1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_trans.h" 14 #include "xfs_buf_item.h" 15 #include "xfs_trans_priv.h" 16 #include "xfs_trace.h" 17 18 /* 19 * Check to see if a buffer matching the given parameters is already 20 * a part of the given transaction. 21 */ 22 STATIC struct xfs_buf * 23 xfs_trans_buf_item_match( 24 struct xfs_trans *tp, 25 struct xfs_buftarg *target, 26 struct xfs_buf_map *map, 27 int nmaps) 28 { 29 struct xfs_log_item *lip; 30 struct xfs_buf_log_item *blip; 31 int len = 0; 32 int i; 33 34 for (i = 0; i < nmaps; i++) 35 len += map[i].bm_len; 36 37 list_for_each_entry(lip, &tp->t_items, li_trans) { 38 blip = (struct xfs_buf_log_item *)lip; 39 if (blip->bli_item.li_type == XFS_LI_BUF && 40 blip->bli_buf->b_target == target && 41 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 42 blip->bli_buf->b_length == len) { 43 ASSERT(blip->bli_buf->b_map_count == nmaps); 44 return blip->bli_buf; 45 } 46 } 47 48 return NULL; 49 } 50 51 /* 52 * Add the locked buffer to the transaction. 53 * 54 * The buffer must be locked, and it cannot be associated with any 55 * transaction. 56 * 57 * If the buffer does not yet have a buf log item associated with it, 58 * then allocate one for it. Then add the buf item to the transaction. 59 */ 60 STATIC void 61 _xfs_trans_bjoin( 62 struct xfs_trans *tp, 63 struct xfs_buf *bp, 64 int reset_recur) 65 { 66 struct xfs_buf_log_item *bip; 67 68 ASSERT(bp->b_transp == NULL); 69 70 /* 71 * The xfs_buf_log_item pointer is stored in b_log_item. If 72 * it doesn't have one yet, then allocate one and initialize it. 73 * The checks to see if one is there are in xfs_buf_item_init(). 74 */ 75 xfs_buf_item_init(bp, tp->t_mountp); 76 bip = bp->b_log_item; 77 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 78 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 79 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 80 if (reset_recur) 81 bip->bli_recur = 0; 82 83 /* 84 * Take a reference for this transaction on the buf item. 85 */ 86 atomic_inc(&bip->bli_refcount); 87 88 /* 89 * Attach the item to the transaction so we can find it in 90 * xfs_trans_get_buf() and friends. 91 */ 92 xfs_trans_add_item(tp, &bip->bli_item); 93 bp->b_transp = tp; 94 95 } 96 97 void 98 xfs_trans_bjoin( 99 struct xfs_trans *tp, 100 struct xfs_buf *bp) 101 { 102 _xfs_trans_bjoin(tp, bp, 0); 103 trace_xfs_trans_bjoin(bp->b_log_item); 104 } 105 106 /* 107 * Get and lock the buffer for the caller if it is not already 108 * locked within the given transaction. If it is already locked 109 * within the transaction, just increment its lock recursion count 110 * and return a pointer to it. 111 * 112 * If the transaction pointer is NULL, make this just a normal 113 * get_buf() call. 114 */ 115 struct xfs_buf * 116 xfs_trans_get_buf_map( 117 struct xfs_trans *tp, 118 struct xfs_buftarg *target, 119 struct xfs_buf_map *map, 120 int nmaps, 121 xfs_buf_flags_t flags) 122 { 123 xfs_buf_t *bp; 124 struct xfs_buf_log_item *bip; 125 126 if (!tp) 127 return xfs_buf_get_map(target, map, nmaps, flags); 128 129 /* 130 * If we find the buffer in the cache with this transaction 131 * pointer in its b_fsprivate2 field, then we know we already 132 * have it locked. In this case we just increment the lock 133 * recursion count and return the buffer to the caller. 134 */ 135 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 136 if (bp != NULL) { 137 ASSERT(xfs_buf_islocked(bp)); 138 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 139 xfs_buf_stale(bp); 140 bp->b_flags |= XBF_DONE; 141 } 142 143 ASSERT(bp->b_transp == tp); 144 bip = bp->b_log_item; 145 ASSERT(bip != NULL); 146 ASSERT(atomic_read(&bip->bli_refcount) > 0); 147 bip->bli_recur++; 148 trace_xfs_trans_get_buf_recur(bip); 149 return bp; 150 } 151 152 bp = xfs_buf_get_map(target, map, nmaps, flags); 153 if (bp == NULL) { 154 return NULL; 155 } 156 157 ASSERT(!bp->b_error); 158 159 _xfs_trans_bjoin(tp, bp, 1); 160 trace_xfs_trans_get_buf(bp->b_log_item); 161 return bp; 162 } 163 164 /* 165 * Get and lock the superblock buffer of this file system for the 166 * given transaction. 