xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision addee42a)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 
32 /*
33  * Check to see if a buffer matching the given parameters is already
34  * a part of the given transaction.
35  */
36 STATIC struct xfs_buf *
37 xfs_trans_buf_item_match(
38 	struct xfs_trans	*tp,
39 	struct xfs_buftarg	*target,
40 	struct xfs_buf_map	*map,
41 	int			nmaps)
42 {
43 	struct xfs_log_item_desc *lidp;
44 	struct xfs_buf_log_item	*blip;
45 	int			len = 0;
46 	int			i;
47 
48 	for (i = 0; i < nmaps; i++)
49 		len += map[i].bm_len;
50 
51 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
52 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
53 		if (blip->bli_item.li_type == XFS_LI_BUF &&
54 		    blip->bli_buf->b_target == target &&
55 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
56 		    blip->bli_buf->b_length == len) {
57 			ASSERT(blip->bli_buf->b_map_count == nmaps);
58 			return blip->bli_buf;
59 		}
60 	}
61 
62 	return NULL;
63 }
64 
65 /*
66  * Add the locked buffer to the transaction.
67  *
68  * The buffer must be locked, and it cannot be associated with any
69  * transaction.
70  *
71  * If the buffer does not yet have a buf log item associated with it,
72  * then allocate one for it.  Then add the buf item to the transaction.
73  */
74 STATIC void
75 _xfs_trans_bjoin(
76 	struct xfs_trans	*tp,
77 	struct xfs_buf		*bp,
78 	int			reset_recur)
79 {
80 	struct xfs_buf_log_item	*bip;
81 
82 	ASSERT(bp->b_transp == NULL);
83 
84 	/*
85 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
86 	 * it doesn't have one yet, then allocate one and initialize it.
87 	 * The checks to see if one is there are in xfs_buf_item_init().
88 	 */
89 	xfs_buf_item_init(bp, tp->t_mountp);
90 	bip = bp->b_log_item;
91 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
92 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
93 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
94 	if (reset_recur)
95 		bip->bli_recur = 0;
96 
97 	/*
98 	 * Take a reference for this transaction on the buf item.
99 	 */
100 	atomic_inc(&bip->bli_refcount);
101 
102 	/*
103 	 * Get a log_item_desc to point at the new item.
104 	 */
105 	xfs_trans_add_item(tp, &bip->bli_item);
106 
107 	/*
108 	 * Initialize b_fsprivate2 so we can find it with incore_match()
109 	 * in xfs_trans_get_buf() and friends above.
110 	 */
111 	bp->b_transp = tp;
112 
113 }
114 
115 void
116 xfs_trans_bjoin(
117 	struct xfs_trans	*tp,
118 	struct xfs_buf		*bp)
119 {
120 	_xfs_trans_bjoin(tp, bp, 0);
121 	trace_xfs_trans_bjoin(bp->b_log_item);
122 }
123 
124 /*
125  * Get and lock the buffer for the caller if it is not already
126  * locked within the given transaction.  If it is already locked
127  * within the transaction, just increment its lock recursion count
128  * and return a pointer to it.
129  *
130  * If the transaction pointer is NULL, make this just a normal
131  * get_buf() call.
132  */
133 struct xfs_buf *
134 xfs_trans_get_buf_map(
135 	struct xfs_trans	*tp,
136 	struct xfs_buftarg	*target,
137 	struct xfs_buf_map	*map,
138 	int			nmaps,
139 	xfs_buf_flags_t		flags)
140 {
141 	xfs_buf_t		*bp;
142 	struct xfs_buf_log_item	*bip;
143 
144 	if (!tp)
145 		return xfs_buf_get_map(target, map, nmaps, flags);
146 
147 	/*
148 	 * If we find the buffer in the cache with this transaction
149 	 * pointer in its b_fsprivate2 field, then we know we already
150 	 * have it locked.  In this case we just increment the lock
151 	 * recursion count and return the buffer to the caller.
152 	 */
153 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154 	if (bp != NULL) {
155 		ASSERT(xfs_buf_islocked(bp));
156 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157 			xfs_buf_stale(bp);
158 			bp->b_flags |= XBF_DONE;
159 		}
160 
161 		ASSERT(bp->b_transp == tp);
162 		bip = bp->b_log_item;
163 		ASSERT(bip != NULL);
164 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
165 		bip->bli_recur++;
166 		trace_xfs_trans_get_buf_recur(bip);
167 		return bp;
168 	}
169 
170 	bp = xfs_buf_get_map(target, map, nmaps, flags);
171 	if (bp == NULL) {
172 		return NULL;
173 	}
174 
175 	ASSERT(!bp->b_error);
176 
177 	_xfs_trans_bjoin(tp, bp, 1);
178 	trace_xfs_trans_get_buf(bp->b_log_item);
179 	return bp;
180 }
181 
182 /*
183  * Get and lock the superblock buffer of this file system for the
184  * given transaction.
