1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 /* 35 * Check to see if a buffer matching the given parameters is already 36 * a part of the given transaction. 37 */ 38 STATIC struct xfs_buf * 39 xfs_trans_buf_item_match( 40 struct xfs_trans *tp, 41 struct xfs_buftarg *target, 42 struct xfs_buf_map *map, 43 int nmaps) 44 { 45 struct xfs_log_item_desc *lidp; 46 struct xfs_buf_log_item *blip; 47 int len = 0; 48 int i; 49 50 for (i = 0; i < nmaps; i++) 51 len += map[i].bm_len; 52 53 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 54 blip = (struct xfs_buf_log_item *)lidp->lid_item; 55 if (blip->bli_item.li_type == XFS_LI_BUF && 56 blip->bli_buf->b_target == target && 57 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 58 blip->bli_buf->b_length == len) { 59 ASSERT(blip->bli_buf->b_map_count == nmaps); 60 return blip->bli_buf; 61 } 62 } 63 64 return NULL; 65 } 66 67 /* 68 * Add the locked buffer to the transaction. 69 * 70 * The buffer must be locked, and it cannot be associated with any 71 * transaction. 72 * 73 * If the buffer does not yet have a buf log item associated with it, 74 * then allocate one for it. Then add the buf item to the transaction. 75 */ 76 STATIC void 77 _xfs_trans_bjoin( 78 struct xfs_trans *tp, 79 struct xfs_buf *bp, 80 int reset_recur) 81 { 82 struct xfs_buf_log_item *bip; 83 84 ASSERT(bp->b_transp == NULL); 85 86 /* 87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 88 * it doesn't have one yet, then allocate one and initialize it. 89 * The checks to see if one is there are in xfs_buf_item_init(). 90 */ 91 xfs_buf_item_init(bp, tp->t_mountp); 92 bip = bp->b_fspriv; 93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 94 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 96 if (reset_recur) 97 bip->bli_recur = 0; 98 99 /* 100 * Take a reference for this transaction on the buf item. 101 */ 102 atomic_inc(&bip->bli_refcount); 103 104 /* 105 * Get a log_item_desc to point at the new item. 106 */ 107 xfs_trans_add_item(tp, &bip->bli_item); 108 109 /* 110 * Initialize b_fsprivate2 so we can find it with incore_match() 111 * in xfs_trans_get_buf() and friends above. 112 */ 113 bp->b_transp = tp; 114 115 } 116 117 void 118 xfs_trans_bjoin( 119 struct xfs_trans *tp, 120 struct xfs_buf *bp) 121 { 122 _xfs_trans_bjoin(tp, bp, 0); 123 trace_xfs_trans_bjoin(bp->b_fspriv); 124 } 125 126 /* 127 * Get and lock the buffer for the caller if it is not already 128 * locked within the given transaction. If it is already locked 129 * within the transaction, just increment its lock recursion count 130 * and return a pointer to it. 131 * 132 * If the transaction pointer is NULL, make this just a normal 133 * get_buf() call. 134 */ 135 struct xfs_buf * 136 xfs_trans_get_buf_map( 137 struct xfs_trans *tp, 138 struct xfs_buftarg *target, 139 struct xfs_buf_map *map, 140 int nmaps, 141 xfs_buf_flags_t flags) 142 { 143 xfs_buf_t *bp; 144 xfs_buf_log_item_t *bip; 145 146 if (!tp) 147 return xfs_buf_get_map(target, map, nmaps, flags); 148 149 /* 150 * If we find the buffer in the cache with this transaction 151 * pointer in its b_fsprivate2 field, then we know we already 152 * have it locked. In this case we just increment the lock 153 * recursion count and return the buffer to the caller. 