xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision e40573a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_buf_item.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_trace.h"
17 
18 /*
19  * Check to see if a buffer matching the given parameters is already
20  * a part of the given transaction.
21  */
22 STATIC struct xfs_buf *
23 xfs_trans_buf_item_match(
24 	struct xfs_trans	*tp,
25 	struct xfs_buftarg	*target,
26 	struct xfs_buf_map	*map,
27 	int			nmaps)
28 {
29 	struct xfs_log_item	*lip;
30 	struct xfs_buf_log_item	*blip;
31 	int			len = 0;
32 	int			i;
33 
34 	for (i = 0; i < nmaps; i++)
35 		len += map[i].bm_len;
36 
37 	list_for_each_entry(lip, &tp->t_items, li_trans) {
38 		blip = (struct xfs_buf_log_item *)lip;
39 		if (blip->bli_item.li_type == XFS_LI_BUF &&
40 		    blip->bli_buf->b_target == target &&
41 		    xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42 		    blip->bli_buf->b_length == len) {
43 			ASSERT(blip->bli_buf->b_map_count == nmaps);
44 			return blip->bli_buf;
45 		}
46 	}
47 
48 	return NULL;
49 }
50 
51 /*
52  * Add the locked buffer to the transaction.
53  *
54  * The buffer must be locked, and it cannot be associated with any
55  * transaction.
56  *
57  * If the buffer does not yet have a buf log item associated with it,
58  * then allocate one for it.  Then add the buf item to the transaction.
59  */
60 STATIC void
61 _xfs_trans_bjoin(
62 	struct xfs_trans	*tp,
63 	struct xfs_buf		*bp,
64 	int			reset_recur)
65 {
66 	struct xfs_buf_log_item	*bip;
67 
68 	ASSERT(bp->b_transp == NULL);
69 
70 	/*
71 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
72 	 * it doesn't have one yet, then allocate one and initialize it.
73 	 * The checks to see if one is there are in xfs_buf_item_init().
74 	 */
75 	xfs_buf_item_init(bp, tp->t_mountp);
76 	bip = bp->b_log_item;
77 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 	if (reset_recur)
81 		bip->bli_recur = 0;
82 
83 	/*
84 	 * Take a reference for this transaction on the buf item.
85 	 */
86 	atomic_inc(&bip->bli_refcount);
87 
88 	/*
89 	 * Attach the item to the transaction so we can find it in
90 	 * xfs_trans_get_buf() and friends.
91 	 */
92 	xfs_trans_add_item(tp, &bip->bli_item);
93 	bp->b_transp = tp;
94 
95 }
96 
97 void
98 xfs_trans_bjoin(
99 	struct xfs_trans	*tp,
100 	struct xfs_buf		*bp)
101 {
102 	_xfs_trans_bjoin(tp, bp, 0);
103 	trace_xfs_trans_bjoin(bp->b_log_item);
104 }
105 
106 /*
107  * Get and lock the buffer for the caller if it is not already
108  * locked within the given transaction.  If it is already locked
109  * within the transaction, just increment its lock recursion count
110  * and return a pointer to it.
111  *
112  * If the transaction pointer is NULL, make this just a normal
113  * get_buf() call.
114  */
115 int
116 xfs_trans_get_buf_map(
117 	struct xfs_trans	*tp,
118 	struct xfs_buftarg	*target,
119 	struct xfs_buf_map	*map,
120 	int			nmaps,
121 	xfs_buf_flags_t		flags,
122 	struct xfs_buf		**bpp)
123 {
124 	struct xfs_buf		*bp;
125 	struct xfs_buf_log_item	*bip;
126 	int			error;
127 
128 	*bpp = NULL;
129 	if (!tp)
130 		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131 
132 	/*
133 	 * If we find the buffer in the cache with this transaction
134 	 * pointer in its b_fsprivate2 field, then we know we already
135 	 * have it locked.  In this case we just increment the lock
136 	 * recursion count and return the buffer to the caller.
