xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision 79f08d9e)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_buf_item.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 
34 /*
35  * Check to see if a buffer matching the given parameters is already
36  * a part of the given transaction.
37  */
38 STATIC struct xfs_buf *
39 xfs_trans_buf_item_match(
40 	struct xfs_trans	*tp,
41 	struct xfs_buftarg	*target,
42 	struct xfs_buf_map	*map,
43 	int			nmaps)
44 {
45 	struct xfs_log_item_desc *lidp;
46 	struct xfs_buf_log_item	*blip;
47 	int			len = 0;
48 	int			i;
49 
50 	for (i = 0; i < nmaps; i++)
51 		len += map[i].bm_len;
52 
53 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
54 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
55 		if (blip->bli_item.li_type == XFS_LI_BUF &&
56 		    blip->bli_buf->b_target == target &&
57 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
58 		    blip->bli_buf->b_length == len) {
59 			ASSERT(blip->bli_buf->b_map_count == nmaps);
60 			return blip->bli_buf;
61 		}
62 	}
63 
64 	return NULL;
65 }
66 
67 /*
68  * Add the locked buffer to the transaction.
69  *
70  * The buffer must be locked, and it cannot be associated with any
71  * transaction.
72  *
73  * If the buffer does not yet have a buf log item associated with it,
74  * then allocate one for it.  Then add the buf item to the transaction.
75  */
76 STATIC void
77 _xfs_trans_bjoin(
78 	struct xfs_trans	*tp,
79 	struct xfs_buf		*bp,
80 	int			reset_recur)
81 {
82 	struct xfs_buf_log_item	*bip;
83 
84 	ASSERT(bp->b_transp == NULL);
85 
86 	/*
87 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
88 	 * it doesn't have one yet, then allocate one and initialize it.
89 	 * The checks to see if one is there are in xfs_buf_item_init().
90 	 */
91 	xfs_buf_item_init(bp, tp->t_mountp);
92 	bip = bp->b_fspriv;
93 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
95 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 	if (reset_recur)
97 		bip->bli_recur = 0;
98 
99 	/*
100 	 * Take a reference for this transaction on the buf item.
101 	 */
102 	atomic_inc(&bip->bli_refcount);
103 
104 	/*
105 	 * Get a log_item_desc to point at the new item.
106 	 */
107 	xfs_trans_add_item(tp, &bip->bli_item);
108 
109 	/*
110 	 * Initialize b_fsprivate2 so we can find it with incore_match()
111 	 * in xfs_trans_get_buf() and friends above.
112 	 */
113 	bp->b_transp = tp;
114 
115 }
116 
117 void
118 xfs_trans_bjoin(
119 	struct xfs_trans	*tp,
120 	struct xfs_buf		*bp)
121 {
122 	_xfs_trans_bjoin(tp, bp, 0);
123 	trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125 
126 /*
127  * Get and lock the buffer for the caller if it is not already
128  * locked within the given transaction.  If it is already locked
129  * within the transaction, just increment its lock recursion count
130  * and return a pointer to it.
131  *
132  * If the transaction pointer is NULL, make this just a normal
133  * get_buf() call.
134  */
135 struct xfs_buf *
136 xfs_trans_get_buf_map(
137 	struct xfs_trans	*tp,
138 	struct xfs_buftarg	*target,
139 	struct xfs_buf_map	*map,
140 	int			nmaps,
141 	xfs_buf_flags_t		flags)
142 {
143 	xfs_buf_t		*bp;
144 	xfs_buf_log_item_t	*bip;
145 
146 	if (!tp)
147 		return xfs_buf_get_map(target, map, nmaps, flags);
148 
149 	/*
150 	 * If we find the buffer in the cache with this transaction
151 	 * pointer in its b_fsprivate2 field, then we know we already
152 	 * have it locked.  In this case we just increment the lock
153 	 * recursion count and return the buffer to the caller.