167 * 168 * We don't need to use incore_match() here, because the superblock 169 * buffer is a private buffer which we keep a pointer to in the 170 * mount structure. 171 */ 172 xfs_buf_t * 173 xfs_trans_getsb( 174 xfs_trans_t *tp, 175 struct xfs_mount *mp) 176 { 177 xfs_buf_t *bp; 178 struct xfs_buf_log_item *bip; 179 180 /* 181 * Default to just trying to lock the superblock buffer 182 * if tp is NULL. 183 */ 184 if (tp == NULL) 185 return xfs_getsb(mp); 186 187 /* 188 * If the superblock buffer already has this transaction 189 * pointer in its b_fsprivate2 field, then we know we already 190 * have it locked. In this case we just increment the lock 191 * recursion count and return the buffer to the caller. 192 */ 193 bp = mp->m_sb_bp; 194 if (bp->b_transp == tp) { 195 bip = bp->b_log_item; 196 ASSERT(bip != NULL); 197 ASSERT(atomic_read(&bip->bli_refcount) > 0); 198 bip->bli_recur++; 199 trace_xfs_trans_getsb_recur(bip); 200 return bp; 201 } 202 203 bp = xfs_getsb(mp); 204 if (bp == NULL) 205 return NULL; 206 207 _xfs_trans_bjoin(tp, bp, 1); 208 trace_xfs_trans_getsb(bp->b_log_item); 209 return bp; 210 } 211 212 /* 213 * Get and lock the buffer for the caller if it is not already 214 * locked within the given transaction. If it has not yet been 215 * read in, read it from disk. If it is already locked 216 * within the transaction and already read in, just increment its 217 * lock recursion count and return a pointer to it. 218 * 219 * If the transaction pointer is NULL, make this just a normal 220 * read_buf() call. 221 */ 222 int 223 xfs_trans_read_buf_map( 224 struct xfs_mount *mp, 225 struct xfs_trans *tp, 226 struct xfs_buftarg *target, 227 struct xfs_buf_map *map, 228 int nmaps, 229 xfs_buf_flags_t flags, 230 struct xfs_buf **bpp, 231 const struct xfs_buf_ops *ops) 232 { 233 struct xfs_buf *bp = NULL; 234 struct xfs_buf_log_item *bip; 235 int error; 236 237 *bpp = NULL; 238 /* 239 * If we find the buffer in the cache with this transaction 240 * pointer in its b_fsprivate2 field, then we know we already 241 * have it locked. If it is already read in we just increment 242 * the lock recursion count and return the buffer to the caller. 243 * If the buffer is not yet read in, then we read it in, increment 244 * the lock recursion count, and return it to the caller. 245 */ 246 if (tp) 247 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 248 if (bp) { 249 ASSERT(xfs_buf_islocked(bp)); 250 ASSERT(bp->b_transp == tp); 251 ASSERT(bp->b_log_item != NULL); 252 ASSERT(!bp->b_error); 253 ASSERT(bp->b_flags & XBF_DONE); 254 255 /* 256 * We never locked this buf ourselves, so we shouldn't 257 * brelse it either. Just get out. 258 */ 259 if (XFS_FORCED_SHUTDOWN(mp)) { 260 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 261 return -EIO; 262 } 263 264 /* 265 * Check if the caller is trying to read a buffer that is 266 * already attached to the transaction yet has no buffer ops 267 * assigned. Ops are usually attached when the buffer is 268 * attached to the transaction, or by the read caller if 269 * special circumstances. That didn't happen, which is not 270 * how this is supposed to go. 271 * 272 * If the buffer passes verification we'll let this go, but if 273 * not we have to shut down. Let the transaction cleanup code 274 * release this buffer when it kills the tranaction. 275 */ 276 ASSERT(bp->b_ops != NULL); 277 error = xfs_buf_reverify(bp, ops); 278 if (error) { 279 xfs_buf_ioerror_alert(bp, __func__); 280 281 if (tp->t_flags & XFS_TRANS_DIRTY) 282 xfs_force_shutdown(tp->t_mountp, 283 SHUTDOWN_META_IO_ERROR); 284 285 /* bad CRC means corrupted metadata */ 286 if (error == -EFSBADCRC) 287 error = -EFSCORRUPTED; 288 return error; 289 } 290 291 bip = bp->b_log_item; 292 bip->bli_recur++; 293 294 ASSERT(atomic_read(&bip->bli_refcount) > 0); 295 trace_xfs_trans_read_buf_recur(bip); 296 ASSERT(bp->b_ops != NULL || ops == NULL); 297 *bpp = bp; 298 return 0; 299 } 300 301 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 302 if (!bp) { 303 if (!