185  *
186  * We don't need to use incore_match() here, because the superblock
187  * buffer is a private buffer which we keep a pointer to in the
188  * mount structure.
189  */
190 xfs_buf_t *
191 xfs_trans_getsb(
192 	xfs_trans_t		*tp,
193 	struct xfs_mount	*mp,
194 	int			flags)
195 {
196 	xfs_buf_t		*bp;
197 	struct xfs_buf_log_item	*bip;
198 
199 	/*
200 	 * Default to just trying to lock the superblock buffer
201 	 * if tp is NULL.
202 	 */
203 	if (tp == NULL)
204 		return xfs_getsb(mp, flags);
205 
206 	/*
207 	 * If the superblock buffer already has this transaction
208 	 * pointer in its b_fsprivate2 field, then we know we already
209 	 * have it locked.  In this case we just increment the lock
210 	 * recursion count and return the buffer to the caller.
211 	 */
212 	bp = mp->m_sb_bp;
213 	if (bp->b_transp == tp) {
214 		bip = bp->b_log_item;
215 		ASSERT(bip != NULL);
216 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
217 		bip->bli_recur++;
218 		trace_xfs_trans_getsb_recur(bip);
219 		return bp;
220 	}
221 
222 	bp = xfs_getsb(mp, flags);
223 	if (bp == NULL)
224 		return NULL;
225 
226 	_xfs_trans_bjoin(tp, bp, 1);
227 	trace_xfs_trans_getsb(bp->b_log_item);
228 	return bp;
229 }
230 
231 /*
232  * Get and lock the buffer for the caller if it is not already
233  * locked within the given transaction.  If it has not yet been
234  * read in, read it from disk. If it is already locked
235  * within the transaction and already read in, just increment its
236  * lock recursion count and return a pointer to it.
237  *
238  * If the transaction pointer is NULL, make this just a normal
239  * read_buf() call.
240  */
241 int
242 xfs_trans_read_buf_map(
243 	struct xfs_mount	*mp,
244 	struct xfs_trans	*tp,
245 	struct xfs_buftarg	*target,
246 	struct xfs_buf_map	*map,
247 	int			nmaps,
248 	xfs_buf_flags_t		flags,
249 	struct xfs_buf		**bpp,
250 	const struct xfs_buf_ops *ops)
251 {
252 	struct xfs_buf		*bp = NULL;
253 	struct xfs_buf_log_item	*bip;
254 	int			error;
255 
256 	*bpp = NULL;
257 	/*
258 	 * If we find the buffer in the cache with this transaction
259 	 * pointer in its b_fsprivate2 field, then we know we already
260 	 * have it locked.  If it is already read in we just increment
261 	 * the lock recursion count and return the buffer to the caller.
262 	 * If the buffer is not yet read in, then we read it in, increment
263 	 * the lock recursion count, and return it to the caller.
264 	 */
265 	if (tp)
266 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
267 	if (bp) {
268 		ASSERT(xfs_buf_islocked(bp));
269 		ASSERT(bp->b_transp == tp);
270 		ASSERT(bp->b_log_item != NULL);
271 		ASSERT(!bp->b_error);
272 		ASSERT(bp->b_flags & XBF_DONE);
273 
274 		/*
275 		 * We never locked this buf ourselves, so we shouldn't
276 		 * brelse it either. Just get out.
277 		 */
278 		if (XFS_FORCED_SHUTDOWN(mp)) {
279 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
280 			return -EIO;
281 		}
282 
283 		bip = bp->b_log_item;
284 		bip->bli_recur++;
285 
286 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
287 		trace_xfs_trans_read_buf_recur(bip);
288 		*bpp = bp;
289 		return 0;
290 	}
291 
292 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
293 	if (!bp) {
294 		if (!(flags & XBF_TRYLOCK))
295 			return -ENOMEM;
296 		return tp ? 0 : -EAGAIN;
297 	}
298 
299 	/*
300 	 * If we've had a read error, then the contents of the buffer are
301 	 * invalid and should not be used. To ensure that a followup read tries
302 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
303 	 * mark the buffer stale. This ensures that anyone who has a current
304 	 * reference to the buffer will interpret it's contents correctly and
305 	 * future cache lookups will also treat it as an empty, uninitialised
306 	 * buffer.
