1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_sb.h" 25 #include "xfs_ag.h" 26 #include "xfs_mount.h" 27 #include "xfs_inode.h" 28 #include "xfs_trans.h" 29 #include "xfs_buf_item.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_error.h" 32 #include "xfs_trace.h" 33 34 /* 35 * Check to see if a buffer matching the given parameters is already 36 * a part of the given transaction. 37 */ 38 STATIC struct xfs_buf * 39 xfs_trans_buf_item_match( 40 struct xfs_trans *tp, 41 struct xfs_buftarg *target, 42 struct xfs_buf_map *map, 43 int nmaps) 44 { 45 struct xfs_log_item_desc *lidp; 46 struct xfs_buf_log_item *blip; 47 int len = 0; 48 int i; 49 50 for (i = 0; i < nmaps; i++) 51 len += map[i].bm_len; 52 53 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 54 blip = (struct xfs_buf_log_item *)lidp->lid_item; 55 if (blip->bli_item.li_type == XFS_LI_BUF && 56 blip->bli_buf->b_target == target && 57 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 58 blip->bli_buf->b_length == len) { 59 ASSERT(blip->bli_buf->b_map_count == nmaps); 60 return blip->bli_buf; 61 } 62 } 63 64 return NULL; 65 } 66 67 /* 68 * Add the locked buffer to the transaction. 69 * 70 * The buffer must be locked, and it cannot be associated with any 71 * transaction. 72 * 73 * If the buffer does not yet have a buf log item associated with it, 74 * then allocate one for it. Then add the buf item to the transaction. 75 */ 76 STATIC void 77 _xfs_trans_bjoin( 78 struct xfs_trans *tp, 79 struct xfs_buf *bp, 80 int reset_recur) 81 { 82 struct xfs_buf_log_item *bip; 83 84 ASSERT(bp->b_transp == NULL); 85 86 /* 87 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 88 * it doesn't have one yet, then allocate one and initialize it. 89 * The checks to see if one is there are in xfs_buf_item_init(). 90 */ 91 xfs_buf_item_init(bp, tp->t_mountp); 92 bip = bp->b_fspriv; 93 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 94 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 95 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 96 if (reset_recur) 97 bip->bli_recur = 0; 98 99 /* 100 * Take a reference for this transaction on the buf item. 101 */ 102 atomic_inc(&bip->bli_refcount); 103 104 /* 105 * Get a log_item_desc to point at the new item. 106 */ 107 xfs_trans_add_item(tp, &bip->bli_item); 108 109 /* 110 * Initialize b_fsprivate2 so we can find it with incore_match() 111 * in xfs_trans_get_buf() and friends above. 112 */ 113 bp->b_transp = tp; 114 115 } 116 117 void 118 xfs_trans_bjoin( 119 struct xfs_trans *tp, 120 struct xfs_buf *bp) 121 { 122 _xfs_trans_bjoin(tp, bp, 0); 123 trace_xfs_trans_bjoin(bp->b_fspriv); 124 } 125 126 /* 127 * Get and lock the buffer for the caller if it is not already 128 * locked within the given transaction. If it is already locked 129 * within the transaction, just increment its lock recursion count 130 * and return a pointer to it. 131 * 132 * If the transaction pointer is NULL, make this just a normal 133 * get_buf() call. 134 */ 135 struct xfs_buf * 136 xfs_trans_get_buf_map( 137 struct xfs_trans *tp, 138 struct xfs_buftarg *target, 139 struct xfs_buf_map *map, 140 int nmaps, 141 xfs_buf_flags_t flags) 142 { 143 xfs_buf_t *bp; 144 xfs_buf_log_item_t *bip; 145 146 if (!tp) 147 return xfs_buf_get_map(target, map, nmaps, flags); 148 149 /* 150 * If we find the buffer in the cache with this transaction 151 * pointer in its b_fsprivate2 field, then we know we already 152 * have it locked. In this case we just increment the lock 153 * recursion count and return the buffer to the caller. 