137 	 */
138 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 	if (bp != NULL) {
140 		ASSERT(xfs_buf_islocked(bp));
141 		if (xfs_is_shutdown(tp->t_mountp)) {
142 			xfs_buf_stale(bp);
143 			bp->b_flags |= XBF_DONE;
144 		}
145 
146 		ASSERT(bp->b_transp == tp);
147 		bip = bp->b_log_item;
148 		ASSERT(bip != NULL);
149 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 		bip->bli_recur++;
151 		trace_xfs_trans_get_buf_recur(bip);
152 		*bpp = bp;
153 		return 0;
154 	}
155 
156 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 	if (error)
158 		return error;
159 
160 	ASSERT(!bp->b_error);
161 
162 	_xfs_trans_bjoin(tp, bp, 1);
163 	trace_xfs_trans_get_buf(bp->b_log_item);
164 	*bpp = bp;
165 	return 0;
166 }
167 
168 /*
169  * Get and lock the superblock buffer for the given transaction.
170  */
171 struct xfs_buf *
172 xfs_trans_getsb(
173 	struct xfs_trans	*tp)
174 {
175 	struct xfs_buf		*bp = tp->t_mountp->m_sb_bp;
176 
177 	/*
178 	 * Just increment the lock recursion count if the buffer is already
179 	 * attached to this transaction.
180 	 */
181 	if (bp->b_transp == tp) {
182 		struct xfs_buf_log_item	*bip = bp->b_log_item;
183 
184 		ASSERT(bip != NULL);
185 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
186 		bip->bli_recur++;
187 
188 		trace_xfs_trans_getsb_recur(bip);
189 	} else {
190 		xfs_buf_lock(bp);
191 		xfs_buf_hold(bp);
192 		_xfs_trans_bjoin(tp, bp, 1);
193 
194 		trace_xfs_trans_getsb(bp->b_log_item);
195 	}
196 
197 	return bp;
198 }
199 
200 /*
201  * Get and lock the buffer for the caller if it is not already
202  * locked within the given transaction.  If it has not yet been
203  * read in, read it from disk. If it is already locked
204  * within the transaction and already read in, just increment its
205  * lock recursion count and return a pointer to it.
206  *
207  * If the transaction pointer is NULL, make this just a normal
208  * read_buf() call.
209  */
210 int
211 xfs_trans_read_buf_map(
212 	struct xfs_mount	*mp,
213 	struct xfs_trans	*tp,
214 	struct xfs_buftarg	*target,
215 	struct xfs_buf_map	*map,
216 	int			nmaps,
217 	xfs_buf_flags_t		flags,
218 	struct xfs_buf		**bpp,
219 	const struct xfs_buf_ops *ops)
220 {
221 	struct xfs_buf		*bp = NULL;
222 	struct xfs_buf_log_item	*bip;
223 	int			error;
224 
225 	*bpp = NULL;
226 	/*
227 	 * If we find the buffer in the cache with this transaction
228 	 * pointer in its b_fsprivate2 field, then we know we already
229 	 * have it locked.  If it is already read in we just increment
230 	 * the lock recursion count and return the buffer to the caller.
231 	 * If the buffer is not yet read in, then we read it in, increment
232 	 * the lock recursion count, and return it to the caller.
233 	 */
234 	if (tp)
235 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236 	if (bp) {
237 		ASSERT(xfs_buf_islocked(bp));
238 		ASSERT(bp->b_transp == tp);
239 		ASSERT(bp->b_log_item != NULL);
240 		ASSERT(!bp->b_error);
241 		ASSERT(bp->b_flags & XBF_DONE);
242 
243 		/*
244 		 * We never locked this buf ourselves, so we shouldn't
245 		 * brelse it either. Just get out.
246 		 */
247 		if (xfs_is_shutdown(mp)) {
248 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
249 			return -EIO;
250 		}
251 
252 		/*
253 		 * Check if the caller is trying to read a buffer that is
254 		 * already attached to the transaction yet has no buffer ops
255 		 * assigned.  Ops are usually attached when the buffer is
256 		 * attached to the transaction, or by the read caller if
257 		 * special circumstances.  That didn't happen, which is not
258 		 * how this is supposed to go.