154 	 */
155 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
156 	if (bp != NULL) {
157 		ASSERT(xfs_buf_islocked(bp));
158 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
159 			xfs_buf_stale(bp);
160 			XFS_BUF_DONE(bp);
161 		}
162 
163 		ASSERT(bp->b_transp == tp);
164 		bip = bp->b_fspriv;
165 		ASSERT(bip != NULL);
166 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
167 		bip->bli_recur++;
168 		trace_xfs_trans_get_buf_recur(bip);
169 		return (bp);
170 	}
171 
172 	bp = xfs_buf_get_map(target, map, nmaps, flags);
173 	if (bp == NULL) {
174 		return NULL;
175 	}
176 
177 	ASSERT(!bp->b_error);
178 
179 	_xfs_trans_bjoin(tp, bp, 1);
180 	trace_xfs_trans_get_buf(bp->b_fspriv);
181 	return (bp);
182 }
183 
184 /*
185  * Get and lock the superblock buffer of this file system for the
186  * given transaction.
187  *
188  * We don't need to use incore_match() here, because the superblock
189  * buffer is a private buffer which we keep a pointer to in the
190  * mount structure.
191  */
192 xfs_buf_t *
193 xfs_trans_getsb(xfs_trans_t	*tp,
194 		struct xfs_mount *mp,
195 		int		flags)
196 {
197 	xfs_buf_t		*bp;
198 	xfs_buf_log_item_t	*bip;
199 
200 	/*
201 	 * Default to just trying to lock the superblock buffer
202 	 * if tp is NULL.
203 	 */
204 	if (tp == NULL) {
205 		return (xfs_getsb(mp, flags));
206 	}
207 
208 	/*
209 	 * If the superblock buffer already has this transaction
210 	 * pointer in its b_fsprivate2 field, then we know we already
211 	 * have it locked.  In this case we just increment the lock
212 	 * recursion count and return the buffer to the caller.
213 	 */
214 	bp = mp->m_sb_bp;
215 	if (bp->b_transp == tp) {
216 		bip = bp->b_fspriv;
217 		ASSERT(bip != NULL);
218 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
219 		bip->bli_recur++;
220 		trace_xfs_trans_getsb_recur(bip);
221 		return (bp);
222 	}
223 
224 	bp = xfs_getsb(mp, flags);
225 	if (bp == NULL)
226 		return NULL;
227 
228 	_xfs_trans_bjoin(tp, bp, 1);
229 	trace_xfs_trans_getsb(bp->b_fspriv);
230 	return (bp);
231 }
232 
233 #ifdef DEBUG
234 xfs_buftarg_t *xfs_error_target;
235 int	xfs_do_error;
236 int	xfs_req_num;
237 int	xfs_error_mod = 33;
238 #endif
239 
240 /*
241  * Get and lock the buffer for the caller if it is not already
242  * locked within the given transaction.  If it has not yet been
243  * read in, read it from disk. If it is already locked
244  * within the transaction and already read in, just increment its
245  * lock recursion count and return a pointer to it.
246  *
247  * If the transaction pointer is NULL, make this just a normal
248  * read_buf() call.
249  */
250 int
251 xfs_trans_read_buf_map(
252 	struct xfs_mount	*mp,
253 	struct xfs_trans	*tp,
254 	struct xfs_buftarg	*target,
255 	struct xfs_buf_map	*map,
256 	int			nmaps,
257 	xfs_buf_flags_t		flags,
258 	struct xfs_buf		**bpp,
259 	const struct xfs_buf_ops *ops)
260 {
261 	xfs_buf_t		*bp;
262 	xfs_buf_log_item_t	*bip;
263 	int			error;
264 
265 	*bpp = NULL;
266 	if (!tp) {
267 		bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
268 		if (!bp)
269 			return (flags & XBF_TRYLOCK) ?
