1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_bmap_btree.h" 27 #include "xfs_alloc_btree.h" 28 #include "xfs_ialloc_btree.h" 29 #include "xfs_dinode.h" 30 #include "xfs_inode.h" 31 #include "xfs_buf_item.h" 32 #include "xfs_trans_priv.h" 33 #include "xfs_error.h" 34 #include "xfs_trace.h" 35 36 /* 37 * Check to see if a buffer matching the given parameters is already 38 * a part of the given transaction. 39 */ 40 STATIC struct xfs_buf * 41 xfs_trans_buf_item_match( 42 struct xfs_trans *tp, 43 struct xfs_buftarg *target, 44 struct xfs_buf_map *map, 45 int nmaps) 46 { 47 struct xfs_log_item_desc *lidp; 48 struct xfs_buf_log_item *blip; 49 int len = 0; 50 int i; 51 52 for (i = 0; i < nmaps; i++) 53 len += map[i].bm_len; 54 55 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 56 blip = (struct xfs_buf_log_item *)lidp->lid_item; 57 if (blip->bli_item.li_type == XFS_LI_BUF && 58 blip->bli_buf->b_target == target && 59 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 60 blip->bli_buf->b_length == len) { 61 ASSERT(blip->bli_buf->b_map_count == nmaps); 62 return blip->bli_buf; 63 } 64 } 65 66 return NULL; 67 } 68 69 /* 70 * Add the locked buffer to the transaction. 71 * 72 * The buffer must be locked, and it cannot be associated with any 73 * transaction. 74 * 75 * If the buffer does not yet have a buf log item associated with it, 76 * then allocate one for it. Then add the buf item to the transaction. 77 */ 78 STATIC void 79 _xfs_trans_bjoin( 80 struct xfs_trans *tp, 81 struct xfs_buf *bp, 82 int reset_recur) 83 { 84 struct xfs_buf_log_item *bip; 85 86 ASSERT(bp->b_transp == NULL); 87 88 /* 89 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 90 * it doesn't have one yet, then allocate one and initialize it. 91 * The checks to see if one is there are in xfs_buf_item_init(). 92 */ 93 xfs_buf_item_init(bp, tp->t_mountp); 94 bip = bp->b_fspriv; 95 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 96 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 97 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 98 if (reset_recur) 99 bip->bli_recur = 0; 100 101 /* 102 * Take a reference for this transaction on the buf item. 103 */ 104 atomic_inc(&bip->bli_refcount); 105 106 /* 107 * Get a log_item_desc to point at the new item. 108 */ 109 xfs_trans_add_item(tp, &bip->bli_item); 110 111 /* 112 * Initialize b_fsprivate2 so we can find it with incore_match() 113 * in xfs_trans_get_buf() and friends above. 114 */ 115 bp->b_transp = tp; 116 117 } 118 119 void 120 xfs_trans_bjoin( 121 struct xfs_trans *tp, 122 struct xfs_buf *bp) 123 { 124 _xfs_trans_bjoin(tp, bp, 0); 125 trace_xfs_trans_bjoin(bp->b_fspriv); 126 } 127 128 /* 129 * Get and lock the buffer for the caller if it is not already 130 * locked within the given transaction. If it is already locked 131 * within the transaction, just increment its lock recursion count 132 * and return a pointer to it. 133 * 134 * If the transaction pointer is NULL, make this just a normal 135 * get_buf() call. 136 */ 137 struct xfs_buf * 138 xfs_trans_get_buf_map( 139 struct xfs_trans *tp, 140 struct xfs_buftarg *target, 141 struct xfs_buf_map *map, 142 int nmaps, 143 xfs_buf_flags_t flags) 144 { 145 xfs_buf_t *bp; 146 xfs_buf_log_item_t *bip; 147 148 if (!tp) 149 return xfs_buf_get_map(target, map, nmaps, flags); 150 151 /* 152 * If we find the buffer in the cache with this transaction 153 * pointer in its b_fsprivate2 field, then we know we already 154 * have it locked. In this case we just increment the lock 155 * recursion count and return the buffer to the caller. 