1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 /* 33 * Check to see if a buffer matching the given parameters is already 34 * a part of the given transaction. 35 */ 36 STATIC struct xfs_buf * 37 xfs_trans_buf_item_match( 38 struct xfs_trans *tp, 39 struct xfs_buftarg *target, 40 struct xfs_buf_map *map, 41 int nmaps) 42 { 43 struct xfs_log_item_desc *lidp; 44 struct xfs_buf_log_item *blip; 45 int len = 0; 46 int i; 47 48 for (i = 0; i < nmaps; i++) 49 len += map[i].bm_len; 50 51 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 52 blip = (struct xfs_buf_log_item *)lidp->lid_item; 53 if (blip->bli_item.li_type == XFS_LI_BUF && 54 blip->bli_buf->b_target == target && 55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 56 blip->bli_buf->b_length == len) { 57 ASSERT(blip->bli_buf->b_map_count == nmaps); 58 return blip->bli_buf; 59 } 60 } 61 62 return NULL; 63 } 64 65 /* 66 * Add the locked buffer to the transaction. 67 * 68 * The buffer must be locked, and it cannot be associated with any 69 * transaction. 70 * 71 * If the buffer does not yet have a buf log item associated with it, 72 * then allocate one for it. Then add the buf item to the transaction. 73 */ 74 STATIC void 75 _xfs_trans_bjoin( 76 struct xfs_trans *tp, 77 struct xfs_buf *bp, 78 int reset_recur) 79 { 80 struct xfs_buf_log_item *bip; 81 82 ASSERT(bp->b_transp == NULL); 83 84 /* 85 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 86 * it doesn't have one yet, then allocate one and initialize it. 87 * The checks to see if one is there are in xfs_buf_item_init(). 88 */ 89 xfs_buf_item_init(bp, tp->t_mountp); 90 bip = bp->b_fspriv; 91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 94 if (reset_recur) 95 bip->bli_recur = 0; 96 97 /* 98 * Take a reference for this transaction on the buf item. 99 */ 100 atomic_inc(&bip->bli_refcount); 101 102 /* 103 * Get a log_item_desc to point at the new item. 104 */ 105 xfs_trans_add_item(tp, &bip->bli_item); 106 107 /* 108 * Initialize b_fsprivate2 so we can find it with incore_match() 109 * in xfs_trans_get_buf() and friends above. 110 */ 111 bp->b_transp = tp; 112 113 } 114 115 void 116 xfs_trans_bjoin( 117 struct xfs_trans *tp, 118 struct xfs_buf *bp) 119 { 120 _xfs_trans_bjoin(tp, bp, 0); 121 trace_xfs_trans_bjoin(bp->b_fspriv); 122 } 123 124 /* 125 * Get and lock the buffer for the caller if it is not already 126 * locked within the given transaction. If it is already locked 127 * within the transaction, just increment its lock recursion count 128 * and return a pointer to it. 129 * 130 * If the transaction pointer is NULL, make this just a normal 131 * get_buf() call. 132 */ 133 struct xfs_buf * 134 xfs_trans_get_buf_map( 135 struct xfs_trans *tp, 136 struct xfs_buftarg *target, 137 struct xfs_buf_map *map, 138 int nmaps, 139 xfs_buf_flags_t flags) 140 { 141 xfs_buf_t *bp; 142 xfs_buf_log_item_t *bip; 143 144 if (!tp) 145 return xfs_buf_get_map(target, map, nmaps, flags); 146 147 /* 148 * If we find the buffer in the cache with this transaction 149 * pointer in its b_fsprivate2 field, then we know we already 150 * have it locked. In this case we just increment the lock 151 * recursion count and return the buffer to the caller. 152 */ 153 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 154 if (bp != NULL) { 155 ASSERT(xfs_buf_islocked(bp)); 156 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 157 xfs_buf_stale(bp); 158 XFS_BUF_DONE(bp); 159 } 160 161 ASSERT(bp->b_transp == tp); 162 bip = bp->b_fspriv; 163 ASSERT(bip != NULL); 164 ASSERT(atomic_read(&bip->bli_refcount) > 0); 165 bip->bli_recur++; 166 trace_xfs_trans_get_buf_recur(bip); 167 return bp; 168 } 169 170 bp = xfs_buf_get_map(target, map, nmaps, flags); 171 if (bp == NULL) { 172 return NULL; 173 } 174 175 ASSERT(!bp->b_error); 176 177 _xfs_trans_bjoin(tp, bp, 1); 178 trace_xfs_trans_get_buf(bp->b_fspriv); 179 return bp; 180 } 181 182 /* 183 * Get and lock the superblock buffer of this file system for the 184 * given transaction. 