1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_buf_item.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 18 /* 19 * Check to see if a buffer matching the given parameters is already 20 * a part of the given transaction. 21 */ 22 STATIC struct xfs_buf * 23 xfs_trans_buf_item_match( 24 struct xfs_trans *tp, 25 struct xfs_buftarg *target, 26 struct xfs_buf_map *map, 27 int nmaps) 28 { 29 struct xfs_log_item *lip; 30 struct xfs_buf_log_item *blip; 31 int len = 0; 32 int i; 33 34 for (i = 0; i < nmaps; i++) 35 len += map[i].bm_len; 36 37 list_for_each_entry(lip, &tp->t_items, li_trans) { 38 blip = (struct xfs_buf_log_item *)lip; 39 if (blip->bli_item.li_type == XFS_LI_BUF && 40 blip->bli_buf->b_target == target && 41 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 42 blip->bli_buf->b_length == len) { 43 ASSERT(blip->bli_buf->b_map_count == nmaps); 44 return blip->bli_buf; 45 } 46 } 47 48 return NULL; 49 } 50 51 /* 52 * Add the locked buffer to the transaction. 53 * 54 * The buffer must be locked, and it cannot be associated with any 55 * transaction. 56 * 57 * If the buffer does not yet have a buf log item associated with it, 58 * then allocate one for it. Then add the buf item to the transaction. 59 */ 60 STATIC void 61 _xfs_trans_bjoin( 62 struct xfs_trans *tp, 63 struct xfs_buf *bp, 64 int reset_recur) 65 { 66 struct xfs_buf_log_item *bip; 67 68 ASSERT(bp->b_transp == NULL); 69 70 /* 71 * The xfs_buf_log_item pointer is stored in b_log_item. If 72 * it doesn't have one yet, then allocate one and initialize it. 73 * The checks to see if one is there are in xfs_buf_item_init(). 74 */ 75 xfs_buf_item_init(bp, tp->t_mountp); 76 bip = bp->b_log_item; 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 80 if (reset_recur) 81 bip->bli_recur = 0; 82 83 /* 84 * Take a reference for this transaction on the buf item. 85 */ 86 atomic_inc(&bip->bli_refcount); 87 88 /* 89 * Attach the item to the transaction so we can find it in 90 * xfs_trans_get_buf() and friends. 91 */ 92 xfs_trans_add_item(tp, &bip->bli_item); 93 bp->b_transp = tp; 94 95 } 96 97 void 98 xfs_trans_bjoin( 99 struct xfs_trans *tp, 100 struct xfs_buf *bp) 101 { 102 _xfs_trans_bjoin(tp, bp, 0); 103 trace_xfs_trans_bjoin(bp->b_log_item); 104 } 105 106 /* 107 * Get and lock the buffer for the caller if it is not already 108 * locked within the given transaction. If it is already locked 109 * within the transaction, just increment its lock recursion count 110 * and return a pointer to it. 111 * 112 * If the transaction pointer is NULL, make this just a normal 113 * get_buf() call. 114 */ 115 int 116 xfs_trans_get_buf_map( 117 struct xfs_trans *tp, 118 struct xfs_buftarg *target, 119 struct xfs_buf_map *map, 120 int nmaps, 121 xfs_buf_flags_t flags, 122 struct xfs_buf **bpp) 123 { 124 struct xfs_buf *bp; 125 struct xfs_buf_log_item *bip; 126 int error; 127 128 *bpp = NULL; 129 if (!tp) 130 return xfs_buf_get_map(target, map, nmaps, flags, bpp); 131 132 /* 133 * If we find the buffer in the cache with this transaction 134 * pointer in its b_fsprivate2 field, then we know we already 135 * have it locked. In this case we just increment the lock 136 * recursion count and return the buffer to the caller. 137 */ 138 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 139 if (bp != NULL) { 140 ASSERT(xfs_buf_islocked(bp)); 141 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 142 xfs_buf_stale(bp); 143 bp->b_flags |= XBF_DONE; 144 } 145 146 ASSERT(bp->b_transp == tp); 147 bip = bp->b_log_item; 148 ASSERT(bip != NULL); 149 ASSERT(atomic_read(&bip->bli_refcount) > 0); 150 bip->bli_recur++; 151 trace_xfs_trans_get_buf_recur(bip); 152 *bpp = bp; 153 return 0; 154 } 155 156 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 157 if (error) 158 return error; 159 160 ASSERT(!bp->b_error); 161 162 _xfs_trans_bjoin(tp, bp, 1); 163 trace_xfs_trans_get_buf(bp->b_log_item); 164 *bpp = bp; 165 return 0; 166 } 167 168 /* 169 * Get and lock the superblock buffer for the given transaction. 