259 		 *
260 		 * If the buffer passes verification we'll let this go, but if
261 		 * not we have to shut down.  Let the transaction cleanup code
262 		 * release this buffer when it kills the tranaction.
263 		 */
264 		ASSERT(bp->b_ops != NULL);
265 		error = xfs_buf_reverify(bp, ops);
266 		if (error) {
267 			xfs_buf_ioerror_alert(bp, __return_address);
268 
269 			if (tp->t_flags & XFS_TRANS_DIRTY)
270 				xfs_force_shutdown(tp->t_mountp,
271 						SHUTDOWN_META_IO_ERROR);
272 
273 			/* bad CRC means corrupted metadata */
274 			if (error == -EFSBADCRC)
275 				error = -EFSCORRUPTED;
276 			return error;
277 		}
278 
279 		bip = bp->b_log_item;
280 		bip->bli_recur++;
281 
282 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
283 		trace_xfs_trans_read_buf_recur(bip);
284 		ASSERT(bp->b_ops != NULL || ops == NULL);
285 		*bpp = bp;
286 		return 0;
287 	}
288 
289 	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290 			__return_address);
291 	switch (error) {
292 	case 0:
293 		break;
294 	default:
295 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
296 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
297 		fallthrough;
298 	case -ENOMEM:
299 	case -EAGAIN:
300 		return error;
301 	}
302 
303 	if (xfs_is_shutdown(mp)) {
304 		xfs_buf_relse(bp);
305 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306 		return -EIO;
307 	}
308 
309 	if (tp) {
310 		_xfs_trans_bjoin(tp, bp, 1);
311 		trace_xfs_trans_read_buf(bp->b_log_item);
312 	}
313 	ASSERT(bp->b_ops != NULL || ops == NULL);
314 	*bpp = bp;
315 	return 0;
316 
317 }
318 
319 /* Has this buffer been dirtied by anyone? */
320 bool
321 xfs_trans_buf_is_dirty(
322 	struct xfs_buf		*bp)
323 {
324 	struct xfs_buf_log_item	*bip = bp->b_log_item;
325 
326 	if (!bip)
327 		return false;
328 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329 	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330 }
331 
332 /*
333  * Release a buffer previously joined to the transaction. If the buffer is
334  * modified within this transaction, decrement the recursion count but do not
335  * release the buffer even if the count goes to 0. If the buffer is not modified
336  * within the transaction, decrement the recursion count and release the buffer
337  * if the recursion count goes to 0.
338  *
339  * If the buffer is to be released and it was not already dirty before this
340  * transaction began, then also free the buf_log_item associated with it.
341  *
342  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
343  */
344 void
345 xfs_trans_brelse(
346 	struct xfs_trans	*tp,
347 	struct xfs_buf		*bp)
348 {
349 	struct xfs_buf_log_item	*bip = bp->b_log_item;
350 
351 	ASSERT(bp->b_transp == tp);
352 
353 	if (!tp) {
354 		xfs_buf_relse(bp);
355 		return;
356 	}
357 
358 	trace_xfs_trans_brelse(bip);
359 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
361 
362 	/*
363 	 * If the release is for a recursive lookup, then decrement the count
364 	 * and return.
365 	 */
366 	if (bip->bli_recur > 0) {
367 		bip->bli_recur--;
368 		return;
369 	}
370 
371 	/*
372 	 * If the buffer is invalidated or dirty in this transaction, we can't
373 	 * release it until we commit.
374 	 */
375 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
376 		return;
377 	if (bip->bli_flags & XFS_BLI_STALE)
378 		return;
379 
380 	/*
381 	 * Unlink the log item from the transaction and clear the hold flag, if
382 	 * set. We wouldn't want the next user of the buffer to get confused.
383 	 */
384 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
385 	xfs_trans_del_item(&bip->bli_item);
386 	bip->bli_flags &= ~XFS_BLI_HOLD;
387 
388 	/* drop the reference to the bli */
389 	xfs_buf_item_put(bip);
390 
391 	bp->b_transp = NULL;
392 	xfs_buf_relse(bp);
393 }
394 
395 /*
396  * Mark the buffer as not needing to be unlocked when the buf item's
397  * iop_committing() routine is called.  The buffer must already be locked
398  * and associated with the given transaction.