270 					EAGAIN : XFS_ERROR(ENOMEM);
271 
272 		if (bp->b_error) {
273 			error = bp->b_error;
274 			xfs_buf_ioerror_alert(bp, __func__);
275 			XFS_BUF_UNDONE(bp);
276 			xfs_buf_stale(bp);
277 			xfs_buf_relse(bp);
278 			return error;
279 		}
280 #ifdef DEBUG
281 		if (xfs_do_error) {
282 			if (xfs_error_target == target) {
283 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
284 					xfs_buf_relse(bp);
285 					xfs_debug(mp, "Returning error!");
286 					return XFS_ERROR(EIO);
287 				}
288 			}
289 		}
290 #endif
291 		if (XFS_FORCED_SHUTDOWN(mp))
292 			goto shutdown_abort;
293 		*bpp = bp;
294 		return 0;
295 	}
296 
297 	/*
298 	 * If we find the buffer in the cache with this transaction
299 	 * pointer in its b_fsprivate2 field, then we know we already
300 	 * have it locked.  If it is already read in we just increment
301 	 * the lock recursion count and return the buffer to the caller.
302 	 * If the buffer is not yet read in, then we read it in, increment
303 	 * the lock recursion count, and return it to the caller.
304 	 */
305 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
306 	if (bp != NULL) {
307 		ASSERT(xfs_buf_islocked(bp));
308 		ASSERT(bp->b_transp == tp);
309 		ASSERT(bp->b_fspriv != NULL);
310 		ASSERT(!bp->b_error);
311 		if (!(XFS_BUF_ISDONE(bp))) {
312 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
313 			ASSERT(!XFS_BUF_ISASYNC(bp));
314 			ASSERT(bp->b_iodone == NULL);
315 			XFS_BUF_READ(bp);
316 			bp->b_ops = ops;
317 			xfsbdstrat(tp->t_mountp, bp);
318 			error = xfs_buf_iowait(bp);
319 			if (error) {
320 				xfs_buf_ioerror_alert(bp, __func__);
321 				xfs_buf_relse(bp);
322 				/*
323 				 * We can gracefully recover from most read
324 				 * errors. Ones we can't are those that happen
325 				 * after the transaction's already dirty.
326 				 */
327 				if (tp->t_flags & XFS_TRANS_DIRTY)
328 					xfs_force_shutdown(tp->t_mountp,
329 							SHUTDOWN_META_IO_ERROR);
330 				return error;
331 			}
332 		}
333 		/*
334 		 * We never locked this buf ourselves, so we shouldn't
335 		 * brelse it either. Just get out.
336 		 */
337 		if (XFS_FORCED_SHUTDOWN(mp)) {
338 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
339 			*bpp = NULL;
340 			return XFS_ERROR(EIO);
341 		}
342 
343 
344 		bip = bp->b_fspriv;
345 		bip->bli_recur++;
346 
347 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
348 		trace_xfs_trans_read_buf_recur(bip);
349 		*bpp = bp;
350 		return 0;
351 	}
352 
353 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
354 	if (bp == NULL) {
355 		*bpp = NULL;
356 		return (flags & XBF_TRYLOCK) ?