170 */ 171 struct xfs_buf * 172 xfs_trans_getsb( 173 struct xfs_trans *tp) 174 { 175 struct xfs_buf *bp = tp->t_mountp->m_sb_bp; 176 177 /* 178 * Just increment the lock recursion count if the buffer is already 179 * attached to this transaction. 180 */ 181 if (bp->b_transp == tp) { 182 struct xfs_buf_log_item *bip = bp->b_log_item; 183 184 ASSERT(bip != NULL); 185 ASSERT(atomic_read(&bip->bli_refcount) > 0); 186 bip->bli_recur++; 187 188 trace_xfs_trans_getsb_recur(bip); 189 } else { 190 xfs_buf_lock(bp); 191 xfs_buf_hold(bp); 192 _xfs_trans_bjoin(tp, bp, 1); 193 194 trace_xfs_trans_getsb(bp->b_log_item); 195 } 196 197 return bp; 198 } 199 200 /* 201 * Get and lock the buffer for the caller if it is not already 202 * locked within the given transaction. If it has not yet been 203 * read in, read it from disk. If it is already locked 204 * within the transaction and already read in, just increment its 205 * lock recursion count and return a pointer to it. 206 * 207 * If the transaction pointer is NULL, make this just a normal 208 * read_buf() call. 209 */ 210 int 211 xfs_trans_read_buf_map( 212 struct xfs_mount *mp, 213 struct xfs_trans *tp, 214 struct xfs_buftarg *target, 215 struct xfs_buf_map *map, 216 int nmaps, 217 xfs_buf_flags_t flags, 218 struct xfs_buf **bpp, 219 const struct xfs_buf_ops *ops) 220 { 221 struct xfs_buf *bp = NULL; 222 struct xfs_buf_log_item *bip; 223 int error; 224 225 *bpp = NULL; 226 /* 227 * If we find the buffer in the cache with this transaction 228 * pointer in its b_fsprivate2 field, then we know we already 229 * have it locked. If it is already read in we just increment 230 * the lock recursion count and return the buffer to the caller. 231 * If the buffer is not yet read in, then we read it in, increment 232 * the lock recursion count, and return it to the caller. 233 */ 234 if (tp) 235 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 236 if (bp) { 237 ASSERT(xfs_buf_islocked(bp)); 238 ASSERT(bp->b_transp == tp); 239 ASSERT(bp->b_log_item != NULL); 240 ASSERT(!bp->b_error); 241 ASSERT(bp->b_flags & XBF_DONE); 242 243 /* 244 * We never locked this buf ourselves, so we shouldn't 245 * brelse it either. Just get out. 246 */ 247 if (XFS_FORCED_SHUTDOWN(mp)) { 248 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 249 return -EIO; 250 } 251 252 /* 253 * Check if the caller is trying to read a buffer that is 254 * already attached to the transaction yet has no buffer ops 255 * assigned. Ops are usually attached when the buffer is 256 * attached to the transaction, or by the read caller if 257 * special circumstances. That didn't happen, which is not 258 * how this is supposed to go. 259 * 260 * If the buffer passes verification we'll let this go, but if 261 * not we have to shut down. Let the transaction cleanup code 262 * release this buffer when it kills the tranaction. 