307 	 */
308 	if (bp->b_error) {
309 		error = bp->b_error;
310 		if (!XFS_FORCED_SHUTDOWN(mp))
311 			xfs_buf_ioerror_alert(bp, __func__);
312 		bp->b_flags &= ~XBF_DONE;
313 		xfs_buf_stale(bp);
314 
315 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
316 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
317 		xfs_buf_relse(bp);
318 
319 		/* bad CRC means corrupted metadata */
320 		if (error == -EFSBADCRC)
321 			error = -EFSCORRUPTED;
322 		return error;
323 	}
324 
325 	if (XFS_FORCED_SHUTDOWN(mp)) {
326 		xfs_buf_relse(bp);
327 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
328 		return -EIO;
329 	}
330 
331 	if (tp) {
332 		_xfs_trans_bjoin(tp, bp, 1);
333 		trace_xfs_trans_read_buf(bp->b_log_item);
334 	}
335 	*bpp = bp;
336 	return 0;
337 
338 }
339 
340 /*
341  * Release the buffer bp which was previously acquired with one of the
342  * xfs_trans_... buffer allocation routines if the buffer has not
343  * been modified within this transaction.  If the buffer is modified
344  * within this transaction, do decrement the recursion count but do
345  * not release the buffer even if the count goes to 0.  If the buffer is not
346  * modified within the transaction, decrement the recursion count and
347  * release the buffer if the recursion count goes to 0.
348  *
349  * If the buffer is to be released and it was not modified before
350  * this transaction began, then free the buf_log_item associated with it.
351  *
352  * If the transaction pointer is NULL, make this just a normal
353  * brelse() call.
354  */
355 void
356 xfs_trans_brelse(
357 	xfs_trans_t		*tp,
358 	xfs_buf_t		*bp)
359 {
360 	struct xfs_buf_log_item	*bip;
361 	int			freed;
362 
363 	/*
364 	 * Default to a normal brelse() call if the tp is NULL.
365 	 */
366 	if (tp == NULL) {
367 		ASSERT(bp->b_transp == NULL);
368 		xfs_buf_relse(bp);
369 		return;
370 	}
371 
372 	ASSERT(bp->b_transp == tp);
373 	bip = bp->b_log_item;
374 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
375 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
376 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
377 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
378 
379 	trace_xfs_trans_brelse(bip);
380 
381 	/*
382 	 * If the release is just for a recursive lock,
383 	 * then decrement the count and return.
384 	 */
385 	if (bip->bli_recur > 0) {
386 		bip->bli_recur--;
387 		return;
388 	}
389 
390 	/*
391 	 * If the buffer is dirty within this transaction, we can't
392 	 * release it until we commit.
393 	 */
394 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
395 		return;
396 
397 	/*
398 	 * If the buffer has been invalidated, then we can't release
399 	 * it until the transaction commits to disk unless it is re-dirtied
400 	 * as part of this transaction.  This prevents us from pulling
401 	 * the item from the AIL before we should.
402 	 */
403 	if (bip->bli_flags & XFS_BLI_STALE)
404 		return;
405 
406 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
407 
408 	/*
409 	 * Free up the log item descriptor tracking the released item.
410 	 */
411 	xfs_trans_del_item(&bip->bli_item);
412 
413 	/*
414 	 * Clear the hold flag in the buf log item if it is set.
415 	 * We wouldn't want the next user of the buffer to
416 	 * get confused.
417 	 */
418 	if (bip->bli_flags & XFS_BLI_HOLD) {
419 		bip->bli_flags &= ~XFS_BLI_HOLD;
420 	}
421 
422 	/*
423 	 * Drop our reference to the buf log item.
424 	 */
425 	freed = atomic_dec_and_test(&bip->bli_refcount);
426 
427 	/*
428 	 * If the buf item is not tracking data in the log, then we must free it
429 	 * before releasing the buffer back to the free pool.
430 	 *
431 	 * If the fs has shutdown and we dropped the last reference, it may fall
432 	 * on us to release a (possibly dirty) bli if it never made it to the
433 	 * AIL (e.g., the aborted unpin already happened and didn't release it
434 	 * due to our reference). Since we're already shutdown and need
435 	 * ail_lock, just force remove from the AIL and release the bli here.