154 */ 155 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 156 if (bp != NULL) { 157 ASSERT(xfs_buf_islocked(bp)); 158 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 159 xfs_buf_stale(bp); 160 XFS_BUF_DONE(bp); 161 } 162 163 ASSERT(bp->b_transp == tp); 164 bip = bp->b_fspriv; 165 ASSERT(bip != NULL); 166 ASSERT(atomic_read(&bip->bli_refcount) > 0); 167 bip->bli_recur++; 168 trace_xfs_trans_get_buf_recur(bip); 169 return (bp); 170 } 171 172 bp = xfs_buf_get_map(target, map, nmaps, flags); 173 if (bp == NULL) { 174 return NULL; 175 } 176 177 ASSERT(!bp->b_error); 178 179 _xfs_trans_bjoin(tp, bp, 1); 180 trace_xfs_trans_get_buf(bp->b_fspriv); 181 return (bp); 182 } 183 184 /* 185 * Get and lock the superblock buffer of this file system for the 186 * given transaction. 187 * 188 * We don't need to use incore_match() here, because the superblock 189 * buffer is a private buffer which we keep a pointer to in the 190 * mount structure. 191 */ 192 xfs_buf_t * 193 xfs_trans_getsb(xfs_trans_t *tp, 194 struct xfs_mount *mp, 195 int flags) 196 { 197 xfs_buf_t *bp; 198 xfs_buf_log_item_t *bip; 199 200 /* 201 * Default to just trying to lock the superblock buffer 202 * if tp is NULL. 203 */ 204 if (tp == NULL) { 205 return (xfs_getsb(mp, flags)); 206 } 207 208 /* 209 * If the superblock buffer already has this transaction 210 * pointer in its b_fsprivate2 field, then we know we already 211 * have it locked. In this case we just increment the lock 212 * recursion count and return the buffer to the caller. 213 */ 214 bp = mp->m_sb_bp; 215 if (bp->b_transp == tp) { 216 bip = bp->b_fspriv; 217 ASSERT(bip != NULL); 218 ASSERT(atomic_read(&bip->bli_refcount) > 0); 219 bip->bli_recur++; 220 trace_xfs_trans_getsb_recur(bip); 221 return (bp); 222 } 223 224 bp = xfs_getsb(mp, flags); 225 if (bp == NULL) 226 return NULL; 227 228 _xfs_trans_bjoin(tp, bp, 1); 229 trace_xfs_trans_getsb(bp->b_fspriv); 230 return (bp); 231 } 232 233 #ifdef DEBUG 234 xfs_buftarg_t *xfs_error_target; 235 int xfs_do_error; 236 int xfs_req_num; 237 int xfs_error_mod = 33; 238 #endif 239 240 /* 241 * Get and lock the buffer for the caller if it is not already 242 * locked within the given transaction. If it has not yet been 243 * read in, read it from disk. If it is already locked 244 * within the transaction and already read in, just increment its 245 * lock recursion count and return a pointer to it. 246 * 247 * If the transaction pointer is NULL, make this just a normal 248 * read_buf() call. 249 */ 250 int 251 xfs_trans_read_buf_map( 252 struct xfs_mount *mp, 253 struct xfs_trans *tp, 254 struct xfs_buftarg *target, 255 struct xfs_buf_map *map, 256 int nmaps, 257 xfs_buf_flags_t flags, 258 struct xfs_buf **bpp, 259 const struct xfs_buf_ops *ops) 260 { 261 xfs_buf_t *bp; 262 xfs_buf_log_item_t *bip; 263 int error; 264 265 *bpp = NULL; 266 if (!tp) { 267 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 268 if (!bp) 269 return (flags & XBF_TRYLOCK) ? 270 EAGAIN : XFS_ERROR(ENOMEM); 271 272 if (bp->b_error) { 273 error = bp->b_error; 274 xfs_buf_ioerror_alert(bp, __func__); 275 XFS_BUF_UNDONE(bp); 276 xfs_buf_stale(bp); 277 xfs_buf_relse(bp); 278 return error; 279 } 280 #ifdef DEBUG 281 if (xfs_do_error) { 282 if (xfs_error_target == target) { 283 if (((xfs_req_num++) % xfs_error_mod) == 0) { 284 xfs_buf_relse(bp); 285 xfs_debug(mp, "Returning error!"); 286 return XFS_ERROR(EIO); 287 } 288 } 289 } 290 #endif 291 if (XFS_FORCED_SHUTDOWN(mp)) 292 goto shutdown_abort; 293 *bpp = bp; 294 return 0; 295 } 296 297 /* 298 * If we find the buffer in the cache with this transaction 299 * pointer in its b_fsprivate2 field, then we know we already 300 * have it locked. If it is already read in we just increment 301 * the lock recursion count and return the buffer to the caller. 