263 */ 264 ASSERT(bp->b_ops != NULL); 265 error = xfs_buf_reverify(bp, ops); 266 if (error) { 267 xfs_buf_ioerror_alert(bp, __return_address); 268 269 if (tp->t_flags & XFS_TRANS_DIRTY) 270 xfs_force_shutdown(tp->t_mountp, 271 SHUTDOWN_META_IO_ERROR); 272 273 /* bad CRC means corrupted metadata */ 274 if (error == -EFSBADCRC) 275 error = -EFSCORRUPTED; 276 return error; 277 } 278 279 bip = bp->b_log_item; 280 bip->bli_recur++; 281 282 ASSERT(atomic_read(&bip->bli_refcount) > 0); 283 trace_xfs_trans_read_buf_recur(bip); 284 ASSERT(bp->b_ops != NULL || ops == NULL); 285 *bpp = bp; 286 return 0; 287 } 288 289 error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops, 290 __return_address); 291 switch (error) { 292 case 0: 293 break; 294 default: 295 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 296 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 297 /* fall through */ 298 case -ENOMEM: 299 case -EAGAIN: 300 return error; 301 } 302 303 if (XFS_FORCED_SHUTDOWN(mp)) { 304 xfs_buf_relse(bp); 305 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 306 return -EIO; 307 } 308 309 if (tp) { 310 _xfs_trans_bjoin(tp, bp, 1); 311 trace_xfs_trans_read_buf(bp->b_log_item); 312 } 313 ASSERT(bp->b_ops != NULL || ops == NULL); 314 *bpp = bp; 315 return 0; 316 317 } 318 319 /* Has this buffer been dirtied by anyone? */ 320 bool 321 xfs_trans_buf_is_dirty( 322 struct xfs_buf *bp) 323 { 324 struct xfs_buf_log_item *bip = bp->b_log_item; 325 326 if (!bip) 327 return false; 328 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 329 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 330 } 331 332 /* 333 * Release a buffer previously joined to the transaction. If the buffer is 334 * modified within this transaction, decrement the recursion count but do not 335 * release the buffer even if the count goes to 0. If the buffer is not modified 336 * within the transaction, decrement the recursion count and release the buffer 337 * if the recursion count goes to 0. 338 * 339 * If the buffer is to be released and it was not already dirty before this 340 * transaction began, then also free the buf_log_item associated with it. 341 * 342 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 343 */ 344 void 345 xfs_trans_brelse( 346 struct xfs_trans *tp, 347 struct xfs_buf *bp) 348 { 349 struct xfs_buf_log_item *bip = bp->b_log_item; 350 351 ASSERT(bp->b_transp == tp); 352 353 if (!tp) { 354 xfs_buf_relse(bp); 355 return; 356 } 357 358 trace_xfs_trans_brelse(bip); 359 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 360 ASSERT(atomic_read(&bip->bli_refcount) > 0); 361 362 /* 363 * If the release is for a recursive lookup, then decrement the count 364 * and return. 365 */ 366 if (bip->bli_recur > 0) { 367 bip->bli_recur--; 368 return; 369 } 370 371 /* 372 * If the buffer is invalidated or dirty in this transaction, we can't 373 * release it until we commit. 374 */ 375 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 376 return; 377 if (bip->bli_flags & XFS_BLI_STALE) 378 return; 379 380 /* 381 * Unlink the log item from the transaction and clear the hold flag, if 382 * set. We wouldn't want the next user of the buffer to get confused. 383 */ 384 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 385 xfs_trans_del_item(&bip->bli_item); 386 bip->bli_flags &= ~XFS_BLI_HOLD; 387 388 /* drop the reference to the bli */ 389 xfs_buf_item_put(bip); 390 391 bp->b_transp = NULL; 392 xfs_buf_relse(bp); 393 } 394 395 /* 396 * Mark the buffer as not needing to be unlocked when the buf item's 397 * iop_committing() routine is called. The buffer must already be locked 398 * and associated with the given transaction. 399 */ 400 /* ARGSUSED */ 401 void 402 xfs_trans_bhold( 403 xfs_trans_t *tp, 404 struct xfs_buf *bp) 405 { 406 struct xfs_buf_log_item *bip = bp->b_log_item; 407 408 ASSERT(bp->b_transp == tp); 409 ASSERT(bip != NULL); 410 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 411 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 412 ASSERT(atomic_read(&bip->bli_refcount) > 0); 413 414 bip->bli_flags |= XFS_BLI_HOLD; 415 trace_xfs_trans_bhold(bip); 416 } 417 418 /* 419 * Cancel the previous buffer hold request made on this buffer 420 * for this transaction. 