156 */ 157 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 158 if (bp != NULL) { 159 ASSERT(xfs_buf_islocked(bp)); 160 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 161 xfs_buf_stale(bp); 162 XFS_BUF_DONE(bp); 163 } 164 165 ASSERT(bp->b_transp == tp); 166 bip = bp->b_fspriv; 167 ASSERT(bip != NULL); 168 ASSERT(atomic_read(&bip->bli_refcount) > 0); 169 bip->bli_recur++; 170 trace_xfs_trans_get_buf_recur(bip); 171 return (bp); 172 } 173 174 bp = xfs_buf_get_map(target, map, nmaps, flags); 175 if (bp == NULL) { 176 return NULL; 177 } 178 179 ASSERT(!bp->b_error); 180 181 _xfs_trans_bjoin(tp, bp, 1); 182 trace_xfs_trans_get_buf(bp->b_fspriv); 183 return (bp); 184 } 185 186 /* 187 * Get and lock the superblock buffer of this file system for the 188 * given transaction. 189 * 190 * We don't need to use incore_match() here, because the superblock 191 * buffer is a private buffer which we keep a pointer to in the 192 * mount structure. 193 */ 194 xfs_buf_t * 195 xfs_trans_getsb(xfs_trans_t *tp, 196 struct xfs_mount *mp, 197 int flags) 198 { 199 xfs_buf_t *bp; 200 xfs_buf_log_item_t *bip; 201 202 /* 203 * Default to just trying to lock the superblock buffer 204 * if tp is NULL. 205 */ 206 if (tp == NULL) { 207 return (xfs_getsb(mp, flags)); 208 } 209 210 /* 211 * If the superblock buffer already has this transaction 212 * pointer in its b_fsprivate2 field, then we know we already 213 * have it locked. In this case we just increment the lock 214 * recursion count and return the buffer to the caller. 215 */ 216 bp = mp->m_sb_bp; 217 if (bp->b_transp == tp) { 218 bip = bp->b_fspriv; 219 ASSERT(bip != NULL); 220 ASSERT(atomic_read(&bip->bli_refcount) > 0); 221 bip->bli_recur++; 222 trace_xfs_trans_getsb_recur(bip); 223 return (bp); 224 } 225 226 bp = xfs_getsb(mp, flags); 227 if (bp == NULL) 228 return NULL; 229 230 _xfs_trans_bjoin(tp, bp, 1); 231 trace_xfs_trans_getsb(bp->b_fspriv); 232 return (bp); 233 } 234 235 #ifdef DEBUG 236 xfs_buftarg_t *xfs_error_target; 237 int xfs_do_error; 238 int xfs_req_num; 239 int xfs_error_mod = 33; 240 #endif 241 242 /* 243 * Get and lock the buffer for the caller if it is not already 244 * locked within the given transaction. If it has not yet been 245 * read in, read it from disk. If it is already locked 246 * within the transaction and already read in, just increment its 247 * lock recursion count and return a pointer to it. 248 * 249 * If the transaction pointer is NULL, make this just a normal 250 * read_buf() call. 251 */ 252 int 253 xfs_trans_read_buf_map( 254 struct xfs_mount *mp, 255 struct xfs_trans *tp, 256 struct xfs_buftarg *target, 257 struct xfs_buf_map *map, 258 int nmaps, 259 xfs_buf_flags_t flags, 260 struct xfs_buf **bpp) 261 { 262 xfs_buf_t *bp; 263 xfs_buf_log_item_t *bip; 264 int error; 265 266 *bpp = NULL; 267 if (!tp) { 268 bp = xfs_buf_read_map(target, map, nmaps, flags); 269 if (!bp) 270 return (flags & XBF_TRYLOCK) ? 271 EAGAIN : XFS_ERROR(ENOMEM); 272 273 if (bp->b_error) { 274 error = bp->b_error; 275 xfs_buf_ioerror_alert(bp, __func__); 276 XFS_BUF_UNDONE(bp); 277 xfs_buf_stale(bp); 278 xfs_buf_relse(bp); 279 return error; 280 } 281 #ifdef DEBUG 282 if (xfs_do_error) { 283 if (xfs_error_target == target) { 284 if (((xfs_req_num++) % xfs_error_mod) == 0) { 285 xfs_buf_relse(bp); 286 xfs_debug(mp, "Returning error!"); 287 return XFS_ERROR(EIO); 288 } 289 } 290 } 291 #endif 292 if (XFS_FORCED_SHUTDOWN(mp)) 293 goto shutdown_abort; 294 *bpp = bp; 295 return 0; 296 } 297 298 /* 299 * If we find the buffer in the cache with this transaction 300 * pointer in its b_fsprivate2 field, then we know we already 301 * have it locked. If it is already read in we just increment 302 * the lock recursion count and return the buffer to the caller. 303 * If the buffer is not yet read in, then we read it in, increment 304 * the lock recursion count, and return it to the caller. 