185 * 186 * We don't need to use incore_match() here, because the superblock 187 * buffer is a private buffer which we keep a pointer to in the 188 * mount structure. 189 */ 190 xfs_buf_t * 191 xfs_trans_getsb(xfs_trans_t *tp, 192 struct xfs_mount *mp, 193 int flags) 194 { 195 xfs_buf_t *bp; 196 xfs_buf_log_item_t *bip; 197 198 /* 199 * Default to just trying to lock the superblock buffer 200 * if tp is NULL. 201 */ 202 if (tp == NULL) 203 return xfs_getsb(mp, flags); 204 205 /* 206 * If the superblock buffer already has this transaction 207 * pointer in its b_fsprivate2 field, then we know we already 208 * have it locked. In this case we just increment the lock 209 * recursion count and return the buffer to the caller. 210 */ 211 bp = mp->m_sb_bp; 212 if (bp->b_transp == tp) { 213 bip = bp->b_fspriv; 214 ASSERT(bip != NULL); 215 ASSERT(atomic_read(&bip->bli_refcount) > 0); 216 bip->bli_recur++; 217 trace_xfs_trans_getsb_recur(bip); 218 return bp; 219 } 220 221 bp = xfs_getsb(mp, flags); 222 if (bp == NULL) 223 return NULL; 224 225 _xfs_trans_bjoin(tp, bp, 1); 226 trace_xfs_trans_getsb(bp->b_fspriv); 227 return bp; 228 } 229 230 /* 231 * Get and lock the buffer for the caller if it is not already 232 * locked within the given transaction. If it has not yet been 233 * read in, read it from disk. If it is already locked 234 * within the transaction and already read in, just increment its 235 * lock recursion count and return a pointer to it. 236 * 237 * If the transaction pointer is NULL, make this just a normal 238 * read_buf() call. 239 */ 240 int 241 xfs_trans_read_buf_map( 242 struct xfs_mount *mp, 243 struct xfs_trans *tp, 244 struct xfs_buftarg *target, 245 struct xfs_buf_map *map, 246 int nmaps, 247 xfs_buf_flags_t flags, 248 struct xfs_buf **bpp, 249 const struct xfs_buf_ops *ops) 250 { 251 struct xfs_buf *bp = NULL; 252 struct xfs_buf_log_item *bip; 253 int error; 254 255 *bpp = NULL; 256 /* 257 * If we find the buffer in the cache with this transaction 258 * pointer in its b_fsprivate2 field, then we know we already 259 * have it locked. If it is already read in we just increment 260 * the lock recursion count and return the buffer to the caller. 261 * If the buffer is not yet read in, then we read it in, increment 262 * the lock recursion count, and return it to the caller. 263 */ 264 if (tp) 265 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 266 if (bp) { 267 ASSERT(xfs_buf_islocked(bp)); 268 ASSERT(bp->b_transp == tp); 269 ASSERT(bp->b_fspriv != NULL); 270 ASSERT(!bp->b_error); 271 ASSERT(bp->b_flags & XBF_DONE); 272 273 /* 274 * We never locked this buf ourselves, so we shouldn't 275 * brelse it either. Just get out. 276 */ 277 if (XFS_FORCED_SHUTDOWN(mp)) { 278 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 279 return -EIO; 280 } 281 282 bip = bp->b_fspriv; 283 bip->bli_recur++; 284 285 ASSERT(atomic_read(&bip->bli_refcount) > 0); 286 trace_xfs_trans_read_buf_recur(bip); 287 *bpp = bp; 288 return 0; 289 } 290 291 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 292 if (!bp) { 293 if (!(flags & XBF_TRYLOCK)) 294 return -ENOMEM; 295 return tp ? 0 : -EAGAIN; 296 } 297 298 /* 299 * If we've had a read error, then the contents of the buffer are 300 * invalid and should not be used. To ensure that a followup read tries 301 * to pull the buffer from disk again, we clear the XBF_DONE flag and 302 * mark the buffer stale. This ensures that anyone who has a current 303 * reference to the buffer will interpret it's contents correctly and 304 * future cache lookups will also treat it as an empty, uninitialised 305 * buffer. 