421 */ 422 void 423 xfs_trans_bhold_release( 424 xfs_trans_t *tp, 425 struct xfs_buf *bp) 426 { 427 struct xfs_buf_log_item *bip = bp->b_log_item; 428 429 ASSERT(bp->b_transp == tp); 430 ASSERT(bip != NULL); 431 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 432 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 433 ASSERT(atomic_read(&bip->bli_refcount) > 0); 434 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 435 436 bip->bli_flags &= ~XFS_BLI_HOLD; 437 trace_xfs_trans_bhold_release(bip); 438 } 439 440 /* 441 * Mark a buffer dirty in the transaction. 442 */ 443 void 444 xfs_trans_dirty_buf( 445 struct xfs_trans *tp, 446 struct xfs_buf *bp) 447 { 448 struct xfs_buf_log_item *bip = bp->b_log_item; 449 450 ASSERT(bp->b_transp == tp); 451 ASSERT(bip != NULL); 452 453 /* 454 * Mark the buffer as needing to be written out eventually, 455 * and set its iodone function to remove the buffer's buf log 456 * item from the AIL and free it when the buffer is flushed 457 * to disk. 458 */ 459 bp->b_flags |= XBF_DONE; 460 461 ASSERT(atomic_read(&bip->bli_refcount) > 0); 462 463 /* 464 * If we invalidated the buffer within this transaction, then 465 * cancel the invalidation now that we're dirtying the buffer 466 * again. There are no races with the code in xfs_buf_item_unpin(), 467 * because we have a reference to the buffer this entire time. 468 */ 469 if (bip->bli_flags & XFS_BLI_STALE) { 470 bip->bli_flags &= ~XFS_BLI_STALE; 471 ASSERT(bp->b_flags & XBF_STALE); 472 bp->b_flags &= ~XBF_STALE; 473 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 474 } 475 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 476 477 tp->t_flags |= XFS_TRANS_DIRTY; 478 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 479 } 480 481 /* 482 * This is called to mark bytes first through last inclusive of the given 483 * buffer as needing to be logged when the transaction is committed. 484 * The buffer must already be associated with the given transaction. 485 * 486 * First and last are numbers relative to the beginning of this buffer, 487 * so the first byte in the buffer is numbered 0 regardless of the 488 * value of b_blkno. 489 */ 490 void 491 xfs_trans_log_buf( 492 struct xfs_trans *tp, 493 struct xfs_buf *bp, 494 uint first, 495 uint last) 496 { 497 struct xfs_buf_log_item *bip = bp->b_log_item; 498 499 ASSERT(first <= last && last < BBTOB(bp->b_length)); 500 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 501 502 xfs_trans_dirty_buf(tp, bp); 503 504 trace_xfs_trans_log_buf(bip); 505 xfs_buf_item_log(bip, first, last); 506 } 507 508 509 /* 510 * Invalidate a buffer that is being used within a transaction. 511 * 512 * Typically this is because the blocks in the buffer are being freed, so we 513 * need to prevent it from being written out when we're done. Allowing it 514 * to be written again might overwrite data in the free blocks if they are 515 * reallocated to a file. 516 * 517 * We prevent the buffer from being written out by marking it stale. We can't 518 * get rid of the buf log item at this point because the buffer may still be 519 * pinned by another transaction. If that is the case, then we'll wait until 520 * the buffer is committed to disk for the last time (we can tell by the ref 521 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 522 * keep the buffer locked so that the buffer and buf log item are not reused. 523 * 524 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 525 * the buf item. This will be used at recovery time to determine that copies 526 * of the buffer in the log before this should not be replayed. 527 * 528 * We mark the item descriptor and the transaction dirty so that we'll hold 529 * the buffer until after the commit. 