(flags & XBF_TRYLOCK)) 304 return -ENOMEM; 305 return tp ? 0 : -EAGAIN; 306 } 307 308 /* 309 * If we've had a read error, then the contents of the buffer are 310 * invalid and should not be used. To ensure that a followup read tries 311 * to pull the buffer from disk again, we clear the XBF_DONE flag and 312 * mark the buffer stale. This ensures that anyone who has a current 313 * reference to the buffer will interpret it's contents correctly and 314 * future cache lookups will also treat it as an empty, uninitialised 315 * buffer. 316 */ 317 if (bp->b_error) { 318 error = bp->b_error; 319 if (!XFS_FORCED_SHUTDOWN(mp)) 320 xfs_buf_ioerror_alert(bp, __func__); 321 bp->b_flags &= ~XBF_DONE; 322 xfs_buf_stale(bp); 323 324 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 325 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 326 xfs_buf_relse(bp); 327 328 /* bad CRC means corrupted metadata */ 329 if (error == -EFSBADCRC) 330 error = -EFSCORRUPTED; 331 return error; 332 } 333 334 if (XFS_FORCED_SHUTDOWN(mp)) { 335 xfs_buf_relse(bp); 336 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 337 return -EIO; 338 } 339 340 if (tp) { 341 _xfs_trans_bjoin(tp, bp, 1); 342 trace_xfs_trans_read_buf(bp->b_log_item); 343 } 344 ASSERT(bp->b_ops != NULL || ops == NULL); 345 *bpp = bp; 346 return 0; 347 348 } 349 350 /* Has this buffer been dirtied by anyone? */ 351 bool 352 xfs_trans_buf_is_dirty( 353 struct xfs_buf *bp) 354 { 355 struct xfs_buf_log_item *bip = bp->b_log_item; 356 357 if (!bip) 358 return false; 359 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 360 return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 361 } 362 363 /* 364 * Release a buffer previously joined to the transaction. If the buffer is 365 * modified within this transaction, decrement the recursion count but do not 366 * release the buffer even if the count goes to 0. If the buffer is not modified 367 * within the transaction, decrement the recursion count and release the buffer 368 * if the recursion count goes to 0. 369 * 370 * If the buffer is to be released and it was not already dirty before this 371 * transaction began, then also free the buf_log_item associated with it. 372 * 373 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call. 374 */ 375 void 376 xfs_trans_brelse( 377 struct xfs_trans *tp, 378 struct xfs_buf *bp) 379 { 380 struct xfs_buf_log_item *bip = bp->b_log_item; 381 382 ASSERT(bp->b_transp == tp); 383 384 if (!tp) { 385 xfs_buf_relse(bp); 386 return; 387 } 388 389 trace_xfs_trans_brelse(bip); 390 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 391 ASSERT(atomic_read(&bip->bli_refcount) > 0); 392 393 /* 394 * If the release is for a recursive lookup, then decrement the count 395 * and return. 396 */ 397 if (bip->bli_recur > 0) { 398 bip->bli_recur--; 399 return; 400 } 401 402 /* 403 * If the buffer is invalidated or dirty in this transaction, we can't 404 * release it until we commit. 405 */ 406 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 407 return; 408 if (bip->bli_flags & XFS_BLI_STALE) 409 return; 410 411 /* 412 * Unlink the log item from the transaction and clear the hold flag, if 413 * set. We wouldn't want the next user of the buffer to get confused. 414 */ 415 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 416 xfs_trans_del_item(&bip->bli_item); 417 bip->bli_flags &= ~XFS_BLI_HOLD; 418 419 /* drop the reference to the bli */ 420 xfs_buf_item_put(bip); 421 422 bp->b_transp = NULL; 423 xfs_buf_relse(bp); 424 } 425 426 /* 427 * Mark the buffer as not needing to be unlocked when the buf item's 428 * iop_committing() routine is called. The buffer must already be locked 429 * and associated with the given transaction. 