302 * If the buffer is not yet read in, then we read it in, increment 303 * the lock recursion count, and return it to the caller. 304 */ 305 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 306 if (bp != NULL) { 307 ASSERT(xfs_buf_islocked(bp)); 308 ASSERT(bp->b_transp == tp); 309 ASSERT(bp->b_fspriv != NULL); 310 ASSERT(!bp->b_error); 311 if (!(XFS_BUF_ISDONE(bp))) { 312 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 313 ASSERT(!XFS_BUF_ISASYNC(bp)); 314 ASSERT(bp->b_iodone == NULL); 315 XFS_BUF_READ(bp); 316 bp->b_ops = ops; 317 xfsbdstrat(tp->t_mountp, bp); 318 error = xfs_buf_iowait(bp); 319 if (error) { 320 xfs_buf_ioerror_alert(bp, __func__); 321 xfs_buf_relse(bp); 322 /* 323 * We can gracefully recover from most read 324 * errors. Ones we can't are those that happen 325 * after the transaction's already dirty. 326 */ 327 if (tp->t_flags & XFS_TRANS_DIRTY) 328 xfs_force_shutdown(tp->t_mountp, 329 SHUTDOWN_META_IO_ERROR); 330 return error; 331 } 332 } 333 /* 334 * We never locked this buf ourselves, so we shouldn't 335 * brelse it either. Just get out. 336 */ 337 if (XFS_FORCED_SHUTDOWN(mp)) { 338 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 339 *bpp = NULL; 340 return XFS_ERROR(EIO); 341 } 342 343 344 bip = bp->b_fspriv; 345 bip->bli_recur++; 346 347 ASSERT(atomic_read(&bip->bli_refcount) > 0); 348 trace_xfs_trans_read_buf_recur(bip); 349 *bpp = bp; 350 return 0; 351 } 352 353 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 354 if (bp == NULL) { 355 *bpp = NULL; 356 return (flags & XBF_TRYLOCK) ? 357 0 : XFS_ERROR(ENOMEM); 358 } 359 if (bp->b_error) { 360 error = bp->b_error; 361 xfs_buf_stale(bp); 362 XFS_BUF_DONE(bp); 363 xfs_buf_ioerror_alert(bp, __func__); 364 if (tp->t_flags & XFS_TRANS_DIRTY) 365 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 366 xfs_buf_relse(bp); 367 return error; 368 } 369 #ifdef DEBUG 370 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 371 if (xfs_error_target == target) { 372 if (((xfs_req_num++) % xfs_error_mod) == 0) { 373 xfs_force_shutdown(tp->t_mountp, 374 SHUTDOWN_META_IO_ERROR); 375 xfs_buf_relse(bp); 376 xfs_debug(mp, "Returning trans error!"); 377 return XFS_ERROR(EIO); 378 } 379 } 380 } 381 #endif 382 if (XFS_FORCED_SHUTDOWN(mp)) 383 goto shutdown_abort; 384 385 _xfs_trans_bjoin(tp, bp, 1); 386 trace_xfs_trans_read_buf(bp->b_fspriv); 387 388 *bpp = bp; 389 return 0; 390 391 shutdown_abort: 392 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 393 xfs_buf_relse(bp); 394 *bpp = NULL; 395 return XFS_ERROR(EIO); 396 } 397 398 /* 399 * Release the buffer bp which was previously acquired with one of the 400 * xfs_trans_... buffer allocation routines if the buffer has not 401 * been modified within this transaction. If the buffer is modified 402 * within this transaction, do decrement the recursion count but do 403 * not release the buffer even if the count goes to 0. If the buffer is not 404 * modified within the transaction, decrement the recursion count and 405 * release the buffer if the recursion count goes to 0. 