305 */ 306 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 307 if (bp != NULL) { 308 ASSERT(xfs_buf_islocked(bp)); 309 ASSERT(bp->b_transp == tp); 310 ASSERT(bp->b_fspriv != NULL); 311 ASSERT(!bp->b_error); 312 if (!(XFS_BUF_ISDONE(bp))) { 313 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 314 ASSERT(!XFS_BUF_ISASYNC(bp)); 315 XFS_BUF_READ(bp); 316 xfsbdstrat(tp->t_mountp, bp); 317 error = xfs_buf_iowait(bp); 318 if (error) { 319 xfs_buf_ioerror_alert(bp, __func__); 320 xfs_buf_relse(bp); 321 /* 322 * We can gracefully recover from most read 323 * errors. Ones we can't are those that happen 324 * after the transaction's already dirty. 325 */ 326 if (tp->t_flags & XFS_TRANS_DIRTY) 327 xfs_force_shutdown(tp->t_mountp, 328 SHUTDOWN_META_IO_ERROR); 329 return error; 330 } 331 } 332 /* 333 * We never locked this buf ourselves, so we shouldn't 334 * brelse it either. Just get out. 335 */ 336 if (XFS_FORCED_SHUTDOWN(mp)) { 337 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 338 *bpp = NULL; 339 return XFS_ERROR(EIO); 340 } 341 342 343 bip = bp->b_fspriv; 344 bip->bli_recur++; 345 346 ASSERT(atomic_read(&bip->bli_refcount) > 0); 347 trace_xfs_trans_read_buf_recur(bip); 348 *bpp = bp; 349 return 0; 350 } 351 352 bp = xfs_buf_read_map(target, map, nmaps, flags); 353 if (bp == NULL) { 354 *bpp = NULL; 355 return (flags & XBF_TRYLOCK) ? 356 0 : XFS_ERROR(ENOMEM); 357 } 358 if (bp->b_error) { 359 error = bp->b_error; 360 xfs_buf_stale(bp); 361 XFS_BUF_DONE(bp); 362 xfs_buf_ioerror_alert(bp, __func__); 363 if (tp->t_flags & XFS_TRANS_DIRTY) 364 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 365 xfs_buf_relse(bp); 366 return error; 367 } 368 #ifdef DEBUG 369 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 370 if (xfs_error_target == target) { 371 if (((xfs_req_num++) % xfs_error_mod) == 0) { 372 xfs_force_shutdown(tp->t_mountp, 373 SHUTDOWN_META_IO_ERROR); 374 xfs_buf_relse(bp); 375 xfs_debug(mp, "Returning trans error!"); 376 return XFS_ERROR(EIO); 377 } 378 } 379 } 380 #endif 381 if (XFS_FORCED_SHUTDOWN(mp)) 382 goto shutdown_abort; 383 384 _xfs_trans_bjoin(tp, bp, 1); 385 trace_xfs_trans_read_buf(bp->b_fspriv); 386 387 *bpp = bp; 388 return 0; 389 390 shutdown_abort: 391 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 392 xfs_buf_relse(bp); 393 *bpp = NULL; 394 return XFS_ERROR(EIO); 395 } 396 397 398 /* 399 * Release the buffer bp which was previously acquired with one of the 400 * xfs_trans_... buffer allocation routines if the buffer has not 401 * been modified within this transaction. If the buffer is modified 402 * within this transaction, do decrement the recursion count but do 403 * not release the buffer even if the count goes to 0. If the buffer is not 404 * modified within the transaction, decrement the recursion count and 405 * release the buffer if the recursion count goes to 0. 406 * 407 * If the buffer is to be released and it was not modified before 408 * this transaction began, then free the buf_log_item associated with it. 409 * 410 * If the transaction pointer is NULL, make this just a normal 411 * brelse() call. 412 */ 413 void 414 xfs_trans_brelse(xfs_trans_t *tp, 415 xfs_buf_t *bp) 416 { 417 xfs_buf_log_item_t *bip; 418 419 /* 420 * Default to a normal brelse() call if the tp is NULL. 421 */ 422 if (tp == NULL) { 423 ASSERT(bp->b_transp == NULL); 424 xfs_buf_relse(bp); 425 return; 426 } 427 428 ASSERT(bp->b_transp == tp); 429 bip = bp->b_fspriv; 430 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 431 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 432 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 433 ASSERT(atomic_read(&bip->bli_refcount) > 0); 434 435 trace_xfs_trans_brelse(bip); 436 437 /* 438 * If the release is just for a recursive lock, 439 * then decrement the count and return. 