436 	 */
437 	if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
438 		xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
439 		xfs_buf_item_relse(bp);
440 	} else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
441 /***
442 		ASSERT(bp->b_pincount == 0);
443 ***/
444 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
445 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
446 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
447 		xfs_buf_item_relse(bp);
448 	}
449 
450 	bp->b_transp = NULL;
451 	xfs_buf_relse(bp);
452 }
453 
454 /*
455  * Mark the buffer as not needing to be unlocked when the buf item's
456  * iop_unlock() routine is called.  The buffer must already be locked
457  * and associated with the given transaction.
458  */
459 /* ARGSUSED */
460 void
461 xfs_trans_bhold(
462 	xfs_trans_t		*tp,
463 	xfs_buf_t		*bp)
464 {
465 	struct xfs_buf_log_item	*bip = bp->b_log_item;
466 
467 	ASSERT(bp->b_transp == tp);
468 	ASSERT(bip != NULL);
469 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
470 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
471 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
472 
473 	bip->bli_flags |= XFS_BLI_HOLD;
474 	trace_xfs_trans_bhold(bip);
475 }
476 
477 /*
478  * Cancel the previous buffer hold request made on this buffer
479  * for this transaction.
480  */
481 void
482 xfs_trans_bhold_release(
483 	xfs_trans_t		*tp,
484 	xfs_buf_t		*bp)
485 {
486 	struct xfs_buf_log_item	*bip = bp->b_log_item;
487 
488 	ASSERT(bp->b_transp == tp);
489 	ASSERT(bip != NULL);
490 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
491 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
492 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
493 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
494 
495 	bip->bli_flags &= ~XFS_BLI_HOLD;
496 	trace_xfs_trans_bhold_release(bip);
497 }
498 
499 /*
500  * Mark a buffer dirty in the transaction.
501  */
502 void
503 xfs_trans_dirty_buf(
504 	struct xfs_trans	*tp,
505 	struct xfs_buf		*bp)
506 {
507 	struct xfs_buf_log_item	*bip = bp->b_log_item;
508 
509 	ASSERT(bp->b_transp == tp);
510 	ASSERT(bip != NULL);
511 	ASSERT(bp->b_iodone == NULL ||
512 	       bp->b_iodone == xfs_buf_iodone_callbacks);
513 
514 	/*
515 	 * Mark the buffer as needing to be written out eventually,
516 	 * and set its iodone function to remove the buffer's buf log
517 	 * item from the AIL and free it when the buffer is flushed
518 	 * to disk.  See xfs_buf_attach_iodone() for more details
519 	 * on li_cb and xfs_buf_iodone_callbacks().
520 	 * If we end up aborting this transaction, we trap this buffer
521 	 * inside the b_bdstrat callback so that this won't get written to
522 	 * disk.
523 	 */
524 	bp->b_flags |= XBF_DONE;
525 
526 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
527 	bp->b_iodone = xfs_buf_iodone_callbacks;
528 	bip->bli_item.li_cb = xfs_buf_iodone;
529 
530 	/*
531 	 * If we invalidated the buffer within this transaction, then
532 	 * cancel the invalidation now that we're dirtying the buffer
533 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
534 	 * because we have a reference to the buffer this entire time.
535 	 */
536 	if (bip->bli_flags & XFS_BLI_STALE) {
537 		bip->bli_flags &= ~XFS_BLI_STALE;
538 		ASSERT(bp->b_flags & XBF_STALE);
539 		bp->b_flags &= ~XBF_STALE;
540 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
541 	}
542 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
543 
544 	tp->t_flags |= XFS_TRANS_DIRTY;
545 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
546 }
547 
548 /*
549  * This is called to mark bytes first through last inclusive of the given
550  * buffer as needing to be logged when the transaction is committed.
551  * The buffer must already be associated with the given transaction.
552  *
553  * First and last are numbers relative to the beginning of this buffer,
554  * so the first byte in the buffer is numbered 0 regardless of the
555  * value of b_blkno.
556  */
557 void
558 xfs_trans_log_buf(
559 	struct xfs_trans	*tp,
560 	struct xfs_buf		*bp,
561 	uint			first,
562 	uint			last)
563 {
564 	struct xfs_buf_log_item	*bip = bp->b_log_item;
565 
566 	ASSERT(first <= last && last < BBTOB(bp->b_length));
567 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
568 
569 	xfs_trans_dirty_buf(tp, bp);
570 
571 	trace_xfs_trans_log_buf(bip);
572 	xfs_buf_item_log(bip, first, last);
573 }
574 
575 
576 /*
577  * Invalidate a buffer that is being used within a transaction.