399  */
400 /* ARGSUSED */
401 void
402 xfs_trans_bhold(
403 	xfs_trans_t		*tp,
404 	struct xfs_buf		*bp)
405 {
406 	struct xfs_buf_log_item	*bip = bp->b_log_item;
407 
408 	ASSERT(bp->b_transp == tp);
409 	ASSERT(bip != NULL);
410 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
411 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
412 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
413 
414 	bip->bli_flags |= XFS_BLI_HOLD;
415 	trace_xfs_trans_bhold(bip);
416 }
417 
418 /*
419  * Cancel the previous buffer hold request made on this buffer
420  * for this transaction.
421  */
422 void
423 xfs_trans_bhold_release(
424 	xfs_trans_t		*tp,
425 	struct xfs_buf		*bp)
426 {
427 	struct xfs_buf_log_item	*bip = bp->b_log_item;
428 
429 	ASSERT(bp->b_transp == tp);
430 	ASSERT(bip != NULL);
431 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
433 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
435 
436 	bip->bli_flags &= ~XFS_BLI_HOLD;
437 	trace_xfs_trans_bhold_release(bip);
438 }
439 
440 /*
441  * Mark a buffer dirty in the transaction.
442  */
443 void
444 xfs_trans_dirty_buf(
445 	struct xfs_trans	*tp,
446 	struct xfs_buf		*bp)
447 {
448 	struct xfs_buf_log_item	*bip = bp->b_log_item;
449 
450 	ASSERT(bp->b_transp == tp);
451 	ASSERT(bip != NULL);
452 
453 	/*
454 	 * Mark the buffer as needing to be written out eventually,
455 	 * and set its iodone function to remove the buffer's buf log
456 	 * item from the AIL and free it when the buffer is flushed
457 	 * to disk.
458 	 */
459 	bp->b_flags |= XBF_DONE;
460 
461 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
462 
463 	/*
464 	 * If we invalidated the buffer within this transaction, then
465 	 * cancel the invalidation now that we're dirtying the buffer
466 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
467 	 * because we have a reference to the buffer this entire time.
468 	 */
469 	if (bip->bli_flags & XFS_BLI_STALE) {
470 		bip->bli_flags &= ~XFS_BLI_STALE;
471 		ASSERT(bp->b_flags & XBF_STALE);
472 		bp->b_flags &= ~XBF_STALE;
473 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
474 	}
475 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
476 
477 	tp->t_flags |= XFS_TRANS_DIRTY;
478 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
479 }
480 
481 /*
482  * This is called to mark bytes first through last inclusive of the given
483  * buffer as needing to be logged when the transaction is committed.
484  * The buffer must already be associated with the given transaction.
485  *
486  * First and last are numbers relative to the beginning of this buffer,
487  * so the first byte in the buffer is numbered 0 regardless of the
488  * value of b_blkno.
489  */
490 void
491 xfs_trans_log_buf(
492 	struct xfs_trans	*tp,
493 	struct xfs_buf		*bp,
494 	uint			first,
495 	uint			last)
496 {
497 	struct xfs_buf_log_item	*bip = bp->b_log_item;
498 
499 	ASSERT(first <= last && last < BBTOB(bp->b_length));
500 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
501 
502 	xfs_trans_dirty_buf(tp, bp);
503 
504 	trace_xfs_trans_log_buf(bip);
505 	xfs_buf_item_log(bip, first, last);
506 }
507 
508 
509 /*
510  * Invalidate a buffer that is being used within a transaction.
511  *
512  * Typically this is because the blocks in the buffer are being freed, so we
513  * need to prevent it from being written out when we're done.  Allowing it
514  * to be written again might overwrite data in the free blocks if they are
515  * reallocated to a file.
516  *
517  * We prevent the buffer from being written out by marking it stale.  We can't
518  * get rid of the buf log item at this point because the buffer may still be
519  * pinned by another transaction.  If that is the case, then we'll wait until
520  * the buffer is committed to disk for the last time (we can tell by the ref
521  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
522  * keep the buffer locked so that the buffer and buf log item are not reused.