154 */ 155 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 156 if (bp != NULL) { 157 ASSERT(xfs_buf_islocked(bp)); 158 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 159 xfs_buf_stale(bp); 160 XFS_BUF_DONE(bp); 161 } 162 163 ASSERT(bp->b_transp == tp); 164 bip = bp->b_fspriv; 165 ASSERT(bip != NULL); 166 ASSERT(atomic_read(&bip->bli_refcount) > 0); 167 bip->bli_recur++; 168 trace_xfs_trans_get_buf_recur(bip); 169 return bp; 170 } 171 172 bp = xfs_buf_get_map(target, map, nmaps, flags); 173 if (bp == NULL) { 174 return NULL; 175 } 176 177 ASSERT(!bp->b_error); 178 179 _xfs_trans_bjoin(tp, bp, 1); 180 trace_xfs_trans_get_buf(bp->b_fspriv); 181 return bp; 182 } 183 184 /* 185 * Get and lock the superblock buffer of this file system for the 186 * given transaction. 187 * 188 * We don't need to use incore_match() here, because the superblock 189 * buffer is a private buffer which we keep a pointer to in the 190 * mount structure. 191 */ 192 xfs_buf_t * 193 xfs_trans_getsb(xfs_trans_t *tp, 194 struct xfs_mount *mp, 195 int flags) 196 { 197 xfs_buf_t *bp; 198 xfs_buf_log_item_t *bip; 199 200 /* 201 * Default to just trying to lock the superblock buffer 202 * if tp is NULL. 203 */ 204 if (tp == NULL) 205 return xfs_getsb(mp, flags); 206 207 /* 208 * If the superblock buffer already has this transaction 209 * pointer in its b_fsprivate2 field, then we know we already 210 * have it locked. In this case we just increment the lock 211 * recursion count and return the buffer to the caller. 212 */ 213 bp = mp->m_sb_bp; 214 if (bp->b_transp == tp) { 215 bip = bp->b_fspriv; 216 ASSERT(bip != NULL); 217 ASSERT(atomic_read(&bip->bli_refcount) > 0); 218 bip->bli_recur++; 219 trace_xfs_trans_getsb_recur(bip); 220 return bp; 221 } 222 223 bp = xfs_getsb(mp, flags); 224 if (bp == NULL) 225 return NULL; 226 227 _xfs_trans_bjoin(tp, bp, 1); 228 trace_xfs_trans_getsb(bp->b_fspriv); 229 return bp; 230 } 231 232 #ifdef DEBUG 233 xfs_buftarg_t *xfs_error_target; 234 int xfs_do_error; 235 int xfs_req_num; 236 int xfs_error_mod = 33; 237 #endif 238 239 /* 240 * Get and lock the buffer for the caller if it is not already 241 * locked within the given transaction. If it has not yet been 242 * read in, read it from disk. If it is already locked 243 * within the transaction and already read in, just increment its 244 * lock recursion count and return a pointer to it. 245 * 246 * If the transaction pointer is NULL, make this just a normal 247 * read_buf() call. 248 */ 249 int 250 xfs_trans_read_buf_map( 251 struct xfs_mount *mp, 252 struct xfs_trans *tp, 253 struct xfs_buftarg *target, 254 struct xfs_buf_map *map, 255 int nmaps, 256 xfs_buf_flags_t flags, 257 struct xfs_buf **bpp, 258 const struct xfs_buf_ops *ops) 259 { 260 xfs_buf_t *bp; 261 xfs_buf_log_item_t *bip; 262 int error; 263 264 *bpp = NULL; 265 if (!tp) { 266 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 267 if (!bp) 268 return (flags & XBF_TRYLOCK) ? 269 -EAGAIN : -ENOMEM; 270 271 if (bp->b_error) { 272 error = bp->b_error; 273 xfs_buf_ioerror_alert(bp, __func__); 274 XFS_BUF_UNDONE(bp); 275 xfs_buf_stale(bp); 276 xfs_buf_relse(bp); 277 278 /* bad CRC means corrupted metadata */ 279 if (error == -EFSBADCRC) 280 error = -EFSCORRUPTED; 281 return error; 282 } 283 #ifdef DEBUG 284 if (xfs_do_error) { 285 if (xfs_error_target == target) { 286 if (((xfs_req_num++) % xfs_error_mod) == 0) { 287 xfs_buf_relse(bp); 288 xfs_debug(mp, "Returning error!"); 289 return -EIO; 290 } 291 } 292 } 293 #endif 294 if (XFS_FORCED_SHUTDOWN(mp)) 295 goto shutdown_abort; 296 *bpp = bp; 297 return 0; 298 } 299 300 /* 301 * If we find the buffer in the cache with this transaction 302 * pointer in its b_fsprivate2 field, then we know we already 303 * have it locked. If it is already read in we just increment 304 * the lock recursion count and return the buffer to the caller. 