406 * 407 * If the buffer is to be released and it was not modified before 408 * this transaction began, then free the buf_log_item associated with it. 409 * 410 * If the transaction pointer is NULL, make this just a normal 411 * brelse() call. 412 */ 413 void 414 xfs_trans_brelse(xfs_trans_t *tp, 415 xfs_buf_t *bp) 416 { 417 xfs_buf_log_item_t *bip; 418 419 /* 420 * Default to a normal brelse() call if the tp is NULL. 421 */ 422 if (tp == NULL) { 423 ASSERT(bp->b_transp == NULL); 424 xfs_buf_relse(bp); 425 return; 426 } 427 428 ASSERT(bp->b_transp == tp); 429 bip = bp->b_fspriv; 430 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 431 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 432 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 433 ASSERT(atomic_read(&bip->bli_refcount) > 0); 434 435 trace_xfs_trans_brelse(bip); 436 437 /* 438 * If the release is just for a recursive lock, 439 * then decrement the count and return. 440 */ 441 if (bip->bli_recur > 0) { 442 bip->bli_recur--; 443 return; 444 } 445 446 /* 447 * If the buffer is dirty within this transaction, we can't 448 * release it until we commit. 449 */ 450 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 451 return; 452 453 /* 454 * If the buffer has been invalidated, then we can't release 455 * it until the transaction commits to disk unless it is re-dirtied 456 * as part of this transaction. This prevents us from pulling 457 * the item from the AIL before we should. 458 */ 459 if (bip->bli_flags & XFS_BLI_STALE) 460 return; 461 462 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 463 464 /* 465 * Free up the log item descriptor tracking the released item. 466 */ 467 xfs_trans_del_item(&bip->bli_item); 468 469 /* 470 * Clear the hold flag in the buf log item if it is set. 471 * We wouldn't want the next user of the buffer to 472 * get confused. 473 */ 474 if (bip->bli_flags & XFS_BLI_HOLD) { 475 bip->bli_flags &= ~XFS_BLI_HOLD; 476 } 477 478 /* 479 * Drop our reference to the buf log item. 480 */ 481 atomic_dec(&bip->bli_refcount); 482 483 /* 484 * If the buf item is not tracking data in the log, then 485 * we must free it before releasing the buffer back to the 486 * free pool. Before releasing the buffer to the free pool, 487 * clear the transaction pointer in b_fsprivate2 to dissolve 488 * its relation to this transaction. 489 */ 490 if (!xfs_buf_item_dirty(bip)) { 491 /*** 492 ASSERT(bp->b_pincount == 0); 493 ***/ 494 ASSERT(atomic_read(&bip->bli_refcount) == 0); 495 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 496 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 497 xfs_buf_item_relse(bp); 498 } 499 500 bp->b_transp = NULL; 501 xfs_buf_relse(bp); 502 } 503 504 /* 505 * Mark the buffer as not needing to be unlocked when the buf item's 506 * iop_unlock() routine is called. The buffer must already be locked 507 * and associated with the given transaction. 508 */ 509 /* ARGSUSED */ 510 void 511 xfs_trans_bhold(xfs_trans_t *tp, 512 xfs_buf_t *bp) 513 { 514 xfs_buf_log_item_t *bip = bp->b_fspriv; 515 516 ASSERT(bp->b_transp == tp); 517 ASSERT(bip != NULL); 518 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 519 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 520 ASSERT(atomic_read(&bip->bli_refcount) > 0); 521 522 bip->bli_flags |= XFS_BLI_HOLD; 523 trace_xfs_trans_bhold(bip); 524 } 525 526 /* 527 * Cancel the previous buffer hold request made on this buffer 528 * for this transaction. 529 */ 530 void 531 xfs_trans_bhold_release(xfs_trans_t *tp, 532 xfs_buf_t *bp) 533 { 534 xfs_buf_log_item_t *bip = bp->b_fspriv; 535 536 ASSERT(bp->b_transp == tp); 537 ASSERT(bip != NULL); 538 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 539 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 540 ASSERT(atomic_read(&bip->bli_refcount) > 0); 541 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 542 543 bip->bli_flags &= ~XFS_BLI_HOLD; 544 trace_xfs_trans_bhold_release(bip); 545 } 546 547 /* 548 * This is called to mark bytes first through last inclusive of the given 549 * buffer as needing to be logged when the transaction is committed. 