357 					0 : XFS_ERROR(ENOMEM);
358 	}
359 	if (bp->b_error) {
360 		error = bp->b_error;
361 		xfs_buf_stale(bp);
362 		XFS_BUF_DONE(bp);
363 		xfs_buf_ioerror_alert(bp, __func__);
364 		if (tp->t_flags & XFS_TRANS_DIRTY)
365 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
366 		xfs_buf_relse(bp);
367 		return error;
368 	}
369 #ifdef DEBUG
370 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
371 		if (xfs_error_target == target) {
372 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
373 				xfs_force_shutdown(tp->t_mountp,
374 						   SHUTDOWN_META_IO_ERROR);
375 				xfs_buf_relse(bp);
376 				xfs_debug(mp, "Returning trans error!");
377 				return XFS_ERROR(EIO);
378 			}
379 		}
380 	}
381 #endif
382 	if (XFS_FORCED_SHUTDOWN(mp))
383 		goto shutdown_abort;
384 
385 	_xfs_trans_bjoin(tp, bp, 1);
386 	trace_xfs_trans_read_buf(bp->b_fspriv);
387 
388 	*bpp = bp;
389 	return 0;
390 
391 shutdown_abort:
392 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
393 	xfs_buf_relse(bp);
394 	*bpp = NULL;
395 	return XFS_ERROR(EIO);
396 }
397 
398 /*
399  * Release the buffer bp which was previously acquired with one of the
400  * xfs_trans_... buffer allocation routines if the buffer has not
401  * been modified within this transaction.  If the buffer is modified
402  * within this transaction, do decrement the recursion count but do
403  * not release the buffer even if the count goes to 0.  If the buffer is not
404  * modified within the transaction, decrement the recursion count and
405  * release the buffer if the recursion count goes to 0.
406  *
407  * If the buffer is to be released and it was not modified before
408  * this transaction began, then free the buf_log_item associated with it.
409  *
410  * If the transaction pointer is NULL, make this just a normal
411  * brelse() call.
412  */
413 void
414 xfs_trans_brelse(xfs_trans_t	*tp,
415 		 xfs_buf_t	*bp)
416 {
417 	xfs_buf_log_item_t	*bip;
418 
419 	/*
420 	 * Default to a normal brelse() call if the tp is NULL.
421 	 */
422 	if (tp == NULL) {
423 		ASSERT(bp->b_transp == NULL);
424 		xfs_buf_relse(bp);
425 		return;
426 	}
427 
428 	ASSERT(bp->b_transp == tp);
429 	bip = bp->b_fspriv;
430 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
433 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 
435 	trace_xfs_trans_brelse(bip);
436 
437 	/*
438 	 * If the release is just for a recursive lock,
439 	 * then decrement the count and return.
440 	 */
441 	if (bip->bli_recur > 0) {
442 		bip->bli_recur--;
443 		return;
444 	}
445 
446 	/*
447 	 * If the buffer is dirty within this transaction, we can't
448 	 * release it until we commit.
449 	 */
450 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451 		return;
452 
453 	/*
454 	 * If the buffer has been invalidated, then we can't release
455 	 * it until the transaction commits to disk unless it is re-dirtied
456 	 * as part of this transaction.  This prevents us from pulling
457 	 * the item from the AIL before we should.
458 	 */
459 	if (bip->bli_flags & XFS_BLI_STALE)
460 		return;
461 
462 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
463 
464 	/*
465 	 * Free up the log item descriptor tracking the released item.
466 	 */
467 	xfs_trans_del_item(&bip->bli_item);
468 
469 	/*
470 	 * Clear the hold flag in the buf log item if it is set.
471 	 * We wouldn't want the next user of the buffer to
472 	 * get confused.
473 	 */
474 	if (bip->bli_flags & XFS_BLI_HOLD) {
475 		bip->bli_flags &= ~XFS_BLI_HOLD;
476 	}
477 
478 	/*
479 	 * Drop our reference to the buf log item.
480 	 */
481 	atomic_dec(&bip->bli_refcount);
482 
483 	/*
484 	 * If the buf item is not tracking data in the log, then
485 	 * we must free it before releasing the buffer back to the
486 	 * free pool.  Before releasing the buffer to the free pool,
487 	 * clear the transaction pointer in b_fsprivate2 to dissolve
488 	 * its relation to this transaction.
489 	 */
490 	if (!xfs_buf_item_dirty(bip)) {
491 /***
492 		ASSERT(bp->b_pincount == 0);
493 ***/
494 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
495 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497 		xfs_buf_item_relse(bp);
498 	}
499 
500 	bp->b_transp = NULL;
501 	xfs_buf_relse(bp);
502 }
503 
504 /*
505  * Mark the buffer as not needing to be unlocked when the buf item's
506  * iop_unlock() routine is called.  The buffer must already be locked
507  * and associated with the given transaction.