578  *
579  * Typically this is because the blocks in the buffer are being freed, so we
580  * need to prevent it from being written out when we're done.  Allowing it
581  * to be written again might overwrite data in the free blocks if they are
582  * reallocated to a file.
583  *
584  * We prevent the buffer from being written out by marking it stale.  We can't
585  * get rid of the buf log item at this point because the buffer may still be
586  * pinned by another transaction.  If that is the case, then we'll wait until
587  * the buffer is committed to disk for the last time (we can tell by the ref
588  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
589  * keep the buffer locked so that the buffer and buf log item are not reused.
590  *
591  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
592  * the buf item.  This will be used at recovery time to determine that copies
593  * of the buffer in the log before this should not be replayed.
594  *
595  * We mark the item descriptor and the transaction dirty so that we'll hold
596  * the buffer until after the commit.
597  *
598  * Since we're invalidating the buffer, we also clear the state about which
599  * parts of the buffer have been logged.  We also clear the flag indicating
600  * that this is an inode buffer since the data in the buffer will no longer
601  * be valid.
602  *
603  * We set the stale bit in the buffer as well since we're getting rid of it.
604  */
605 void
606 xfs_trans_binval(
607 	xfs_trans_t		*tp,
608 	xfs_buf_t		*bp)
609 {
610 	struct xfs_buf_log_item	*bip = bp->b_log_item;
611 	int			i;
612 
613 	ASSERT(bp->b_transp == tp);
614 	ASSERT(bip != NULL);
615 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
616 
617 	trace_xfs_trans_binval(bip);
618 
619 	if (bip->bli_flags & XFS_BLI_STALE) {
620 		/*
621 		 * If the buffer is already invalidated, then
622 		 * just return.
623 		 */
624 		ASSERT(bp->b_flags & XBF_STALE);
625 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
626 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
627 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
628 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
629 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
630 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
631 		return;
632 	}
633 
634 	xfs_buf_stale(bp);
635 
636 	bip->bli_flags |= XFS_BLI_STALE;
637 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
638 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
639 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
640 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
641 	for (i = 0; i < bip->bli_format_count; i++) {
642 		memset(bip->bli_formats[i].blf_data_map, 0,
643 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
644 	}
645 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
646 	tp->t_flags |= XFS_TRANS_DIRTY;
647 }
648 
649 /*
650  * This call is used to indicate that the buffer contains on-disk inodes which
651  * must be handled specially during recovery.  They require special handling
652  * because only the di_next_unlinked from the inodes in the buffer should be
653  * recovered.  The rest of the data in the buffer is logged via the inodes
654  * themselves.
655  *
656  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
657  * transferred to the buffer's log format structure so that we'll know what to
658  * do at recovery time.
659  */
660 void
661 xfs_trans_inode_buf(
662 	xfs_trans_t		*tp,
663 	xfs_buf_t		*bp)
664 {
665 	struct xfs_buf_log_item	*bip = bp->b_log_item;
666 
667 	ASSERT(bp->b_transp == tp);
668 	ASSERT(bip != NULL);
669 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
670 
671 	bip->bli_flags |= XFS_BLI_INODE_BUF;
672 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
673 }
674 
675 /*
676  * This call is used to indicate that the buffer is going to
677  * be staled and was an inode buffer. This means it gets
678  * special processing during unpin - where any inodes
679  * associated with the buffer should be removed from ail.
680  * There is also special processing during recovery,
681  * any replay of the inodes in the buffer needs to be
682  * prevented as the buffer may have been reused.
683  */
684 void
685 xfs_trans_stale_inode_buf(
686 	xfs_trans_t		*tp,
687 	xfs_buf_t		*bp)
688 {
689 	struct xfs_buf_log_item	*bip = bp->b_log_item;
690 
691 	ASSERT(bp->b_transp == tp);
692 	ASSERT(bip != NULL);
693 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
694 
695 	bip->bli_flags |= XFS_BLI_STALE_INODE;
696 	bip->bli_item.li_cb = xfs_buf_iodone;
697 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
698 }
699 
700 /*
701  * Mark the buffer as being one which contains newly allocated
702  * inodes.  We need to make sure that even if this buffer is
703  * relogged as an 'inode buf' we still recover all of the inode
704  * images in the face of a crash.  This works in coordination with
705  * xfs_buf_item_committed() to ensure that the buffer remains in the
706  * AIL at its original location even after it has been relogged.