440 */ 441 if (bip->bli_recur > 0) { 442 bip->bli_recur--; 443 return; 444 } 445 446 /* 447 * If the buffer is dirty within this transaction, we can't 448 * release it until we commit. 449 */ 450 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 451 return; 452 453 /* 454 * If the buffer has been invalidated, then we can't release 455 * it until the transaction commits to disk unless it is re-dirtied 456 * as part of this transaction. This prevents us from pulling 457 * the item from the AIL before we should. 458 */ 459 if (bip->bli_flags & XFS_BLI_STALE) 460 return; 461 462 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 463 464 /* 465 * Free up the log item descriptor tracking the released item. 466 */ 467 xfs_trans_del_item(&bip->bli_item); 468 469 /* 470 * Clear the hold flag in the buf log item if it is set. 471 * We wouldn't want the next user of the buffer to 472 * get confused. 473 */ 474 if (bip->bli_flags & XFS_BLI_HOLD) { 475 bip->bli_flags &= ~XFS_BLI_HOLD; 476 } 477 478 /* 479 * Drop our reference to the buf log item. 480 */ 481 atomic_dec(&bip->bli_refcount); 482 483 /* 484 * If the buf item is not tracking data in the log, then 485 * we must free it before releasing the buffer back to the 486 * free pool. Before releasing the buffer to the free pool, 487 * clear the transaction pointer in b_fsprivate2 to dissolve 488 * its relation to this transaction. 489 */ 490 if (!xfs_buf_item_dirty(bip)) { 491 /*** 492 ASSERT(bp->b_pincount == 0); 493 ***/ 494 ASSERT(atomic_read(&bip->bli_refcount) == 0); 495 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 496 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 497 xfs_buf_item_relse(bp); 498 } 499 500 bp->b_transp = NULL; 501 xfs_buf_relse(bp); 502 } 503 504 /* 505 * Mark the buffer as not needing to be unlocked when the buf item's 506 * IOP_UNLOCK() routine is called. The buffer must already be locked 507 * and associated with the given transaction. 508 */ 509 /* ARGSUSED */ 510 void 511 xfs_trans_bhold(xfs_trans_t *tp, 512 xfs_buf_t *bp) 513 { 514 xfs_buf_log_item_t *bip = bp->b_fspriv; 515 516 ASSERT(bp->b_transp == tp); 517 ASSERT(bip != NULL); 518 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 519 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 520 ASSERT(atomic_read(&bip->bli_refcount) > 0); 521 522 bip->bli_flags |= XFS_BLI_HOLD; 523 trace_xfs_trans_bhold(bip); 524 } 525 526 /* 527 * Cancel the previous buffer hold request made on this buffer 528 * for this transaction. 529 */ 530 void 531 xfs_trans_bhold_release(xfs_trans_t *tp, 532 xfs_buf_t *bp) 533 { 534 xfs_buf_log_item_t *bip = bp->b_fspriv; 535 536 ASSERT(bp->b_transp == tp); 537 ASSERT(bip != NULL); 538 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 539 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); 540 ASSERT(atomic_read(&bip->bli_refcount) > 0); 541 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 542 543 bip->bli_flags &= ~XFS_BLI_HOLD; 544 trace_xfs_trans_bhold_release(bip); 545 } 546 547 /* 548 * This is called to mark bytes first through last inclusive of the given 549 * buffer as needing to be logged when the transaction is committed. 550 * The buffer must already be associated with the given transaction. 551 * 552 * First and last are numbers relative to the beginning of this buffer, 553 * so the first byte in the buffer is numbered 0 regardless of the 554 * value of b_blkno. 