523  *
524  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
525  * the buf item.  This will be used at recovery time to determine that copies
526  * of the buffer in the log before this should not be replayed.
527  *
528  * We mark the item descriptor and the transaction dirty so that we'll hold
529  * the buffer until after the commit.
530  *
531  * Since we're invalidating the buffer, we also clear the state about which
532  * parts of the buffer have been logged.  We also clear the flag indicating
533  * that this is an inode buffer since the data in the buffer will no longer
534  * be valid.
535  *
536  * We set the stale bit in the buffer as well since we're getting rid of it.
537  */
538 void
539 xfs_trans_binval(
540 	xfs_trans_t		*tp,
541 	struct xfs_buf		*bp)
542 {
543 	struct xfs_buf_log_item	*bip = bp->b_log_item;
544 	int			i;
545 
546 	ASSERT(bp->b_transp == tp);
547 	ASSERT(bip != NULL);
548 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
549 
550 	trace_xfs_trans_binval(bip);
551 
552 	if (bip->bli_flags & XFS_BLI_STALE) {
553 		/*
554 		 * If the buffer is already invalidated, then
555 		 * just return.
556 		 */
557 		ASSERT(bp->b_flags & XBF_STALE);
558 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
559 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
560 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
561 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
562 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
563 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
564 		return;
565 	}
566 
567 	xfs_buf_stale(bp);
568 
569 	bip->bli_flags |= XFS_BLI_STALE;
570 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
571 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
572 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
573 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
574 	for (i = 0; i < bip->bli_format_count; i++) {
575 		memset(bip->bli_formats[i].blf_data_map, 0,
576 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
577 	}
578 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
579 	tp->t_flags |= XFS_TRANS_DIRTY;
580 }
581 
582 /*
583  * This call is used to indicate that the buffer contains on-disk inodes which
584  * must be handled specially during recovery.  They require special handling
585  * because only the di_next_unlinked from the inodes in the buffer should be
586  * recovered.  The rest of the data in the buffer is logged via the inodes
587  * themselves.
588  *
589  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
590  * transferred to the buffer's log format structure so that we'll know what to
591  * do at recovery time.
592  */
593 void
594 xfs_trans_inode_buf(
595 	xfs_trans_t		*tp,
596 	struct xfs_buf		*bp)
597 {
598 	struct xfs_buf_log_item	*bip = bp->b_log_item;
599 
600 	ASSERT(bp->b_transp == tp);
601 	ASSERT(bip != NULL);
602 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
603 
604 	bip->bli_flags |= XFS_BLI_INODE_BUF;
605 	bp->b_flags |= _XBF_INODES;
606 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
607 }
608 
609 /*
610  * This call is used to indicate that the buffer is going to
611  * be staled and was an inode buffer. This means it gets
612  * special processing during unpin - where any inodes
613  * associated with the buffer should be removed from ail.
614  * There is also special processing during recovery,
615  * any replay of the inodes in the buffer needs to be
616  * prevented as the buffer may have been reused.
617  */
618 void
619 xfs_trans_stale_inode_buf(
620 	xfs_trans_t		*tp,
621 	struct xfs_buf		*bp)
622 {
623 	struct xfs_buf_log_item	*bip = bp->b_log_item;
624 
625 	ASSERT(bp->b_transp == tp);
626 	ASSERT(bip != NULL);
627 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
628 
629 	bip->bli_flags |= XFS_BLI_STALE_INODE;
630 	bp->b_flags |= _XBF_INODES;
631 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
632 }
633 
634 /*
635  * Mark the buffer as being one which contains newly allocated
636  * inodes.  We need to make sure that even if this buffer is
637  * relogged as an 'inode buf' we still recover all of the inode
638  * images in the face of a crash.  This works in coordination with
639  * xfs_buf_item_committed() to ensure that the buffer remains in the
640  * AIL at its original location even after it has been relogged.