550 * The buffer must already be associated with the given transaction. 551 * 552 * First and last are numbers relative to the beginning of this buffer, 553 * so the first byte in the buffer is numbered 0 regardless of the 554 * value of b_blkno. 555 */ 556 void 557 xfs_trans_log_buf(xfs_trans_t *tp, 558 xfs_buf_t *bp, 559 uint first, 560 uint last) 561 { 562 xfs_buf_log_item_t *bip = bp->b_fspriv; 563 564 ASSERT(bp->b_transp == tp); 565 ASSERT(bip != NULL); 566 ASSERT(first <= last && last < BBTOB(bp->b_length)); 567 ASSERT(bp->b_iodone == NULL || 568 bp->b_iodone == xfs_buf_iodone_callbacks); 569 570 /* 571 * Mark the buffer as needing to be written out eventually, 572 * and set its iodone function to remove the buffer's buf log 573 * item from the AIL and free it when the buffer is flushed 574 * to disk. See xfs_buf_attach_iodone() for more details 575 * on li_cb and xfs_buf_iodone_callbacks(). 576 * If we end up aborting this transaction, we trap this buffer 577 * inside the b_bdstrat callback so that this won't get written to 578 * disk. 579 */ 580 XFS_BUF_DONE(bp); 581 582 ASSERT(atomic_read(&bip->bli_refcount) > 0); 583 bp->b_iodone = xfs_buf_iodone_callbacks; 584 bip->bli_item.li_cb = xfs_buf_iodone; 585 586 trace_xfs_trans_log_buf(bip); 587 588 /* 589 * If we invalidated the buffer within this transaction, then 590 * cancel the invalidation now that we're dirtying the buffer 591 * again. There are no races with the code in xfs_buf_item_unpin(), 592 * because we have a reference to the buffer this entire time. 593 */ 594 if (bip->bli_flags & XFS_BLI_STALE) { 595 bip->bli_flags &= ~XFS_BLI_STALE; 596 ASSERT(XFS_BUF_ISSTALE(bp)); 597 XFS_BUF_UNSTALE(bp); 598 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 599 } 600 601 tp->t_flags |= XFS_TRANS_DIRTY; 602 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 603 604 /* 605 * If we have an ordered buffer we are not logging any dirty range but 606 * it still needs to be marked dirty and that it has been logged. 607 */ 608 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 609 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 610 xfs_buf_item_log(bip, first, last); 611 } 612 613 614 /* 615 * Invalidate a buffer that is being used within a transaction. 616 * 617 * Typically this is because the blocks in the buffer are being freed, so we 618 * need to prevent it from being written out when we're done. Allowing it 619 * to be written again might overwrite data in the free blocks if they are 620 * reallocated to a file. 621 * 622 * We prevent the buffer from being written out by marking it stale. We can't 623 * get rid of the buf log item at this point because the buffer may still be 624 * pinned by another transaction. If that is the case, then we'll wait until 625 * the buffer is committed to disk for the last time (we can tell by the ref 626 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 627 * keep the buffer locked so that the buffer and buf log item are not reused. 628 * 629 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 630 * the buf item. This will be used at recovery time to determine that copies 631 * of the buffer in the log before this should not be replayed. 632 * 633 * We mark the item descriptor and the transaction dirty so that we'll hold 634 * the buffer until after the commit. 