305 * If the buffer is not yet read in, then we read it in, increment 306 * the lock recursion count, and return it to the caller. 307 */ 308 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 309 if (bp != NULL) { 310 ASSERT(xfs_buf_islocked(bp)); 311 ASSERT(bp->b_transp == tp); 312 ASSERT(bp->b_fspriv != NULL); 313 ASSERT(!bp->b_error); 314 if (!(XFS_BUF_ISDONE(bp))) { 315 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 316 ASSERT(!XFS_BUF_ISASYNC(bp)); 317 ASSERT(bp->b_iodone == NULL); 318 XFS_BUF_READ(bp); 319 bp->b_ops = ops; 320 321 error = xfs_buf_submit_wait(bp); 322 if (error) { 323 if (!XFS_FORCED_SHUTDOWN(mp)) 324 xfs_buf_ioerror_alert(bp, __func__); 325 xfs_buf_relse(bp); 326 /* 327 * We can gracefully recover from most read 328 * errors. Ones we can't are those that happen 329 * after the transaction's already dirty. 330 */ 331 if (tp->t_flags & XFS_TRANS_DIRTY) 332 xfs_force_shutdown(tp->t_mountp, 333 SHUTDOWN_META_IO_ERROR); 334 /* bad CRC means corrupted metadata */ 335 if (error == -EFSBADCRC) 336 error = -EFSCORRUPTED; 337 return error; 338 } 339 } 340 /* 341 * We never locked this buf ourselves, so we shouldn't 342 * brelse it either. Just get out. 343 */ 344 if (XFS_FORCED_SHUTDOWN(mp)) { 345 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 346 *bpp = NULL; 347 return -EIO; 348 } 349 350 351 bip = bp->b_fspriv; 352 bip->bli_recur++; 353 354 ASSERT(atomic_read(&bip->bli_refcount) > 0); 355 trace_xfs_trans_read_buf_recur(bip); 356 *bpp = bp; 357 return 0; 358 } 359 360 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 361 if (bp == NULL) { 362 *bpp = NULL; 363 return (flags & XBF_TRYLOCK) ? 364 0 : -ENOMEM; 365 } 366 if (bp->b_error) { 367 error = bp->b_error; 368 xfs_buf_stale(bp); 369 XFS_BUF_DONE(bp); 370 xfs_buf_ioerror_alert(bp, __func__); 371 if (tp->t_flags & XFS_TRANS_DIRTY) 372 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 373 xfs_buf_relse(bp); 374 375 /* bad CRC means corrupted metadata */ 376 if (error == -EFSBADCRC) 377 error = -EFSCORRUPTED; 378 return error; 379 } 380 #ifdef DEBUG 381 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 382 if (xfs_error_target == target) { 383 if (((xfs_req_num++) % xfs_error_mod) == 0) { 384 xfs_force_shutdown(tp->t_mountp, 385 SHUTDOWN_META_IO_ERROR); 386 xfs_buf_relse(bp); 387 xfs_debug(mp, "Returning trans error!"); 388 return -EIO; 389 } 390 } 391 } 392 #endif 393 if (XFS_FORCED_SHUTDOWN(mp)) 394 goto shutdown_abort; 395 396 _xfs_trans_bjoin(tp, bp, 1); 397 trace_xfs_trans_read_buf(bp->b_fspriv); 398 399 *bpp = bp; 400 return 0; 401 402 shutdown_abort: 403 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 404 xfs_buf_relse(bp); 405 *bpp = NULL; 406 return -EIO; 407 } 408 409 /* 410 * Release the buffer bp which was previously acquired with one of the 411 * xfs_trans_... buffer allocation routines if the buffer has not 412 * been modified within this transaction. If the buffer is modified 413 * within this transaction, do decrement the recursion count but do 414 * not release the buffer even if the count goes to 0. If the buffer is not 415 * modified within the transaction, decrement the recursion count and 416 * release the buffer if the recursion count goes to 0. 