641  */
642 /* ARGSUSED */
643 void
644 xfs_trans_inode_alloc_buf(
645 	xfs_trans_t		*tp,
646 	struct xfs_buf		*bp)
647 {
648 	struct xfs_buf_log_item	*bip = bp->b_log_item;
649 
650 	ASSERT(bp->b_transp == tp);
651 	ASSERT(bip != NULL);
652 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
653 
654 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
655 	bp->b_flags |= _XBF_INODES;
656 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
657 }
658 
659 /*
660  * Mark the buffer as ordered for this transaction. This means that the contents
661  * of the buffer are not recorded in the transaction but it is tracked in the
662  * AIL as though it was. This allows us to record logical changes in
663  * transactions rather than the physical changes we make to the buffer without
664  * changing writeback ordering constraints of metadata buffers.
665  */
666 bool
667 xfs_trans_ordered_buf(
668 	struct xfs_trans	*tp,
669 	struct xfs_buf		*bp)
670 {
671 	struct xfs_buf_log_item	*bip = bp->b_log_item;
672 
673 	ASSERT(bp->b_transp == tp);
674 	ASSERT(bip != NULL);
675 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
676 
677 	if (xfs_buf_item_dirty_format(bip))
678 		return false;
679 
680 	bip->bli_flags |= XFS_BLI_ORDERED;
681 	trace_xfs_buf_item_ordered(bip);
682 
683 	/*
684 	 * We don't log a dirty range of an ordered buffer but it still needs
685 	 * to be marked dirty and that it has been logged.
686 	 */
687 	xfs_trans_dirty_buf(tp, bp);
688 	return true;
689 }
690 
691 /*
692  * Set the type of the buffer for log recovery so that it can correctly identify
693  * and hence attach the correct buffer ops to the buffer after replay.
694  */
695 void
696 xfs_trans_buf_set_type(
697 	struct xfs_trans	*tp,
698 	struct xfs_buf		*bp,
699 	enum xfs_blft		type)
700 {
701 	struct xfs_buf_log_item	*bip = bp->b_log_item;
702 
703 	if (!tp)
704 		return;
705 
706 	ASSERT(bp->b_transp == tp);
707 	ASSERT(bip != NULL);
708 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
709 
710 	xfs_blft_to_flags(&bip->__bli_format, type);
711 }
712 
713 void
714 xfs_trans_buf_copy_type(
715 	struct xfs_buf		*dst_bp,
716 	struct xfs_buf		*src_bp)
717 {
718 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
719 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
720 	enum xfs_blft		type;
721 
722 	type = xfs_blft_from_flags(&sbip->__bli_format);
723 	xfs_blft_to_flags(&dbip->__bli_format, type);
724 }
725 
726 /*
727  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
728  * dquots. However, unlike in inode buffer recovery, dquot buffers get
729  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
730  * The only thing that makes dquot buffers different from regular
731  * buffers is that we must not replay dquot bufs when recovering
732  * if a _corresponding_ quotaoff has happened. We also have to distinguish
733  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
734  * can be turned off independently.
735  */
736 /* ARGSUSED */
737 void
738 xfs_trans_dquot_buf(
739 	xfs_trans_t		*tp,
740 	struct xfs_buf		*bp,
741 	uint			type)
742 {
743 	struct xfs_buf_log_item	*bip = bp->b_log_item;
744 
745 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
746 	       type == XFS_BLF_PDQUOT_BUF ||
747 	       type == XFS_BLF_GDQUOT_BUF);
748 
749 	bip->__bli_format.blf_flags |= type;
750 
751 	switch (type) {
752 	case XFS_BLF_UDQUOT_BUF:
753 		type = XFS_BLFT_UDQUOT_BUF;
754 		break;
755 	case XFS_BLF_PDQUOT_BUF:
756 		type = XFS_BLFT_PDQUOT_BUF;
757 		break;
758 	case XFS_BLF_GDQUOT_BUF:
759 		type = XFS_BLFT_GDQUOT_BUF;
760 		break;
761 	default:
762 		type = XFS_BLFT_UNKNOWN_BUF;
763 		break;
764 	}
765 
766 	bp->b_flags |= _XBF_DQUOTS;
767 	xfs_trans_buf_set_type(tp, bp, type);
768 }
769