508  */
509 /* ARGSUSED */
510 void
511 xfs_trans_bhold(xfs_trans_t	*tp,
512 		xfs_buf_t	*bp)
513 {
514 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
515 
516 	ASSERT(bp->b_transp == tp);
517 	ASSERT(bip != NULL);
518 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
520 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
521 
522 	bip->bli_flags |= XFS_BLI_HOLD;
523 	trace_xfs_trans_bhold(bip);
524 }
525 
526 /*
527  * Cancel the previous buffer hold request made on this buffer
528  * for this transaction.
529  */
530 void
531 xfs_trans_bhold_release(xfs_trans_t	*tp,
532 			xfs_buf_t	*bp)
533 {
534 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
535 
536 	ASSERT(bp->b_transp == tp);
537 	ASSERT(bip != NULL);
538 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
540 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
541 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
542 
543 	bip->bli_flags &= ~XFS_BLI_HOLD;
544 	trace_xfs_trans_bhold_release(bip);
545 }
546 
547 /*
548  * This is called to mark bytes first through last inclusive of the given
549  * buffer as needing to be logged when the transaction is committed.
550  * The buffer must already be associated with the given transaction.
551  *
552  * First and last are numbers relative to the beginning of this buffer,
553  * so the first byte in the buffer is numbered 0 regardless of the
554  * value of b_blkno.
555  */
556 void
557 xfs_trans_log_buf(xfs_trans_t	*tp,
558 		  xfs_buf_t	*bp,
559 		  uint		first,
560 		  uint		last)
561 {
562 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
563 
564 	ASSERT(bp->b_transp == tp);
565 	ASSERT(bip != NULL);
566 	ASSERT(first <= last && last < BBTOB(bp->b_length));
567 	ASSERT(bp->b_iodone == NULL ||
568 	       bp->b_iodone == xfs_buf_iodone_callbacks);
569 
570 	/*
571 	 * Mark the buffer as needing to be written out eventually,
572 	 * and set its iodone function to remove the buffer's buf log
573 	 * item from the AIL and free it when the buffer is flushed
574 	 * to disk.  See xfs_buf_attach_iodone() for more details
575 	 * on li_cb and xfs_buf_iodone_callbacks().
576 	 * If we end up aborting this transaction, we trap this buffer
577 	 * inside the b_bdstrat callback so that this won't get written to
578 	 * disk.
579 	 */
580 	XFS_BUF_DONE(bp);
581 
582 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
583 	bp->b_iodone = xfs_buf_iodone_callbacks;
584 	bip->bli_item.li_cb = xfs_buf_iodone;
585 
586 	trace_xfs_trans_log_buf(bip);
587 
588 	/*
589 	 * If we invalidated the buffer within this transaction, then
590 	 * cancel the invalidation now that we're dirtying the buffer
591 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
592 	 * because we have a reference to the buffer this entire time.
593 	 */
594 	if (bip->bli_flags & XFS_BLI_STALE) {
595 		bip->bli_flags &= ~XFS_BLI_STALE;
596 		ASSERT(XFS_BUF_ISSTALE(bp));
597 		XFS_BUF_UNSTALE(bp);
598 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
599 	}
600 
601 	tp->t_flags |= XFS_TRANS_DIRTY;
602 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603 
604 	/*
605 	 * If we have an ordered buffer we are not logging any dirty range but
606 	 * it still needs to be marked dirty and that it has been logged.
607 	 */
608 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
609 	if (!(bip->bli_flags & XFS_BLI_ORDERED))
610 		xfs_buf_item_log(bip, first, last);
611 }
612 
613 
614 /*
615  * Invalidate a buffer that is being used within a transaction.
616  *
617  * Typically this is because the blocks in the buffer are being freed, so we
618  * need to prevent it from being written out when we're done.  Allowing it
619  * to be written again might overwrite data in the free blocks if they are
620  * reallocated to a file.