635 * 636 * Since we're invalidating the buffer, we also clear the state about which 637 * parts of the buffer have been logged. We also clear the flag indicating 638 * that this is an inode buffer since the data in the buffer will no longer 639 * be valid. 640 * 641 * We set the stale bit in the buffer as well since we're getting rid of it. 642 */ 643 void 644 xfs_trans_binval( 645 xfs_trans_t *tp, 646 xfs_buf_t *bp) 647 { 648 xfs_buf_log_item_t *bip = bp->b_fspriv; 649 int i; 650 651 ASSERT(bp->b_transp == tp); 652 ASSERT(bip != NULL); 653 ASSERT(atomic_read(&bip->bli_refcount) > 0); 654 655 trace_xfs_trans_binval(bip); 656 657 if (bip->bli_flags & XFS_BLI_STALE) { 658 /* 659 * If the buffer is already invalidated, then 660 * just return. 661 */ 662 ASSERT(XFS_BUF_ISSTALE(bp)); 663 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 664 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 665 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 666 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 667 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 668 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 669 return; 670 } 671 672 xfs_buf_stale(bp); 673 674 bip->bli_flags |= XFS_BLI_STALE; 675 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 676 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 677 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 678 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 679 for (i = 0; i < bip->bli_format_count; i++) { 680 memset(bip->bli_formats[i].blf_data_map, 0, 681 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 682 } 683 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 684 tp->t_flags |= XFS_TRANS_DIRTY; 685 } 686 687 /* 688 * This call is used to indicate that the buffer contains on-disk inodes which 689 * must be handled specially during recovery. They require special handling 690 * because only the di_next_unlinked from the inodes in the buffer should be 691 * recovered. The rest of the data in the buffer is logged via the inodes 692 * themselves. 693 * 694 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 695 * transferred to the buffer's log format structure so that we'll know what to 696 * do at recovery time. 697 */ 698 void 699 xfs_trans_inode_buf( 700 xfs_trans_t *tp, 701 xfs_buf_t *bp) 702 { 703 xfs_buf_log_item_t *bip = bp->b_fspriv; 704 705 ASSERT(bp->b_transp == tp); 706 ASSERT(bip != NULL); 707 ASSERT(atomic_read(&bip->bli_refcount) > 0); 708 709 bip->bli_flags |= XFS_BLI_INODE_BUF; 710 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 711 } 712 713 /* 714 * This call is used to indicate that the buffer is going to 715 * be staled and was an inode buffer. This means it gets 716 * special processing during unpin - where any inodes 717 * associated with the buffer should be removed from ail. 718 * There is also special processing during recovery, 719 * any replay of the inodes in the buffer needs to be 720 * prevented as the buffer may have been reused. 721 */ 722 void 723 xfs_trans_stale_inode_buf( 724 xfs_trans_t *tp, 725 xfs_buf_t *bp) 726 { 727 xfs_buf_log_item_t *bip = bp->b_fspriv; 728 729 ASSERT(bp->b_transp == tp); 730 ASSERT(bip != NULL); 731 ASSERT(atomic_read(&bip->bli_refcount) > 0); 732 733 bip->bli_flags |= XFS_BLI_STALE_INODE; 734 bip->bli_item.li_cb = xfs_buf_iodone; 735 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 736 } 737 738 /* 739 * Mark the buffer as being one which contains newly allocated 740 * inodes. We need to make sure that even if this buffer is 741 * relogged as an 'inode buf' we still recover all of the inode 742 * images in the face of a crash. This works in coordination with 743 * xfs_buf_item_committed() to ensure that the buffer remains in the 744 * AIL at its original location even after it has been relogged. 