555 */ 556 void 557 xfs_trans_log_buf(xfs_trans_t *tp, 558 xfs_buf_t *bp, 559 uint first, 560 uint last) 561 { 562 xfs_buf_log_item_t *bip = bp->b_fspriv; 563 564 ASSERT(bp->b_transp == tp); 565 ASSERT(bip != NULL); 566 ASSERT(first <= last && last < BBTOB(bp->b_length)); 567 ASSERT(bp->b_iodone == NULL || 568 bp->b_iodone == xfs_buf_iodone_callbacks); 569 570 /* 571 * Mark the buffer as needing to be written out eventually, 572 * and set its iodone function to remove the buffer's buf log 573 * item from the AIL and free it when the buffer is flushed 574 * to disk. See xfs_buf_attach_iodone() for more details 575 * on li_cb and xfs_buf_iodone_callbacks(). 576 * If we end up aborting this transaction, we trap this buffer 577 * inside the b_bdstrat callback so that this won't get written to 578 * disk. 579 */ 580 XFS_BUF_DONE(bp); 581 582 ASSERT(atomic_read(&bip->bli_refcount) > 0); 583 bp->b_iodone = xfs_buf_iodone_callbacks; 584 bip->bli_item.li_cb = xfs_buf_iodone; 585 586 trace_xfs_trans_log_buf(bip); 587 588 /* 589 * If we invalidated the buffer within this transaction, then 590 * cancel the invalidation now that we're dirtying the buffer 591 * again. There are no races with the code in xfs_buf_item_unpin(), 592 * because we have a reference to the buffer this entire time. 593 */ 594 if (bip->bli_flags & XFS_BLI_STALE) { 595 bip->bli_flags &= ~XFS_BLI_STALE; 596 ASSERT(XFS_BUF_ISSTALE(bp)); 597 XFS_BUF_UNSTALE(bp); 598 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL; 599 } 600 601 tp->t_flags |= XFS_TRANS_DIRTY; 602 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 603 bip->bli_flags |= XFS_BLI_LOGGED; 604 xfs_buf_item_log(bip, first, last); 605 } 606 607 608 /* 609 * Invalidate a buffer that is being used within a transaction. 610 * 611 * Typically this is because the blocks in the buffer are being freed, so we 612 * need to prevent it from being written out when we're done. Allowing it 613 * to be written again might overwrite data in the free blocks if they are 614 * reallocated to a file. 615 * 616 * We prevent the buffer from being written out by marking it stale. We can't 617 * get rid of the buf log item at this point because the buffer may still be 618 * pinned by another transaction. If that is the case, then we'll wait until 619 * the buffer is committed to disk for the last time (we can tell by the ref 620 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 621 * keep the buffer locked so that the buffer and buf log item are not reused. 622 * 623 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 624 * the buf item. This will be used at recovery time to determine that copies 625 * of the buffer in the log before this should not be replayed. 626 * 627 * We mark the item descriptor and the transaction dirty so that we'll hold 628 * the buffer until after the commit. 629 * 630 * Since we're invalidating the buffer, we also clear the state about which 631 * parts of the buffer have been logged. We also clear the flag indicating 632 * that this is an inode buffer since the data in the buffer will no longer 633 * be valid. 634 * 635 * We set the stale bit in the buffer as well since we're getting rid of it. 636 */ 637 void 638 xfs_trans_binval( 639 xfs_trans_t *tp, 640 xfs_buf_t *bp) 641 { 642 xfs_buf_log_item_t *bip = bp->b_fspriv; 643 644 ASSERT(bp->b_transp == tp); 645 ASSERT(bip != NULL); 646 ASSERT(atomic_read(&bip->bli_refcount) > 0); 647 648 trace_xfs_trans_binval(bip); 649 650 if (bip->bli_flags & XFS_BLI_STALE) { 651 /* 652 * If the buffer is already invalidated, then 653 * just return. 