621  *
622  * We prevent the buffer from being written out by marking it stale.  We can't
623  * get rid of the buf log item at this point because the buffer may still be
624  * pinned by another transaction.  If that is the case, then we'll wait until
625  * the buffer is committed to disk for the last time (we can tell by the ref
626  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
627  * keep the buffer locked so that the buffer and buf log item are not reused.
628  *
629  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
630  * the buf item.  This will be used at recovery time to determine that copies
631  * of the buffer in the log before this should not be replayed.
632  *
633  * We mark the item descriptor and the transaction dirty so that we'll hold
634  * the buffer until after the commit.
635  *
636  * Since we're invalidating the buffer, we also clear the state about which
637  * parts of the buffer have been logged.  We also clear the flag indicating
638  * that this is an inode buffer since the data in the buffer will no longer
639  * be valid.
640  *
641  * We set the stale bit in the buffer as well since we're getting rid of it.
642  */
643 void
644 xfs_trans_binval(
645 	xfs_trans_t	*tp,
646 	xfs_buf_t	*bp)
647 {
648 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
649 	int			i;
650 
651 	ASSERT(bp->b_transp == tp);
652 	ASSERT(bip != NULL);
653 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
654 
655 	trace_xfs_trans_binval(bip);
656 
657 	if (bip->bli_flags & XFS_BLI_STALE) {
658 		/*
659 		 * If the buffer is already invalidated, then
660 		 * just return.
661 		 */
662 		ASSERT(XFS_BUF_ISSTALE(bp));
663 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
664 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
665 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
666 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
667 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
668 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
669 		return;
670 	}
671 
672 	xfs_buf_stale(bp);
673 
674 	bip->bli_flags |= XFS_BLI_STALE;
675 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
676 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
677 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
678 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
679 	for (i = 0; i < bip->bli_format_count; i++) {
680 		memset(bip->bli_formats[i].blf_data_map, 0,
681 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
682 	}
683 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
684 	tp->t_flags |= XFS_TRANS_DIRTY;
685 }
686 
687 /*
688  * This call is used to indicate that the buffer contains on-disk inodes which
689  * must be handled specially during recovery.  They require special handling
690  * because only the di_next_unlinked from the inodes in the buffer should be
691  * recovered.  The rest of the data in the buffer is logged via the inodes
692  * themselves.
693  *
694  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
695  * transferred to the buffer's log format structure so that we'll know what to
696  * do at recovery time.
697  */
698 void
699 xfs_trans_inode_buf(
700 	xfs_trans_t	*tp,
701 	xfs_buf_t	*bp)
702 {
703 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
704 
705 	ASSERT(bp->b_transp == tp);
706 	ASSERT(bip != NULL);
707 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
708 
709 	bip->bli_flags |= XFS_BLI_INODE_BUF;
710 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
711 }
712 
713 /*
714  * This call is used to indicate that the buffer is going to
715  * be staled and was an inode buffer. This means it gets
716  * special processing during unpin - where any inodes
717  * associated with the buffer should be removed from ail.
718  * There is also special processing during recovery,
719  * any replay of the inodes in the buffer needs to be
720  * prevented as the buffer may have been reused.
721  */
722 void
723 xfs_trans_stale_inode_buf(
724 	xfs_trans_t	*tp,
725 	xfs_buf_t	*bp)
726 {
727 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
728 
729 	ASSERT(bp->b_transp == tp);
730 	ASSERT(bip != NULL);
731 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
732 
733 	bip->bli_flags |= XFS_BLI_STALE_INODE;
734 	bip->bli_item.li_cb = xfs_buf_iodone;
735 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
736 }
737 
738 /*
739  * Mark the buffer as being one which contains newly allocated
740  * inodes.  We need to make sure that even if this buffer is
741  * relogged as an 'inode buf' we still recover all of the inode
742  * images in the face of a crash.  This works in coordination with
743  * xfs_buf_item_committed() to ensure that the buffer remains in the
744  * AIL at its original location even after it has been relogged.