707  */
708 /* ARGSUSED */
709 void
710 xfs_trans_inode_alloc_buf(
711 	xfs_trans_t		*tp,
712 	xfs_buf_t		*bp)
713 {
714 	struct xfs_buf_log_item	*bip = bp->b_log_item;
715 
716 	ASSERT(bp->b_transp == tp);
717 	ASSERT(bip != NULL);
718 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
719 
720 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
721 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
722 }
723 
724 /*
725  * Mark the buffer as ordered for this transaction. This means that the contents
726  * of the buffer are not recorded in the transaction but it is tracked in the
727  * AIL as though it was. This allows us to record logical changes in
728  * transactions rather than the physical changes we make to the buffer without
729  * changing writeback ordering constraints of metadata buffers.
730  */
731 bool
732 xfs_trans_ordered_buf(
733 	struct xfs_trans	*tp,
734 	struct xfs_buf		*bp)
735 {
736 	struct xfs_buf_log_item	*bip = bp->b_log_item;
737 
738 	ASSERT(bp->b_transp == tp);
739 	ASSERT(bip != NULL);
740 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
741 
742 	if (xfs_buf_item_dirty_format(bip))
743 		return false;
744 
745 	bip->bli_flags |= XFS_BLI_ORDERED;
746 	trace_xfs_buf_item_ordered(bip);
747 
748 	/*
749 	 * We don't log a dirty range of an ordered buffer but it still needs
750 	 * to be marked dirty and that it has been logged.
751 	 */
752 	xfs_trans_dirty_buf(tp, bp);
753 	return true;
754 }
755 
756 /*
757  * Set the type of the buffer for log recovery so that it can correctly identify
758  * and hence attach the correct buffer ops to the buffer after replay.
759  */
760 void
761 xfs_trans_buf_set_type(
762 	struct xfs_trans	*tp,
763 	struct xfs_buf		*bp,
764 	enum xfs_blft		type)
765 {
766 	struct xfs_buf_log_item	*bip = bp->b_log_item;
767 
768 	if (!tp)
769 		return;
770 
771 	ASSERT(bp->b_transp == tp);
772 	ASSERT(bip != NULL);
773 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774 
775 	xfs_blft_to_flags(&bip->__bli_format, type);
776 }
777 
778 void
779 xfs_trans_buf_copy_type(
780 	struct xfs_buf		*dst_bp,
781 	struct xfs_buf		*src_bp)
782 {
783 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
784 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
785 	enum xfs_blft		type;
786 
787 	type = xfs_blft_from_flags(&sbip->__bli_format);
788 	xfs_blft_to_flags(&dbip->__bli_format, type);
789 }
790 
791 /*
792  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
793  * dquots. However, unlike in inode buffer recovery, dquot buffers get
794  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
795  * The only thing that makes dquot buffers different from regular
796  * buffers is that we must not replay dquot bufs when recovering
797  * if a _corresponding_ quotaoff has happened. We also have to distinguish
798  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
799  * can be turned off independently.
800  */
801 /* ARGSUSED */
802 void
803 xfs_trans_dquot_buf(
804 	xfs_trans_t		*tp,
805 	xfs_buf_t		*bp,
806 	uint			type)
807 {
808 	struct xfs_buf_log_item	*bip = bp->b_log_item;
809 
810 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
811 	       type == XFS_BLF_PDQUOT_BUF ||
812 	       type == XFS_BLF_GDQUOT_BUF);
813 
814 	bip->__bli_format.blf_flags |= type;
815 
816 	switch (type) {
817 	case XFS_BLF_UDQUOT_BUF:
818 		type = XFS_BLFT_UDQUOT_BUF;
819 		break;
820 	case XFS_BLF_PDQUOT_BUF:
821 		type = XFS_BLFT_PDQUOT_BUF;
822 		break;
823 	case XFS_BLF_GDQUOT_BUF:
824 		type = XFS_BLFT_GDQUOT_BUF;
825 		break;
826 	default:
827 		type = XFS_BLFT_UNKNOWN_BUF;
828 		break;
829 	}
830 
831 	xfs_trans_buf_set_type(tp, bp, type);
832 }
833