now that we're dirtying the buffer
505 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
506 	 * because we have a reference to the buffer this entire time.
507 	 */
508 	if (bip->bli_flags & XFS_BLI_STALE) {
509 		bip->bli_flags &= ~XFS_BLI_STALE;
510 		ASSERT(bp->b_flags & XBF_STALE);
511 		bp->b_flags &= ~XBF_STALE;
512 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
513 	}
514 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
515 
516 	tp->t_flags |= XFS_TRANS_DIRTY;
517 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
518 }
519 
520 /*
521  * This is called to mark bytes first through last inclusive of the given
522  * buffer as needing to be logged when the transaction is committed.
523  * The buffer must already be associated with the given transaction.
524  *
525  * First and last are numbers relative to the beginning of this buffer,
526  * so the first byte in the buffer is numbered 0 regardless of the
527  * value of b_blkno.
528  */
529 void
530 xfs_trans_log_buf(
531 	struct xfs_trans	*tp,
532 	struct xfs_buf		*bp,
533 	uint			first,
534 	uint			last)
535 {
536 	struct xfs_buf_log_item	*bip = bp->b_log_item;
537 
538 	ASSERT(first <= last && last < BBTOB(bp->b_length));
539 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
540 
541 	xfs_trans_dirty_buf(tp, bp);
542 
543 	trace_xfs_trans_log_buf(bip);
544 	xfs_buf_item_log(bip, first, last);
545 }
546 
547 
548 /*
549  * Invalidate a buffer that is being used within a transaction.
550  *
551  * Typically this is because the blocks in the buffer are being freed, so we
552  * need to prevent it from being written out when we're done.  Allowing it
553  * to be written again might overwrite data in the free blocks if they are
554  * reallocated to a file.
555  *
556  * We prevent the buffer from being written out by marking it stale.  We can't
557  * get rid of the buf log item at this point because the buffer may still be
558  * pinned by another transaction.  If that is the case, then we'll wait until
559  * the buffer is committed to disk for the last time (we can tell by the ref
560  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
561  * keep the buffer locked so that the buffer and buf log item are not reused.
562  *
563  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
564  * the buf item.  This will be used at recovery time to determine that copies
565  * of the buffer in the log before this should not be replayed.
566  *
567  * We mark the item descriptor and the transaction dirty so that we'll hold
568  * the buffer until after the commit.
569  *
570  * Since we're invalidating the buffer, we also clear the state about which
571  * parts of the buffer have been logged.  We also clear the flag indicating
572  * that this is an inode buffer since the data in the buffer will no longer
573  * be valid.
574  *
575  * We set the stale bit in the buffer as well since we're getting rid of it.
576  */
577 void
578 xfs_trans_binval(
579 	xfs_trans_t		*tp,
580 	xfs_buf_t		*bp)
581 {
582 	struct xfs_buf_log_item	*bip = bp->b_log_item;
583 	int			i;
584 
585 	ASSERT(bp->b_transp == tp);
586 	ASSERT(bip != NULL);
587 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
588 
589 	trace_xfs_trans_binval(bip);
590 
591 	if (bip->bli_flags & XFS_BLI_STALE) {
592 		/*
593 		 * If the buffer is already invalidated, then
594 		 * just return.
595 		 */
596 		ASSERT(bp->b_flags & XBF_STALE);
597 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
598 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
599 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
600 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
601 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
602 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
603 		return;
604 	}
605 
606 	xfs_buf_stale(bp);
607 
608 	bip->bli_flags |= XFS_BLI_STALE;
609 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
610 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
611 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
612 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
613 	for (i = 0; i < bip->bli_format_count; i++) {
614 		memset(bip->bli_formats[i].blf_data_map, 0,
615 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
616 	}
617 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
618 	tp->t_flags |= XFS_TRANS_DIRTY;
619 }
620 
621 /*
622  * This call is used to indicate that the buffer contains on-disk inodes which
623  * must be handled specially during recovery.  They require special handling
624  * because only the di_next_unlinked from the inodes in the buffer should be
625  * recovered.  The rest of the data in the buffer is logged via the inodes
626  * themselves.
627  *
628  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
629  * transferred to the buffer's log format structure so that we'll know what to
630  * do at recovery time.
631  */
632 void
633 xfs_trans_inode_buf(
634 	xfs_trans_t		*tp,
635 	xfs_buf_t		*bp)
636 {
637 	struct xfs_buf_log_item	*bip = bp->b_log_item;
638 
639 	ASSERT(bp->b_transp == tp);
640 	ASSERT(bip != NULL);
641 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
642 
643 	bip->bli_flags |= XFS_BLI_INODE_BUF;
644 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
645 }
646 
647 /*
648  * This call is used to indicate that the buffer is going to
649  * be staled and was an inode buffer. This means it gets
650  * special processing during unpin - where any inodes
651  * associated with the buffer should be removed from ail.
652  * There is also special processing during recovery,
653  * any replay of the inodes in the buffer needs to be
654  * prevented as the buffer may have been reused.