306 */ 307 if (bp->b_error) { 308 error = bp->b_error; 309 if (!XFS_FORCED_SHUTDOWN(mp)) 310 xfs_buf_ioerror_alert(bp, __func__); 311 bp->b_flags &= ~XBF_DONE; 312 xfs_buf_stale(bp); 313 314 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 315 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 316 xfs_buf_relse(bp); 317 318 /* bad CRC means corrupted metadata */ 319 if (error == -EFSBADCRC) 320 error = -EFSCORRUPTED; 321 return error; 322 } 323 324 if (XFS_FORCED_SHUTDOWN(mp)) { 325 xfs_buf_relse(bp); 326 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 327 return -EIO; 328 } 329 330 if (tp) 331 _xfs_trans_bjoin(tp, bp, 1); 332 trace_xfs_trans_read_buf(bp->b_fspriv); 333 *bpp = bp; 334 return 0; 335 336 } 337 338 /* 339 * Release the buffer bp which was previously acquired with one of the 340 * xfs_trans_... buffer allocation routines if the buffer has not 341 * been modified within this transaction. If the buffer is modified 342 * within this transaction, do decrement the recursion count but do 343 * not release the buffer even if the count goes to 0. If the buffer is not 344 * modified within the transaction, decrement the recursion count and 345 * release the buffer if the recursion count goes to 0. 346 * 347 * If the buffer is to be released and it was not modified before 348 * this transaction began, then free the buf_log_item associated with it. 349 * 350 * If the transaction pointer is NULL, make this just a normal 351 * brelse() call. 352 */ 353 void 354 xfs_trans_brelse(xfs_trans_t *tp, 355 xfs_buf_t *bp) 356 { 357 xfs_buf_log_item_t *bip; 358 359 /* 360 * Default to a normal brelse() call if the tp is NULL. 361 */ 362 if (tp == NULL) { 363 ASSERT(bp->b_transp == NULL); 364 xfs_buf_relse(bp); 365 return; 366 } 367 368 ASSERT(bp->b_transp == tp); 369 bip = bp->b_fspriv; 370 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 371 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 372 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 373 ASSERT(atomic_read(&bip->bli_refcount) > 0); 374 375 trace_xfs_trans_brelse(bip); 376 377 /* 378 * If the release is just for a recursive lock, 379 * then decrement the count and return. 380 */ 381 if (bip->bli_recur > 0) { 382 bip->bli_recur--; 383 return; 384 } 385 386 /* 387 * If the buffer is dirty within this transaction, we can't 388 * release it until we commit. 389 */ 390 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 391 return; 392 393 /* 394 * If the buffer has been invalidated, then we can't release 395 * it until the transaction commits to disk unless it is re-dirtied 396 * as part of this transaction. This prevents us from pulling 397 * the item from the AIL before we should. 398 */ 399 if (bip->bli_flags & XFS_BLI_STALE) 400 return; 401 402 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 403 404 /* 405 * Free up the log item descriptor tracking the released item. 406 */ 407 xfs_trans_del_item(&bip->bli_item); 408 409 /* 410 * Clear the hold flag in the buf log item if it is set. 411 * We wouldn't want the next user of the buffer to 412 * get confused. 413 */ 414 if (bip->bli_flags & XFS_BLI_HOLD) { 415 bip->bli_flags &= ~XFS_BLI_HOLD; 416 } 417 418 /* 419 * Drop our reference to the buf log item. 420 */ 421 atomic_dec(&bip->bli_refcount); 422 423 /* 424 * If the buf item is not tracking data in the log, then 425 * we must free it before releasing the buffer back to the 426 * free pool. Before releasing the buffer to the free pool, 427 * clear the transaction pointer in b_fsprivate2 to dissolve 428 * its relation to this transaction. 429 */ 430 if (!xfs_buf_item_dirty(bip)) { 431 /*** 432 ASSERT(bp->b_pincount == 0); 433 ***/ 434 ASSERT(atomic_read(&bip->bli_refcount) == 0); 435 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 436 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 437 xfs_buf_item_relse(bp); 438 } 439 440 bp->b_transp = NULL; 441 xfs_buf_relse(bp); 442 } 443 444 /* 445 * Mark the buffer as not needing to be unlocked when the buf item's 446 * iop_unlock() routine is called. The buffer must already be locked 447 * and associated with the given transaction. 