745 */ 746 /* ARGSUSED */ 747 void 748 xfs_trans_inode_alloc_buf( 749 xfs_trans_t *tp, 750 xfs_buf_t *bp) 751 { 752 xfs_buf_log_item_t *bip = bp->b_fspriv; 753 754 ASSERT(bp->b_transp == tp); 755 ASSERT(bip != NULL); 756 ASSERT(atomic_read(&bip->bli_refcount) > 0); 757 758 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 759 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 760 } 761 762 /* 763 * Mark the buffer as ordered for this transaction. This means 764 * that the contents of the buffer are not recorded in the transaction 765 * but it is tracked in the AIL as though it was. This allows us 766 * to record logical changes in transactions rather than the physical 767 * changes we make to the buffer without changing writeback ordering 768 * constraints of metadata buffers. 769 */ 770 void 771 xfs_trans_ordered_buf( 772 struct xfs_trans *tp, 773 struct xfs_buf *bp) 774 { 775 struct xfs_buf_log_item *bip = bp->b_fspriv; 776 777 ASSERT(bp->b_transp == tp); 778 ASSERT(bip != NULL); 779 ASSERT(atomic_read(&bip->bli_refcount) > 0); 780 781 bip->bli_flags |= XFS_BLI_ORDERED; 782 trace_xfs_buf_item_ordered(bip); 783 } 784 785 /* 786 * Set the type of the buffer for log recovery so that it can correctly identify 787 * and hence attach the correct buffer ops to the buffer after replay. 788 */ 789 void 790 xfs_trans_buf_set_type( 791 struct xfs_trans *tp, 792 struct xfs_buf *bp, 793 enum xfs_blft type) 794 { 795 struct xfs_buf_log_item *bip = bp->b_fspriv; 796 797 if (!tp) 798 return; 799 800 ASSERT(bp->b_transp == tp); 801 ASSERT(bip != NULL); 802 ASSERT(atomic_read(&bip->bli_refcount) > 0); 803 804 xfs_blft_to_flags(&bip->__bli_format, type); 805 } 806 807 void 808 xfs_trans_buf_copy_type( 809 struct xfs_buf *dst_bp, 810 struct xfs_buf *src_bp) 811 { 812 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 813 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 814 enum xfs_blft type; 815 816 type = xfs_blft_from_flags(&sbip->__bli_format); 817 xfs_blft_to_flags(&dbip->__bli_format, type); 818 } 819 820 /* 821 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 822 * dquots. However, unlike in inode buffer recovery, dquot buffers get 823 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 824 * The only thing that makes dquot buffers different from regular 825 * buffers is that we must not replay dquot bufs when recovering 826 * if a _corresponding_ quotaoff has happened. We also have to distinguish 827 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 828 * can be turned off independently. 829 */ 830 /* ARGSUSED */ 831 void 832 xfs_trans_dquot_buf( 833 xfs_trans_t *tp, 834 xfs_buf_t *bp, 835 uint type) 836 { 837 struct xfs_buf_log_item *bip = bp->b_fspriv; 838 839 ASSERT(type == XFS_BLF_UDQUOT_BUF || 840 type == XFS_BLF_PDQUOT_BUF || 841 type == XFS_BLF_GDQUOT_BUF); 842 843 bip->__bli_format.blf_flags |= type; 844 845 switch (type) { 846 case XFS_BLF_UDQUOT_BUF: 847 type = XFS_BLFT_UDQUOT_BUF; 848 break; 849 case XFS_BLF_PDQUOT_BUF: 850 type = XFS_BLFT_PDQUOT_BUF; 851 break; 852 case XFS_BLF_GDQUOT_BUF: 853 type = XFS_BLFT_GDQUOT_BUF; 854 break; 855 default: 856 type = XFS_BLFT_UNKNOWN_BUF; 857 break; 858 } 859 860 xfs_trans_buf_set_type(tp, bp, type); 861 } 862