655  */
656 void
657 xfs_trans_stale_inode_buf(
658 	xfs_trans_t		*tp,
659 	xfs_buf_t		*bp)
660 {
661 	struct xfs_buf_log_item	*bip = bp->b_log_item;
662 
663 	ASSERT(bp->b_transp == tp);
664 	ASSERT(bip != NULL);
665 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
666 
667 	bip->bli_flags |= XFS_BLI_STALE_INODE;
668 	bip->bli_item.li_cb = xfs_buf_iodone;
669 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
670 }
671 
672 /*
673  * Mark the buffer as being one which contains newly allocated
674  * inodes.  We need to make sure that even if this buffer is
675  * relogged as an 'inode buf' we still recover all of the inode
676  * images in the face of a crash.  This works in coordination with
677  * xfs_buf_item_committed() to ensure that the buffer remains in the
678  * AIL at its original location even after it has been relogged.
679  */
680 /* ARGSUSED */
681 void
682 xfs_trans_inode_alloc_buf(
683 	xfs_trans_t		*tp,
684 	xfs_buf_t		*bp)
685 {
686 	struct xfs_buf_log_item	*bip = bp->b_log_item;
687 
688 	ASSERT(bp->b_transp == tp);
689 	ASSERT(bip != NULL);
690 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
691 
692 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
693 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
694 }
695 
696 /*
697  * Mark the buffer as ordered for this transaction. This means that the contents
698  * of the buffer are not recorded in the transaction but it is tracked in the
699  * AIL as though it was. This allows us to record logical changes in
700  * transactions rather than the physical changes we make to the buffer without
701  * changing writeback ordering constraints of metadata buffers.
702  */
703 bool
704 xfs_trans_ordered_buf(
705 	struct xfs_trans	*tp,
706 	struct xfs_buf		*bp)
707 {
708 	struct xfs_buf_log_item	*bip = bp->b_log_item;
709 
710 	ASSERT(bp->b_transp == tp);
711 	ASSERT(bip != NULL);
712 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
713 
714 	if (xfs_buf_item_dirty_format(bip))
715 		return false;
716 
717 	bip->bli_flags |= XFS_BLI_ORDERED;
718 	trace_xfs_buf_item_ordered(bip);
719 
720 	/*
721 	 * We don't log a dirty range of an ordered buffer but it still needs
722 	 * to be marked dirty and that it has been logged.
723 	 */
724 	xfs_trans_dirty_buf(tp, bp);
725 	return true;
726 }
727 
728 /*
729  * Set the type of the buffer for log recovery so that it can correctly identify
730  * and hence attach the correct buffer ops to the buffer after replay.
731  */
732 void
733 xfs_trans_buf_set_type(
734 	struct xfs_trans	*tp,
735 	struct xfs_buf		*bp,
736 	enum xfs_blft		type)
737 {
738 	struct xfs_buf_log_item	*bip = bp->b_log_item;
739 
740 	if (!tp)
741 		return;
742 
743 	ASSERT(bp->b_transp == tp);
744 	ASSERT(bip != NULL);
745 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
746 
747 	xfs_blft_to_flags(&bip->__bli_format, type);
748 }
749 
750 void
751 xfs_trans_buf_copy_type(
752 	struct xfs_buf		*dst_bp,
753 	struct xfs_buf		*src_bp)
754 {
755 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
756 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
757 	enum xfs_blft		type;
758 
759 	type = xfs_blft_from_flags(&sbip->__bli_format);
760 	xfs_blft_to_flags(&dbip->__bli_format, type);
761 }
762 
763 /*
764  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
765  * dquots. However, unlike in inode buffer recovery, dquot buffers get
766  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
767  * The only thing that makes dquot buffers different from regular
768  * buffers is that we must not replay dquot bufs when recovering
769  * if a _corresponding_ quotaoff has happened. We also have to distinguish
770  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
771  * can be turned off independently.
772  */
773 /* ARGSUSED */
774 void
775 xfs_trans_dquot_buf(
776 	xfs_trans_t		*tp,
777 	xfs_buf_t		*bp,
778 	uint			type)
779 {
780 	struct xfs_buf_log_item	*bip = bp->b_log_item;
781 
782 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
783 	       type == XFS_BLF_PDQUOT_BUF ||
784 	       type == XFS_BLF_GDQUOT_BUF);
785 
786 	bip->__bli_format.blf_flags |= type;
787 
788 	switch (type) {
789 	case XFS_BLF_UDQUOT_BUF:
790 		type = XFS_BLFT_UDQUOT_BUF;
791 		break;
792 	case XFS_BLF_PDQUOT_BUF:
793 		type = XFS_BLFT_PDQUOT_BUF;
794 		break;
795 	case XFS_BLF_GDQUOT_BUF:
796 		type = XFS_BLFT_GDQUOT_BUF;
797 		break;
798 	default:
799 		type = XFS_BLFT_UNKNOWN_BUF;
800 		break;
801 	}
802 
803 	xfs_trans_buf_set_type(tp, bp, type);
804 }
805