448 */ 449 /* ARGSUSED */ 450 void 451 xfs_trans_bhold(xfs_trans_t *tp, 452 xfs_buf_t *bp) 453 { 454 xfs_buf_log_item_t *bip = bp->b_fspriv; 455 456 ASSERT(bp->b_transp == tp); 457 ASSERT(bip != NULL); 458 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 459 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 460 ASSERT(atomic_read(&bip->bli_refcount) > 0); 461 462 bip->bli_flags |= XFS_BLI_HOLD; 463 trace_xfs_trans_bhold(bip); 464 } 465 466 /* 467 * Cancel the previous buffer hold request made on this buffer 468 * for this transaction. 469 */ 470 void 471 xfs_trans_bhold_release(xfs_trans_t *tp, 472 xfs_buf_t *bp) 473 { 474 xfs_buf_log_item_t *bip = bp->b_fspriv; 475 476 ASSERT(bp->b_transp == tp); 477 ASSERT(bip != NULL); 478 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 479 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 480 ASSERT(atomic_read(&bip->bli_refcount) > 0); 481 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 482 483 bip->bli_flags &= ~XFS_BLI_HOLD; 484 trace_xfs_trans_bhold_release(bip); 485 } 486 487 /* 488 * This is called to mark bytes first through last inclusive of the given 489 * buffer as needing to be logged when the transaction is committed. 490 * The buffer must already be associated with the given transaction. 491 * 492 * First and last are numbers relative to the beginning of this buffer, 493 * so the first byte in the buffer is numbered 0 regardless of the 494 * value of b_blkno. 495 */ 496 void 497 xfs_trans_log_buf(xfs_trans_t *tp, 498 xfs_buf_t *bp, 499 uint first, 500 uint last) 501 { 502 xfs_buf_log_item_t *bip = bp->b_fspriv; 503 504 ASSERT(bp->b_transp == tp); 505 ASSERT(bip != NULL); 506 ASSERT(first <= last && last < BBTOB(bp->b_length)); 507 ASSERT(bp->b_iodone == NULL || 508 bp->b_iodone == xfs_buf_iodone_callbacks); 509 510 /* 511 * Mark the buffer as needing to be written out eventually, 512 * and set its iodone function to remove the buffer's buf log 513 * item from the AIL and free it when the buffer is flushed 514 * to disk. See xfs_buf_attach_iodone() for more details 515 * on li_cb and xfs_buf_iodone_callbacks(). 516 * If we end up aborting this transaction, we trap this buffer 517 * inside the b_bdstrat callback so that this won't get written to 518 * disk. 519 */ 520 XFS_BUF_DONE(bp); 521 522 ASSERT(atomic_read(&bip->bli_refcount) > 0); 523 bp->b_iodone = xfs_buf_iodone_callbacks; 524 bip->bli_item.li_cb = xfs_buf_iodone; 525 526 trace_xfs_trans_log_buf(bip); 527 528 /* 529 * If we invalidated the buffer within this transaction, then 530 * cancel the invalidation now that we're dirtying the buffer 531 * again. There are no races with the code in xfs_buf_item_unpin(), 532 * because we have a reference to the buffer this entire time. 533 */ 534 if (bip->bli_flags & XFS_BLI_STALE) { 535 bip->bli_flags &= ~XFS_BLI_STALE; 536 ASSERT(XFS_BUF_ISSTALE(bp)); 537 XFS_BUF_UNSTALE(bp); 538 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 539 } 540 541 tp->t_flags |= XFS_TRANS_DIRTY; 542 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 543 544 /* 545 * If we have an ordered buffer we are not logging any dirty range but 546 * it still needs to be marked dirty and that it has been logged. 547 */ 548 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 549 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 550 xfs_buf_item_log(bip, first, last); 551 } 552 553 554 /* 555 * Invalidate a buffer that is being used within a transaction. 