417 * 418 * If the buffer is to be released and it was not modified before 419 * this transaction began, then free the buf_log_item associated with it. 420 * 421 * If the transaction pointer is NULL, make this just a normal 422 * brelse() call. 423 */ 424 void 425 xfs_trans_brelse(xfs_trans_t *tp, 426 xfs_buf_t *bp) 427 { 428 xfs_buf_log_item_t *bip; 429 430 /* 431 * Default to a normal brelse() call if the tp is NULL. 432 */ 433 if (tp == NULL) { 434 ASSERT(bp->b_transp == NULL); 435 xfs_buf_relse(bp); 436 return; 437 } 438 439 ASSERT(bp->b_transp == tp); 440 bip = bp->b_fspriv; 441 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 442 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 443 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 444 ASSERT(atomic_read(&bip->bli_refcount) > 0); 445 446 trace_xfs_trans_brelse(bip); 447 448 /* 449 * If the release is just for a recursive lock, 450 * then decrement the count and return. 451 */ 452 if (bip->bli_recur > 0) { 453 bip->bli_recur--; 454 return; 455 } 456 457 /* 458 * If the buffer is dirty within this transaction, we can't 459 * release it until we commit. 460 */ 461 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 462 return; 463 464 /* 465 * If the buffer has been invalidated, then we can't release 466 * it until the transaction commits to disk unless it is re-dirtied 467 * as part of this transaction. This prevents us from pulling 468 * the item from the AIL before we should. 469 */ 470 if (bip->bli_flags & XFS_BLI_STALE) 471 return; 472 473 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 474 475 /* 476 * Free up the log item descriptor tracking the released item. 477 */ 478 xfs_trans_del_item(&bip->bli_item); 479 480 /* 481 * Clear the hold flag in the buf log item if it is set. 482 * We wouldn't want the next user of the buffer to 483 * get confused. 484 */ 485 if (bip->bli_flags & XFS_BLI_HOLD) { 486 bip->bli_flags &= ~XFS_BLI_HOLD; 487 } 488 489 /* 490 * Drop our reference to the buf log item. 491 */ 492 atomic_dec(&bip->bli_refcount); 493 494 /* 495 * If the buf item is not tracking data in the log, then 496 * we must free it before releasing the buffer back to the 497 * free pool. Before releasing the buffer to the free pool, 498 * clear the transaction pointer in b_fsprivate2 to dissolve 499 * its relation to this transaction. 500 */ 501 if (!xfs_buf_item_dirty(bip)) { 502 /*** 503 ASSERT(bp->b_pincount == 0); 504 ***/ 505 ASSERT(atomic_read(&bip->bli_refcount) == 0); 506 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 507 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 508 xfs_buf_item_relse(bp); 509 } 510 511 bp->b_transp = NULL; 512 xfs_buf_relse(bp); 513 } 514 515 /* 516 * Mark the buffer as not needing to be unlocked when the buf item's 517 * iop_unlock() routine is called. The buffer must already be locked 518 * and associated with the given transaction. 519 */ 520 /* ARGSUSED */ 521 void 522 xfs_trans_bhold(xfs_trans_t *tp, 523 xfs_buf_t *bp) 524 { 525 xfs_buf_log_item_t *bip = bp->b_fspriv; 526 527 ASSERT(bp->b_transp == tp); 528 ASSERT(bip != NULL); 529 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 530 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 531 ASSERT(atomic_read(&bip->bli_refcount) > 0); 532 533 bip->bli_flags |= XFS_BLI_HOLD; 534 trace_xfs_trans_bhold(bip); 535 } 536 537 /* 538 * Cancel the previous buffer hold request made on this buffer 539 * for this transaction. 