430 */ 431 /* ARGSUSED */ 432 void 433 xfs_trans_bhold( 434 xfs_trans_t *tp, 435 xfs_buf_t *bp) 436 { 437 struct xfs_buf_log_item *bip = bp->b_log_item; 438 439 ASSERT(bp->b_transp == tp); 440 ASSERT(bip != NULL); 441 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 442 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 443 ASSERT(atomic_read(&bip->bli_refcount) > 0); 444 445 bip->bli_flags |= XFS_BLI_HOLD; 446 trace_xfs_trans_bhold(bip); 447 } 448 449 /* 450 * Cancel the previous buffer hold request made on this buffer 451 * for this transaction. 452 */ 453 void 454 xfs_trans_bhold_release( 455 xfs_trans_t *tp, 456 xfs_buf_t *bp) 457 { 458 struct xfs_buf_log_item *bip = bp->b_log_item; 459 460 ASSERT(bp->b_transp == tp); 461 ASSERT(bip != NULL); 462 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 463 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 464 ASSERT(atomic_read(&bip->bli_refcount) > 0); 465 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 466 467 bip->bli_flags &= ~XFS_BLI_HOLD; 468 trace_xfs_trans_bhold_release(bip); 469 } 470 471 /* 472 * Mark a buffer dirty in the transaction. 473 */ 474 void 475 xfs_trans_dirty_buf( 476 struct xfs_trans *tp, 477 struct xfs_buf *bp) 478 { 479 struct xfs_buf_log_item *bip = bp->b_log_item; 480 481 ASSERT(bp->b_transp == tp); 482 ASSERT(bip != NULL); 483 ASSERT(bp->b_iodone == NULL || 484 bp->b_iodone == xfs_buf_iodone_callbacks); 485 486 /* 487 * Mark the buffer as needing to be written out eventually, 488 * and set its iodone function to remove the buffer's buf log 489 * item from the AIL and free it when the buffer is flushed 490 * to disk. See xfs_buf_attach_iodone() for more details 491 * on li_cb and xfs_buf_iodone_callbacks(). 492 * If we end up aborting this transaction, we trap this buffer 493 * inside the b_bdstrat callback so that this won't get written to 494 * disk. 495 */ 496 bp->b_flags |= XBF_DONE; 497 498 ASSERT(atomic_read(&bip->bli_refcount) > 0); 499 bp->b_iodone = xfs_buf_iodone_callbacks; 500 bip->bli_item.li_cb = xfs_buf_iodone; 501 502 /* 503 * If we invalidated the buffer within this transaction, then 504 * cancel the invalidation now that we're dirtying the buffer 505 * again. There are no races with the code in xfs_buf_item_unpin(), 506 * because we have a reference to the buffer this entire time. 507 */ 508 if (bip->bli_flags & XFS_BLI_STALE) { 509 bip->bli_flags &= ~XFS_BLI_STALE; 510 ASSERT(bp->b_flags & XBF_STALE); 511 bp->b_flags &= ~XBF_STALE; 512 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 513 } 514 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 515 516 tp->t_flags |= XFS_TRANS_DIRTY; 517 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 518 } 519 520 /* 521 * This is called to mark bytes first through last inclusive of the given 522 * buffer as needing to be logged when the transaction is committed. 523 * The buffer must already be associated with the given transaction. 524 * 525 * First and last are numbers relative to the beginning of this buffer, 526 * so the first byte in the buffer is numbered 0 regardless of the 527 * value of b_blkno. 528 */ 529 void 530 xfs_trans_log_buf( 531 struct xfs_trans *tp, 532 struct xfs_buf *bp, 533 uint first, 534 uint last) 535 { 536 struct xfs_buf_log_item *bip = bp->b_log_item; 537 538 ASSERT(first <= last && last < BBTOB(bp->b_length)); 539 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 540 541 xfs_trans_dirty_buf(tp, bp); 542 543 trace_xfs_trans_log_buf(bip); 544 xfs_buf_item_log(bip, first, last); 545 } 546 547 548 /* 549 * Invalidate a buffer that is being used within a transaction. 550 * 551 * Typically this is because the blocks in the buffer are being freed, so we 552 * need to prevent it from being written out when we're done. Allowing it 553 * to be written again might overwrite data in the free blocks if they are 554 * reallocated to a file. 555 * 556 * We prevent the buffer from being written out by marking it stale. We can't 557 * get rid of the buf log item at this point because the buffer may still be 558 * pinned by another transaction. If that is the case, then we'll wait until 559 * the buffer is committed to disk for the last time (we can tell by the ref 560 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 561 * keep the buffer locked so that the buffer and buf log item are not reused. 