556 * 557 * Typically this is because the blocks in the buffer are being freed, so we 558 * need to prevent it from being written out when we're done. Allowing it 559 * to be written again might overwrite data in the free blocks if they are 560 * reallocated to a file. 561 * 562 * We prevent the buffer from being written out by marking it stale. We can't 563 * get rid of the buf log item at this point because the buffer may still be 564 * pinned by another transaction. If that is the case, then we'll wait until 565 * the buffer is committed to disk for the last time (we can tell by the ref 566 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 567 * keep the buffer locked so that the buffer and buf log item are not reused. 568 * 569 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 570 * the buf item. This will be used at recovery time to determine that copies 571 * of the buffer in the log before this should not be replayed. 572 * 573 * We mark the item descriptor and the transaction dirty so that we'll hold 574 * the buffer until after the commit. 575 * 576 * Since we're invalidating the buffer, we also clear the state about which 577 * parts of the buffer have been logged. We also clear the flag indicating 578 * that this is an inode buffer since the data in the buffer will no longer 579 * be valid. 580 * 581 * We set the stale bit in the buffer as well since we're getting rid of it. 582 */ 583 void 584 xfs_trans_binval( 585 xfs_trans_t *tp, 586 xfs_buf_t *bp) 587 { 588 xfs_buf_log_item_t *bip = bp->b_fspriv; 589 int i; 590 591 ASSERT(bp->b_transp == tp); 592 ASSERT(bip != NULL); 593 ASSERT(atomic_read(&bip->bli_refcount) > 0); 594 595 trace_xfs_trans_binval(bip); 596 597 if (bip->bli_flags & XFS_BLI_STALE) { 598 /* 599 * If the buffer is already invalidated, then 600 * just return. 601 */ 602 ASSERT(XFS_BUF_ISSTALE(bp)); 603 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 604 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 605 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 606 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 607 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 608 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 609 return; 610 } 611 612 xfs_buf_stale(bp); 613 614 bip->bli_flags |= XFS_BLI_STALE; 615 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 616 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 617 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 618 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 619 for (i = 0; i < bip->bli_format_count; i++) { 620 memset(bip->bli_formats[i].blf_data_map, 0, 621 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 622 } 623 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 624 tp->t_flags |= XFS_TRANS_DIRTY; 625 } 626 627 /* 628 * This call is used to indicate that the buffer contains on-disk inodes which 629 * must be handled specially during recovery. They require special handling 630 * because only the di_next_unlinked from the inodes in the buffer should be 631 * recovered. The rest of the data in the buffer is logged via the inodes 632 * themselves. 633 * 634 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 635 * transferred to the buffer's log format structure so that we'll know what to 636 * do at recovery time. 637 */ 638 void 639 xfs_trans_inode_buf( 640 xfs_trans_t *tp, 641 xfs_buf_t *bp) 642 { 643 xfs_buf_log_item_t *bip = bp->b_fspriv; 644 645 ASSERT(bp->b_transp == tp); 646 ASSERT(bip != NULL); 647 ASSERT(atomic_read(&bip->bli_refcount) > 0); 648 649 bip->bli_flags |= XFS_BLI_INODE_BUF; 650 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 651 } 652 653 /* 654 * This call is used to indicate that the buffer is going to 655 * be staled and was an inode buffer. This means it gets 656 * special processing during unpin - where any inodes 657 * associated with the buffer should be removed from ail. 658 * There is also special processing during recovery, 659 * any replay of the inodes in the buffer needs to be 660 * prevented as the buffer may have been reused. 