530 * 531 * Since we're invalidating the buffer, we also clear the state about which 532 * parts of the buffer have been logged. We also clear the flag indicating 533 * that this is an inode buffer since the data in the buffer will no longer 534 * be valid. 535 * 536 * We set the stale bit in the buffer as well since we're getting rid of it. 537 */ 538 void 539 xfs_trans_binval( 540 xfs_trans_t *tp, 541 struct xfs_buf *bp) 542 { 543 struct xfs_buf_log_item *bip = bp->b_log_item; 544 int i; 545 546 ASSERT(bp->b_transp == tp); 547 ASSERT(bip != NULL); 548 ASSERT(atomic_read(&bip->bli_refcount) > 0); 549 550 trace_xfs_trans_binval(bip); 551 552 if (bip->bli_flags & XFS_BLI_STALE) { 553 /* 554 * If the buffer is already invalidated, then 555 * just return. 556 */ 557 ASSERT(bp->b_flags & XBF_STALE); 558 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 559 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 560 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 561 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 562 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 563 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 564 return; 565 } 566 567 xfs_buf_stale(bp); 568 569 bip->bli_flags |= XFS_BLI_STALE; 570 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 571 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 572 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 573 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 574 for (i = 0; i < bip->bli_format_count; i++) { 575 memset(bip->bli_formats[i].blf_data_map, 0, 576 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 577 } 578 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 579 tp->t_flags |= XFS_TRANS_DIRTY; 580 } 581 582 /* 583 * This call is used to indicate that the buffer contains on-disk inodes which 584 * must be handled specially during recovery. They require special handling 585 * because only the di_next_unlinked from the inodes in the buffer should be 586 * recovered. The rest of the data in the buffer is logged via the inodes 587 * themselves. 588 * 589 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 590 * transferred to the buffer's log format structure so that we'll know what to 591 * do at recovery time. 592 */ 593 void 594 xfs_trans_inode_buf( 595 xfs_trans_t *tp, 596 struct xfs_buf *bp) 597 { 598 struct xfs_buf_log_item *bip = bp->b_log_item; 599 600 ASSERT(bp->b_transp == tp); 601 ASSERT(bip != NULL); 602 ASSERT(atomic_read(&bip->bli_refcount) > 0); 603 604 bip->bli_flags |= XFS_BLI_INODE_BUF; 605 bp->b_flags |= _XBF_INODES; 606 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 607 } 608 609 /* 610 * This call is used to indicate that the buffer is going to 611 * be staled and was an inode buffer. This means it gets 612 * special processing during unpin - where any inodes 613 * associated with the buffer should be removed from ail. 614 * There is also special processing during recovery, 615 * any replay of the inodes in the buffer needs to be 616 * prevented as the buffer may have been reused. 617 */ 618 void 619 xfs_trans_stale_inode_buf( 620 xfs_trans_t *tp, 621 struct xfs_buf *bp) 622 { 623 struct xfs_buf_log_item *bip = bp->b_log_item; 624 625 ASSERT(bp->b_transp == tp); 626 ASSERT(bip != NULL); 627 ASSERT(atomic_read(&bip->bli_refcount) > 0); 628 629 bip->bli_flags |= XFS_BLI_STALE_INODE; 630 bp->b_flags |= _XBF_INODES; 631 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 632 } 633 634 /* 635 * Mark the buffer as being one which contains newly allocated 636 * inodes. We need to make sure that even if this buffer is 637 * relogged as an 'inode buf' we still recover all of the inode 638 * images in the face of a crash. This works in coordination with 639 * xfs_buf_item_committed() to ensure that the buffer remains in the 640 * AIL at its original location even after it has been relogged. 