562 * 563 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 564 * the buf item. This will be used at recovery time to determine that copies 565 * of the buffer in the log before this should not be replayed. 566 * 567 * We mark the item descriptor and the transaction dirty so that we'll hold 568 * the buffer until after the commit. 569 * 570 * Since we're invalidating the buffer, we also clear the state about which 571 * parts of the buffer have been logged. We also clear the flag indicating 572 * that this is an inode buffer since the data in the buffer will no longer 573 * be valid. 574 * 575 * We set the stale bit in the buffer as well since we're getting rid of it. 576 */ 577 void 578 xfs_trans_binval( 579 xfs_trans_t *tp, 580 xfs_buf_t *bp) 581 { 582 struct xfs_buf_log_item *bip = bp->b_log_item; 583 int i; 584 585 ASSERT(bp->b_transp == tp); 586 ASSERT(bip != NULL); 587 ASSERT(atomic_read(&bip->bli_refcount) > 0); 588 589 trace_xfs_trans_binval(bip); 590 591 if (bip->bli_flags & XFS_BLI_STALE) { 592 /* 593 * If the buffer is already invalidated, then 594 * just return. 595 */ 596 ASSERT(bp->b_flags & XBF_STALE); 597 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 598 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 599 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 600 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 601 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 602 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 603 return; 604 } 605 606 xfs_buf_stale(bp); 607 608 bip->bli_flags |= XFS_BLI_STALE; 609 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 610 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 611 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 612 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 613 for (i = 0; i < bip->bli_format_count; i++) { 614 memset(bip->bli_formats[i].blf_data_map, 0, 615 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 616 } 617 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 618 tp->t_flags |= XFS_TRANS_DIRTY; 619 } 620 621 /* 622 * This call is used to indicate that the buffer contains on-disk inodes which 623 * must be handled specially during recovery. They require special handling 624 * because only the di_next_unlinked from the inodes in the buffer should be 625 * recovered. The rest of the data in the buffer is logged via the inodes 626 * themselves. 627 * 628 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 629 * transferred to the buffer's log format structure so that we'll know what to 630 * do at recovery time. 631 */ 632 void 633 xfs_trans_inode_buf( 634 xfs_trans_t *tp, 635 xfs_buf_t *bp) 636 { 637 struct xfs_buf_log_item *bip = bp->b_log_item; 638 639 ASSERT(bp->b_transp == tp); 640 ASSERT(bip != NULL); 641 ASSERT(atomic_read(&bip->bli_refcount) > 0); 642 643 bip->bli_flags |= XFS_BLI_INODE_BUF; 644 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 645 } 646 647 /* 648 * This call is used to indicate that the buffer is going to 649 * be staled and was an inode buffer. This means it gets 650 * special processing during unpin - where any inodes 651 * associated with the buffer should be removed from ail. 652 * There is also special processing during recovery, 653 * any replay of the inodes in the buffer needs to be 654 * prevented as the buffer may have been reused. 