661 */ 662 void 663 xfs_trans_stale_inode_buf( 664 xfs_trans_t *tp, 665 xfs_buf_t *bp) 666 { 667 xfs_buf_log_item_t *bip = bp->b_fspriv; 668 669 ASSERT(bp->b_transp == tp); 670 ASSERT(bip != NULL); 671 ASSERT(atomic_read(&bip->bli_refcount) > 0); 672 673 bip->bli_flags |= XFS_BLI_STALE_INODE; 674 bip->bli_item.li_cb = xfs_buf_iodone; 675 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 676 } 677 678 /* 679 * Mark the buffer as being one which contains newly allocated 680 * inodes. We need to make sure that even if this buffer is 681 * relogged as an 'inode buf' we still recover all of the inode 682 * images in the face of a crash. This works in coordination with 683 * xfs_buf_item_committed() to ensure that the buffer remains in the 684 * AIL at its original location even after it has been relogged. 685 */ 686 /* ARGSUSED */ 687 void 688 xfs_trans_inode_alloc_buf( 689 xfs_trans_t *tp, 690 xfs_buf_t *bp) 691 { 692 xfs_buf_log_item_t *bip = bp->b_fspriv; 693 694 ASSERT(bp->b_transp == tp); 695 ASSERT(bip != NULL); 696 ASSERT(atomic_read(&bip->bli_refcount) > 0); 697 698 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 699 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 700 } 701 702 /* 703 * Mark the buffer as ordered for this transaction. This means 704 * that the contents of the buffer are not recorded in the transaction 705 * but it is tracked in the AIL as though it was. This allows us 706 * to record logical changes in transactions rather than the physical 707 * changes we make to the buffer without changing writeback ordering 708 * constraints of metadata buffers. 709 */ 710 void 711 xfs_trans_ordered_buf( 712 struct xfs_trans *tp, 713 struct xfs_buf *bp) 714 { 715 struct xfs_buf_log_item *bip = bp->b_fspriv; 716 717 ASSERT(bp->b_transp == tp); 718 ASSERT(bip != NULL); 719 ASSERT(atomic_read(&bip->bli_refcount) > 0); 720 721 bip->bli_flags |= XFS_BLI_ORDERED; 722 trace_xfs_buf_item_ordered(bip); 723 } 724 725 /* 726 * Set the type of the buffer for log recovery so that it can correctly identify 727 * and hence attach the correct buffer ops to the buffer after replay. 728 */ 729 void 730 xfs_trans_buf_set_type( 731 struct xfs_trans *tp, 732 struct xfs_buf *bp, 733 enum xfs_blft type) 734 { 735 struct xfs_buf_log_item *bip = bp->b_fspriv; 736 737 if (!tp) 738 return; 739 740 ASSERT(bp->b_transp == tp); 741 ASSERT(bip != NULL); 742 ASSERT(atomic_read(&bip->bli_refcount) > 0); 743 744 xfs_blft_to_flags(&bip->__bli_format, type); 745 } 746 747 void 748 xfs_trans_buf_copy_type( 749 struct xfs_buf *dst_bp, 750 struct xfs_buf *src_bp) 751 { 752 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 753 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 754 enum xfs_blft type; 755 756 type = xfs_blft_from_flags(&sbip->__bli_format); 757 xfs_blft_to_flags(&dbip->__bli_format, type); 758 } 759 760 /* 761 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 762 * dquots. However, unlike in inode buffer recovery, dquot buffers get 763 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 764 * The only thing that makes dquot buffers different from regular 765 * buffers is that we must not replay dquot bufs when recovering 766 * if a _corresponding_ quotaoff has happened. We also have to distinguish 767 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 768 * can be turned off independently. 769 */ 770 /* ARGSUSED */ 771 void 772 xfs_trans_dquot_buf( 773 xfs_trans_t *tp, 774 xfs_buf_t *bp, 775 uint type) 776 { 777 struct xfs_buf_log_item *bip = bp->b_fspriv; 778 779 ASSERT(type == XFS_BLF_UDQUOT_BUF || 780 type == XFS_BLF_PDQUOT_BUF || 781 type == XFS_BLF_GDQUOT_BUF); 782 783 bip->__bli_format.blf_flags |= type; 784 785 switch (type) { 786 case XFS_BLF_UDQUOT_BUF: 787 type = XFS_BLFT_UDQUOT_BUF; 788 break; 789 case XFS_BLF_PDQUOT_BUF: 790 type = XFS_BLFT_PDQUOT_BUF; 791 break; 792 case XFS_BLF_GDQUOT_BUF: 793 type = XFS_BLFT_GDQUOT_BUF; 794 break; 795 default: 796 type = XFS_BLFT_UNKNOWN_BUF; 797 break; 798 } 799 800 xfs_trans_buf_set_type(tp, bp, type); 801 } 802