641 */ 642 /* ARGSUSED */ 643 void 644 xfs_trans_inode_alloc_buf( 645 xfs_trans_t *tp, 646 struct xfs_buf *bp) 647 { 648 struct xfs_buf_log_item *bip = bp->b_log_item; 649 650 ASSERT(bp->b_transp == tp); 651 ASSERT(bip != NULL); 652 ASSERT(atomic_read(&bip->bli_refcount) > 0); 653 654 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 655 bp->b_flags |= _XBF_INODES; 656 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 657 } 658 659 /* 660 * Mark the buffer as ordered for this transaction. This means that the contents 661 * of the buffer are not recorded in the transaction but it is tracked in the 662 * AIL as though it was. This allows us to record logical changes in 663 * transactions rather than the physical changes we make to the buffer without 664 * changing writeback ordering constraints of metadata buffers. 665 */ 666 bool 667 xfs_trans_ordered_buf( 668 struct xfs_trans *tp, 669 struct xfs_buf *bp) 670 { 671 struct xfs_buf_log_item *bip = bp->b_log_item; 672 673 ASSERT(bp->b_transp == tp); 674 ASSERT(bip != NULL); 675 ASSERT(atomic_read(&bip->bli_refcount) > 0); 676 677 if (xfs_buf_item_dirty_format(bip)) 678 return false; 679 680 bip->bli_flags |= XFS_BLI_ORDERED; 681 trace_xfs_buf_item_ordered(bip); 682 683 /* 684 * We don't log a dirty range of an ordered buffer but it still needs 685 * to be marked dirty and that it has been logged. 686 */ 687 xfs_trans_dirty_buf(tp, bp); 688 return true; 689 } 690 691 /* 692 * Set the type of the buffer for log recovery so that it can correctly identify 693 * and hence attach the correct buffer ops to the buffer after replay. 694 */ 695 void 696 xfs_trans_buf_set_type( 697 struct xfs_trans *tp, 698 struct xfs_buf *bp, 699 enum xfs_blft type) 700 { 701 struct xfs_buf_log_item *bip = bp->b_log_item; 702 703 if (!tp) 704 return; 705 706 ASSERT(bp->b_transp == tp); 707 ASSERT(bip != NULL); 708 ASSERT(atomic_read(&bip->bli_refcount) > 0); 709 710 xfs_blft_to_flags(&bip->__bli_format, type); 711 } 712 713 void 714 xfs_trans_buf_copy_type( 715 struct xfs_buf *dst_bp, 716 struct xfs_buf *src_bp) 717 { 718 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 719 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 720 enum xfs_blft type; 721 722 type = xfs_blft_from_flags(&sbip->__bli_format); 723 xfs_blft_to_flags(&dbip->__bli_format, type); 724 } 725 726 /* 727 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 728 * dquots. However, unlike in inode buffer recovery, dquot buffers get 729 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 730 * The only thing that makes dquot buffers different from regular 731 * buffers is that we must not replay dquot bufs when recovering 732 * if a _corresponding_ quotaoff has happened. We also have to distinguish 733 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 734 * can be turned off independently. 735 */ 736 /* ARGSUSED */ 737 void 738 xfs_trans_dquot_buf( 739 xfs_trans_t *tp, 740 struct xfs_buf *bp, 741 uint type) 742 { 743 struct xfs_buf_log_item *bip = bp->b_log_item; 744 745 ASSERT(type == XFS_BLF_UDQUOT_BUF || 746 type == XFS_BLF_PDQUOT_BUF || 747 type == XFS_BLF_GDQUOT_BUF); 748 749 bip->__bli_format.blf_flags |= type; 750 751 switch (type) { 752 case XFS_BLF_UDQUOT_BUF: 753 type = XFS_BLFT_UDQUOT_BUF; 754 break; 755 case XFS_BLF_PDQUOT_BUF: 756 type = XFS_BLFT_PDQUOT_BUF; 757 break; 758 case XFS_BLF_GDQUOT_BUF: 759 type = XFS_BLFT_GDQUOT_BUF; 760 break; 761 default: 762 type = XFS_BLFT_UNKNOWN_BUF; 763 break; 764 } 765 766 bp->b_flags |= _XBF_DQUOTS; 767 xfs_trans_buf_set_type(tp, bp, type); 768 } 769