540 */ 541 void 542 xfs_trans_bhold_release(xfs_trans_t *tp, 543 xfs_buf_t *bp) 544 { 545 xfs_buf_log_item_t *bip = bp->b_fspriv; 546 547 ASSERT(bp->b_transp == tp); 548 ASSERT(bip != NULL); 549 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 550 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 551 ASSERT(atomic_read(&bip->bli_refcount) > 0); 552 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 553 554 bip->bli_flags &= ~XFS_BLI_HOLD; 555 trace_xfs_trans_bhold_release(bip); 556 } 557 558 /* 559 * This is called to mark bytes first through last inclusive of the given 560 * buffer as needing to be logged when the transaction is committed. 561 * The buffer must already be associated with the given transaction. 562 * 563 * First and last are numbers relative to the beginning of this buffer, 564 * so the first byte in the buffer is numbered 0 regardless of the 565 * value of b_blkno. 566 */ 567 void 568 xfs_trans_log_buf(xfs_trans_t *tp, 569 xfs_buf_t *bp, 570 uint first, 571 uint last) 572 { 573 xfs_buf_log_item_t *bip = bp->b_fspriv; 574 575 ASSERT(bp->b_transp == tp); 576 ASSERT(bip != NULL); 577 ASSERT(first <= last && last < BBTOB(bp->b_length)); 578 ASSERT(bp->b_iodone == NULL || 579 bp->b_iodone == xfs_buf_iodone_callbacks); 580 581 /* 582 * Mark the buffer as needing to be written out eventually, 583 * and set its iodone function to remove the buffer's buf log 584 * item from the AIL and free it when the buffer is flushed 585 * to disk. See xfs_buf_attach_iodone() for more details 586 * on li_cb and xfs_buf_iodone_callbacks(). 587 * If we end up aborting this transaction, we trap this buffer 588 * inside the b_bdstrat callback so that this won't get written to 589 * disk. 590 */ 591 XFS_BUF_DONE(bp); 592 593 ASSERT(atomic_read(&bip->bli_refcount) > 0); 594 bp->b_iodone = xfs_buf_iodone_callbacks; 595 bip->bli_item.li_cb = xfs_buf_iodone; 596 597 trace_xfs_trans_log_buf(bip); 598 599 /* 600 * If we invalidated the buffer within this transaction, then 601 * cancel the invalidation now that we're dirtying the buffer 602 * again. There are no races with the code in xfs_buf_item_unpin(), 603 * because we have a reference to the buffer this entire time. 604 */ 605 if (bip->bli_flags & XFS_BLI_STALE) { 606 bip->bli_flags &= ~XFS_BLI_STALE; 607 ASSERT(XFS_BUF_ISSTALE(bp)); 608 XFS_BUF_UNSTALE(bp); 609 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 610 } 611 612 tp->t_flags |= XFS_TRANS_DIRTY; 613 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 614 615 /* 616 * If we have an ordered buffer we are not logging any dirty range but 617 * it still needs to be marked dirty and that it has been logged. 618 */ 619 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 620 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 621 xfs_buf_item_log(bip, first, last); 622 } 623 624 625 /* 626 * Invalidate a buffer that is being used within a transaction. 627 * 628 * Typically this is because the blocks in the buffer are being freed, so we 629 * need to prevent it from being written out when we're done. Allowing it 630 * to be written again might overwrite data in the free blocks if they are 631 * reallocated to a file. 632 * 633 * We prevent the buffer from being written out by marking it stale. We can't 634 * get rid of the buf log item at this point because the buffer may still be 635 * pinned by another transaction. If that is the case, then we'll wait until 636 * the buffer is committed to disk for the last time (we can tell by the ref 637 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 638 * keep the buffer locked so that the buffer and buf log item are not reused. 639 * 640 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 641 * the buf item. This will be used at recovery time to determine that copies 642 * of the buffer in the log before this should not be replayed. 