654 */ 655 ASSERT(XFS_BUF_ISSTALE(bp)); 656 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 657 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF)); 658 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); 659 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 660 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 661 return; 662 } 663 664 xfs_buf_stale(bp); 665 666 bip->bli_flags |= XFS_BLI_STALE; 667 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 668 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 669 bip->bli_format.blf_flags |= XFS_BLF_CANCEL; 670 memset((char *)(bip->bli_format.blf_data_map), 0, 671 (bip->bli_format.blf_map_size * sizeof(uint))); 672 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 673 tp->t_flags |= XFS_TRANS_DIRTY; 674 } 675 676 /* 677 * This call is used to indicate that the buffer contains on-disk inodes which 678 * must be handled specially during recovery. They require special handling 679 * because only the di_next_unlinked from the inodes in the buffer should be 680 * recovered. The rest of the data in the buffer is logged via the inodes 681 * themselves. 682 * 683 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 684 * transferred to the buffer's log format structure so that we'll know what to 685 * do at recovery time. 686 */ 687 void 688 xfs_trans_inode_buf( 689 xfs_trans_t *tp, 690 xfs_buf_t *bp) 691 { 692 xfs_buf_log_item_t *bip = bp->b_fspriv; 693 694 ASSERT(bp->b_transp == tp); 695 ASSERT(bip != NULL); 696 ASSERT(atomic_read(&bip->bli_refcount) > 0); 697 698 bip->bli_flags |= XFS_BLI_INODE_BUF; 699 } 700 701 /* 702 * This call is used to indicate that the buffer is going to 703 * be staled and was an inode buffer. This means it gets 704 * special processing during unpin - where any inodes 705 * associated with the buffer should be removed from ail. 706 * There is also special processing during recovery, 707 * any replay of the inodes in the buffer needs to be 708 * prevented as the buffer may have been reused. 709 */ 710 void 711 xfs_trans_stale_inode_buf( 712 xfs_trans_t *tp, 713 xfs_buf_t *bp) 714 { 715 xfs_buf_log_item_t *bip = bp->b_fspriv; 716 717 ASSERT(bp->b_transp == tp); 718 ASSERT(bip != NULL); 719 ASSERT(atomic_read(&bip->bli_refcount) > 0); 720 721 bip->bli_flags |= XFS_BLI_STALE_INODE; 722 bip->bli_item.li_cb = xfs_buf_iodone; 723 } 724 725 /* 726 * Mark the buffer as being one which contains newly allocated 727 * inodes. We need to make sure that even if this buffer is 728 * relogged as an 'inode buf' we still recover all of the inode 729 * images in the face of a crash. This works in coordination with 730 * xfs_buf_item_committed() to ensure that the buffer remains in the 731 * AIL at its original location even after it has been relogged. 732 */ 733 /* ARGSUSED */ 734 void 735 xfs_trans_inode_alloc_buf( 736 xfs_trans_t *tp, 737 xfs_buf_t *bp) 738 { 739 xfs_buf_log_item_t *bip = bp->b_fspriv; 740 741 ASSERT(bp->b_transp == tp); 742 ASSERT(bip != NULL); 743 ASSERT(atomic_read(&bip->bli_refcount) > 0); 744 745 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 746 } 747 748 749 /* 750 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 751 * dquots. However, unlike in inode buffer recovery, dquot buffers get 752 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 753 * The only thing that makes dquot buffers different from regular 754 * buffers is that we must not replay dquot bufs when recovering 755 * if a _corresponding_ quotaoff has happened. We also have to distinguish 756 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 757 * can be turned off independently. 758 */ 759 /* ARGSUSED */ 760 void 761 xfs_trans_dquot_buf( 762 xfs_trans_t *tp, 763 xfs_buf_t *bp, 764 uint type) 765 { 766 xfs_buf_log_item_t *bip = bp->b_fspriv; 767 768 ASSERT(bp->b_transp == tp); 769 ASSERT(bip != NULL); 770 ASSERT(type == XFS_BLF_UDQUOT_BUF || 771 type == XFS_BLF_PDQUOT_BUF || 772 type == XFS_BLF_GDQUOT_BUF); 773 ASSERT(atomic_read(&bip->bli_refcount) > 0); 774 775 bip->bli_format.blf_flags |= type; 776 } 777