745  */
746 /* ARGSUSED */
747 void
748 xfs_trans_inode_alloc_buf(
749 	xfs_trans_t	*tp,
750 	xfs_buf_t	*bp)
751 {
752 	xfs_buf_log_item_t	*bip = bp->b_fspriv;
753 
754 	ASSERT(bp->b_transp == tp);
755 	ASSERT(bip != NULL);
756 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
757 
758 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
759 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
760 }
761 
762 /*
763  * Mark the buffer as ordered for this transaction. This means
764  * that the contents of the buffer are not recorded in the transaction
765  * but it is tracked in the AIL as though it was. This allows us
766  * to record logical changes in transactions rather than the physical
767  * changes we make to the buffer without changing writeback ordering
768  * constraints of metadata buffers.
769  */
770 void
771 xfs_trans_ordered_buf(
772 	struct xfs_trans	*tp,
773 	struct xfs_buf		*bp)
774 {
775 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
776 
777 	ASSERT(bp->b_transp == tp);
778 	ASSERT(bip != NULL);
779 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
780 
781 	bip->bli_flags |= XFS_BLI_ORDERED;
782 	trace_xfs_buf_item_ordered(bip);
783 }
784 
785 /*
786  * Set the type of the buffer for log recovery so that it can correctly identify
787  * and hence attach the correct buffer ops to the buffer after replay.
788  */
789 void
790 xfs_trans_buf_set_type(
791 	struct xfs_trans	*tp,
792 	struct xfs_buf		*bp,
793 	enum xfs_blft		type)
794 {
795 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
796 
797 	if (!tp)
798 		return;
799 
800 	ASSERT(bp->b_transp == tp);
801 	ASSERT(bip != NULL);
802 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
803 
804 	xfs_blft_to_flags(&bip->__bli_format, type);
805 }
806 
807 void
808 xfs_trans_buf_copy_type(
809 	struct xfs_buf		*dst_bp,
810 	struct xfs_buf		*src_bp)
811 {
812 	struct xfs_buf_log_item	*sbip = src_bp->b_fspriv;
813 	struct xfs_buf_log_item	*dbip = dst_bp->b_fspriv;
814 	enum xfs_blft		type;
815 
816 	type = xfs_blft_from_flags(&sbip->__bli_format);
817 	xfs_blft_to_flags(&dbip->__bli_format, type);
818 }
819 
820 /*
821  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
822  * dquots. However, unlike in inode buffer recovery, dquot buffers get
823  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
824  * The only thing that makes dquot buffers different from regular
825  * buffers is that we must not replay dquot bufs when recovering
826  * if a _corresponding_ quotaoff has happened. We also have to distinguish
827  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
828  * can be turned off independently.
829  */
830 /* ARGSUSED */
831 void
832 xfs_trans_dquot_buf(
833 	xfs_trans_t	*tp,
834 	xfs_buf_t	*bp,
835 	uint		type)
836 {
837 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
838 
839 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
840 	       type == XFS_BLF_PDQUOT_BUF ||
841 	       type == XFS_BLF_GDQUOT_BUF);
842 
843 	bip->__bli_format.blf_flags |= type;
844 
845 	switch (type) {
846 	case XFS_BLF_UDQUOT_BUF:
847 		type = XFS_BLFT_UDQUOT_BUF;
848 		break;
849 	case XFS_BLF_PDQUOT_BUF:
850 		type = XFS_BLFT_PDQUOT_BUF;
851 		break;
852 	case XFS_BLF_GDQUOT_BUF:
853 		type = XFS_BLFT_GDQUOT_BUF;
854 		break;
855 	default:
856 		type = XFS_BLFT_UNKNOWN_BUF;
857 		break;
858 	}
859 
860 	xfs_trans_buf_set_type(tp, bp, type);
861 }
862