655 */ 656 void 657 xfs_trans_stale_inode_buf( 658 xfs_trans_t *tp, 659 xfs_buf_t *bp) 660 { 661 struct xfs_buf_log_item *bip = bp->b_log_item; 662 663 ASSERT(bp->b_transp == tp); 664 ASSERT(bip != NULL); 665 ASSERT(atomic_read(&bip->bli_refcount) > 0); 666 667 bip->bli_flags |= XFS_BLI_STALE_INODE; 668 bip->bli_item.li_cb = xfs_buf_iodone; 669 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 670 } 671 672 /* 673 * Mark the buffer as being one which contains newly allocated 674 * inodes. We need to make sure that even if this buffer is 675 * relogged as an 'inode buf' we still recover all of the inode 676 * images in the face of a crash. This works in coordination with 677 * xfs_buf_item_committed() to ensure that the buffer remains in the 678 * AIL at its original location even after it has been relogged. 679 */ 680 /* ARGSUSED */ 681 void 682 xfs_trans_inode_alloc_buf( 683 xfs_trans_t *tp, 684 xfs_buf_t *bp) 685 { 686 struct xfs_buf_log_item *bip = bp->b_log_item; 687 688 ASSERT(bp->b_transp == tp); 689 ASSERT(bip != NULL); 690 ASSERT(atomic_read(&bip->bli_refcount) > 0); 691 692 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 693 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 694 } 695 696 /* 697 * Mark the buffer as ordered for this transaction. This means that the contents 698 * of the buffer are not recorded in the transaction but it is tracked in the 699 * AIL as though it was. This allows us to record logical changes in 700 * transactions rather than the physical changes we make to the buffer without 701 * changing writeback ordering constraints of metadata buffers. 702 */ 703 bool 704 xfs_trans_ordered_buf( 705 struct xfs_trans *tp, 706 struct xfs_buf *bp) 707 { 708 struct xfs_buf_log_item *bip = bp->b_log_item; 709 710 ASSERT(bp->b_transp == tp); 711 ASSERT(bip != NULL); 712 ASSERT(atomic_read(&bip->bli_refcount) > 0); 713 714 if (xfs_buf_item_dirty_format(bip)) 715 return false; 716 717 bip->bli_flags |= XFS_BLI_ORDERED; 718 trace_xfs_buf_item_ordered(bip); 719 720 /* 721 * We don't log a dirty range of an ordered buffer but it still needs 722 * to be marked dirty and that it has been logged. 723 */ 724 xfs_trans_dirty_buf(tp, bp); 725 return true; 726 } 727 728 /* 729 * Set the type of the buffer for log recovery so that it can correctly identify 730 * and hence attach the correct buffer ops to the buffer after replay. 731 */ 732 void 733 xfs_trans_buf_set_type( 734 struct xfs_trans *tp, 735 struct xfs_buf *bp, 736 enum xfs_blft type) 737 { 738 struct xfs_buf_log_item *bip = bp->b_log_item; 739 740 if (!tp) 741 return; 742 743 ASSERT(bp->b_transp == tp); 744 ASSERT(bip != NULL); 745 ASSERT(atomic_read(&bip->bli_refcount) > 0); 746 747 xfs_blft_to_flags(&bip->__bli_format, type); 748 } 749 750 void 751 xfs_trans_buf_copy_type( 752 struct xfs_buf *dst_bp, 753 struct xfs_buf *src_bp) 754 { 755 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 756 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 757 enum xfs_blft type; 758 759 type = xfs_blft_from_flags(&sbip->__bli_format); 760 xfs_blft_to_flags(&dbip->__bli_format, type); 761 } 762 763 /* 764 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 765 * dquots. However, unlike in inode buffer recovery, dquot buffers get 766 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 767 * The only thing that makes dquot buffers different from regular 768 * buffers is that we must not replay dquot bufs when recovering 769 * if a _corresponding_ quotaoff has happened. We also have to distinguish 770 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 771 * can be turned off independently. 772 */ 773 /* ARGSUSED */ 774 void 775 xfs_trans_dquot_buf( 776 xfs_trans_t *tp, 777 xfs_buf_t *bp, 778 uint type) 779 { 780 struct xfs_buf_log_item *bip = bp->b_log_item; 781 782 ASSERT(type == XFS_BLF_UDQUOT_BUF || 783 type == XFS_BLF_PDQUOT_BUF || 784 type == XFS_BLF_GDQUOT_BUF); 785 786 bip->__bli_format.blf_flags |= type; 787 788 switch (type) { 789 case XFS_BLF_UDQUOT_BUF: 790 type = XFS_BLFT_UDQUOT_BUF; 791 break; 792 case XFS_BLF_PDQUOT_BUF: 793 type = XFS_BLFT_PDQUOT_BUF; 794 break; 795 case XFS_BLF_GDQUOT_BUF: 796 type = XFS_BLFT_GDQUOT_BUF; 797 break; 798 default: 799 type = XFS_BLFT_UNKNOWN_BUF; 800 break; 801 } 802 803 xfs_trans_buf_set_type(tp, bp, type); 804 } 805