643 * 644 * We mark the item descriptor and the transaction dirty so that we'll hold 645 * the buffer until after the commit. 646 * 647 * Since we're invalidating the buffer, we also clear the state about which 648 * parts of the buffer have been logged. We also clear the flag indicating 649 * that this is an inode buffer since the data in the buffer will no longer 650 * be valid. 651 * 652 * We set the stale bit in the buffer as well since we're getting rid of it. 653 */ 654 void 655 xfs_trans_binval( 656 xfs_trans_t *tp, 657 xfs_buf_t *bp) 658 { 659 xfs_buf_log_item_t *bip = bp->b_fspriv; 660 int i; 661 662 ASSERT(bp->b_transp == tp); 663 ASSERT(bip != NULL); 664 ASSERT(atomic_read(&bip->bli_refcount) > 0); 665 666 trace_xfs_trans_binval(bip); 667 668 if (bip->bli_flags & XFS_BLI_STALE) { 669 /* 670 * If the buffer is already invalidated, then 671 * just return. 672 */ 673 ASSERT(XFS_BUF_ISSTALE(bp)); 674 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 675 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 676 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 677 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 678 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 679 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 680 return; 681 } 682 683 xfs_buf_stale(bp); 684 685 bip->bli_flags |= XFS_BLI_STALE; 686 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 687 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 688 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 689 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 690 for (i = 0; i < bip->bli_format_count; i++) { 691 memset(bip->bli_formats[i].blf_data_map, 0, 692 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 693 } 694 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 695 tp->t_flags |= XFS_TRANS_DIRTY; 696 } 697 698 /* 699 * This call is used to indicate that the buffer contains on-disk inodes which 700 * must be handled specially during recovery. They require special handling 701 * because only the di_next_unlinked from the inodes in the buffer should be 702 * recovered. The rest of the data in the buffer is logged via the inodes 703 * themselves. 704 * 705 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 706 * transferred to the buffer's log format structure so that we'll know what to 707 * do at recovery time. 708 */ 709 void 710 xfs_trans_inode_buf( 711 xfs_trans_t *tp, 712 xfs_buf_t *bp) 713 { 714 xfs_buf_log_item_t *bip = bp->b_fspriv; 715 716 ASSERT(bp->b_transp == tp); 717 ASSERT(bip != NULL); 718 ASSERT(atomic_read(&bip->bli_refcount) > 0); 719 720 bip->bli_flags |= XFS_BLI_INODE_BUF; 721 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 722 } 723 724 /* 725 * This call is used to indicate that the buffer is going to 726 * be staled and was an inode buffer. This means it gets 727 * special processing during unpin - where any inodes 728 * associated with the buffer should be removed from ail. 729 * There is also special processing during recovery, 730 * any replay of the inodes in the buffer needs to be 731 * prevented as the buffer may have been reused. 732 */ 733 void 734 xfs_trans_stale_inode_buf( 735 xfs_trans_t *tp, 736 xfs_buf_t *bp) 737 { 738 xfs_buf_log_item_t *bip = bp->b_fspriv; 739 740 ASSERT(bp->b_transp == tp); 741 ASSERT(bip != NULL); 742 ASSERT(atomic_read(&bip->bli_refcount) > 0); 743 744 bip->bli_flags |= XFS_BLI_STALE_INODE; 745 bip->bli_item.li_cb = xfs_buf_iodone; 746 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 747 } 748 749 /* 750 * Mark the buffer as being one which contains newly allocated 751 * inodes. We need to make sure that even if this buffer is 752 * relogged as an 'inode buf' we still recover all of the inode 753 * images in the face of a crash. This works in coordination with 754 * xfs_buf_item_committed() to ensure that the buffer remains in the 755 * AIL at its original location even after it has been relogged. 756 */ 757 /* ARGSUSED */ 758 void 759 xfs_trans_inode_alloc_buf( 760 xfs_trans_t *tp, 761 xfs_buf_t *bp) 762 { 763 xfs_buf_log_item_t *bip = bp->b_fspriv; 764 765 ASSERT(bp->b_transp == tp); 766 ASSERT(bip != NULL); 767 ASSERT(atomic_read(&bip->bli_refcount) > 0); 768 769 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 770 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 771 } 772 773 /* 774 * Mark the buffer as ordered for this transaction. This means 775 * that the contents of the buffer are not recorded in the transaction 776 * but it is tracked in the AIL as though it was. This allows us 777 * to record logical changes in transactions rather than the physical 778 * changes we make to the buffer without changing writeback ordering 779 * constraints of metadata buffers. 780 */ 781 void 782 xfs_trans_ordered_buf( 783 struct xfs_trans *tp, 784 struct xfs_buf *bp) 785 { 786 struct xfs_buf_log_item *bip = bp->b_fspriv; 787 788 ASSERT(bp->b_transp == tp); 789 ASSERT(bip != NULL); 790 ASSERT(atomic_read(&bip->bli_refcount) > 0); 791 792 bip->bli_flags |= XFS_BLI_ORDERED; 793 trace_xfs_buf_item_ordered(bip); 794 } 795 796 /* 797 * Set the type of the buffer for log recovery so that it can correctly identify 798 * and hence attach the correct buffer ops to the buffer after replay. 799 */ 800 void 801 xfs_trans_buf_set_type( 802 struct xfs_trans *tp, 803 struct xfs_buf *bp, 804 enum xfs_blft type) 805 { 806 struct xfs_buf_log_item *bip = bp->b_fspriv; 807 808 if (!tp) 809 return; 810 811 ASSERT(bp->b_transp == tp); 812 ASSERT(bip != NULL); 813 ASSERT(atomic_read(&bip->bli_refcount) > 0); 814 815 xfs_blft_to_flags(&bip->__bli_format, type); 816 } 817 818 void 819 xfs_trans_buf_copy_type( 820 struct xfs_buf *dst_bp, 821 struct xfs_buf *src_bp) 822 { 823 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 824 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 825 enum xfs_blft type; 826 827 type = xfs_blft_from_flags(&sbip->__bli_format); 828 xfs_blft_to_flags(&dbip->__bli_format, type); 829 } 830 831 /* 832 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 833 * dquots. However, unlike in inode buffer recovery, dquot buffers get 834 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 835 * The only thing that makes dquot buffers different from regular 836 * buffers is that we must not replay dquot bufs when recovering 837 * if a _corresponding_ quotaoff has happened. We also have to distinguish 838 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 839 * can be turned off independently. 840 */ 841 /* ARGSUSED */ 842 void 843 xfs_trans_dquot_buf( 844 xfs_trans_t *tp, 845 xfs_buf_t *bp, 846 uint type) 847 { 848 struct xfs_buf_log_item *bip = bp->b_fspriv; 849 850 ASSERT(type == XFS_BLF_UDQUOT_BUF || 851 type == XFS_BLF_PDQUOT_BUF || 852 type == XFS_BLF_GDQUOT_BUF); 853 854 bip->__bli_format.blf_flags |= type; 855 856 switch (type) { 857 case XFS_BLF_UDQUOT_BUF: 858 type = XFS_BLFT_UDQUOT_BUF; 859 break; 860 case XFS_BLF_PDQUOT_BUF: 861 type = XFS_BLFT_PDQUOT_BUF; 862 break; 863 case XFS_BLF_GDQUOT_BUF: 864 type = XFS_BLFT_GDQUOT_BUF; 865 break; 866 default: 867 type = XFS_BLFT_UNKNOWN_BUF; 868 break; 869 } 870 871 xfs_trans_buf_set_type(tp, bp, type); 872 } 873