1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_buf_item.h" 38 #include "xfs_trans_priv.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 42 43 STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, 44 xfs_daddr_t, int); 45 STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, 46 xfs_daddr_t, int); 47 48 49 /* 50 * Get and lock the buffer for the caller if it is not already 51 * locked within the given transaction. If it is already locked 52 * within the transaction, just increment its lock recursion count 53 * and return a pointer to it. 54 * 55 * Use the fast path function xfs_trans_buf_item_match() or the buffer 56 * cache routine incore_match() to find the buffer 57 * if it is already owned by this transaction. 58 * 59 * If we don't already own the buffer, use get_buf() to get it. 60 * If it doesn't yet have an associated xfs_buf_log_item structure, 61 * then allocate one and add the item to this transaction. 62 * 63 * If the transaction pointer is NULL, make this just a normal 64 * get_buf() call. 65 */ 66 xfs_buf_t * 67 xfs_trans_get_buf(xfs_trans_t *tp, 68 xfs_buftarg_t *target_dev, 69 xfs_daddr_t blkno, 70 int len, 71 uint flags) 72 { 73 xfs_buf_t *bp; 74 xfs_buf_log_item_t *bip; 75 76 if (flags == 0) 77 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; 78 79 /* 80 * Default to a normal get_buf() call if the tp is NULL. 81 */ 82 if (tp == NULL) { 83 bp = xfs_buf_get_flags(target_dev, blkno, len, 84 flags | BUF_BUSY); 85 return(bp); 86 } 87 88 /* 89 * If we find the buffer in the cache with this transaction 90 * pointer in its b_fsprivate2 field, then we know we already 91 * have it locked. In this case we just increment the lock 92 * recursion count and return the buffer to the caller. 93 */ 94 if (tp->t_items.lic_next == NULL) { 95 bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); 96 } else { 97 bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); 98 } 99 if (bp != NULL) { 100 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 101 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 102 xfs_buftrace("TRANS GET RECUR SHUT", bp); 103 XFS_BUF_SUPER_STALE(bp); 104 } 105 /* 106 * If the buffer is stale then it was binval'ed 107 * since last read. This doesn't matter since the 108 * caller isn't allowed to use the data anyway. 109 */ 110 else if (XFS_BUF_ISSTALE(bp)) { 111 xfs_buftrace("TRANS GET RECUR STALE", bp); 112 ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); 113 } 114 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 115 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 116 ASSERT(bip != NULL); 117 ASSERT(atomic_read(&bip->bli_refcount) > 0); 118 bip->bli_recur++; 119 xfs_buftrace("TRANS GET RECUR", bp); 120 xfs_buf_item_trace("GET RECUR", bip); 121 return (bp); 122 } 123 124 /* 125 * We always specify the BUF_BUSY flag within a transaction so 126 * that get_buf does not try to push out a delayed write buffer 127 * which might cause another transaction to take place (if the 128 * buffer was delayed alloc). Such recursive transactions can 129 * easily deadlock with our current transaction as well as cause 130 * us to run out of stack space. 131 */ 132 bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); 133 if (bp == NULL) { 134 return NULL; 135 } 136 137 ASSERT(!XFS_BUF_GETERROR(bp)); 138 139 /* 140 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 141 * it doesn't have one yet, then allocate one and initialize it. 142 * The checks to see if one is there are in xfs_buf_item_init(). 143 */ 144 xfs_buf_item_init(bp, tp->t_mountp); 145 146 /* 147 * Set the recursion count for the buffer within this transaction 148 * to 0. 149 */ 150 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 151 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 152 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 153 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 154 bip->bli_recur = 0; 155 156 /* 157 * Take a reference for this transaction on the buf item. 158 */ 159 atomic_inc(&bip->bli_refcount); 160 161 /* 162 * Get a log_item_desc to point at the new item. 163 */ 164 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 165 166 /* 167 * Initialize b_fsprivate2 so we can find it with incore_match() 168 * above. 169 */ 170 XFS_BUF_SET_FSPRIVATE2(bp, tp); 171 172 xfs_buftrace("TRANS GET", bp); 173 xfs_buf_item_trace("GET", bip); 174 return (bp); 175 } 176 177 /* 178 * Get and lock the superblock buffer of this file system for the 179 * given transaction. 180 * 181 * We don't need to use incore_match() here, because the superblock 182 * buffer is a private buffer which we keep a pointer to in the 183 * mount structure. 184 */ 185 xfs_buf_t * 186 xfs_trans_getsb(xfs_trans_t *tp, 187 struct xfs_mount *mp, 188 int flags) 189 { 190 xfs_buf_t *bp; 191 xfs_buf_log_item_t *bip; 192 193 /* 194 * Default to just trying to lock the superblock buffer 195 * if tp is NULL. 196 */ 197 if (tp == NULL) { 198 return (xfs_getsb(mp, flags)); 199 } 200 201 /* 202 * If the superblock buffer already has this transaction 203 * pointer in its b_fsprivate2 field, then we know we already 204 * have it locked. In this case we just increment the lock 205 * recursion count and return the buffer to the caller. 206 */ 207 bp = mp->m_sb_bp; 208 if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { 209 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 210 ASSERT(bip != NULL); 211 ASSERT(atomic_read(&bip->bli_refcount) > 0); 212 bip->bli_recur++; 213 xfs_buf_item_trace("GETSB RECUR", bip); 214 return (bp); 215 } 216 217 bp = xfs_getsb(mp, flags); 218 if (bp == NULL) { 219 return NULL; 220 } 221 222 /* 223 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 224 * it doesn't have one yet, then allocate one and initialize it. 225 * The checks to see if one is there are in xfs_buf_item_init(). 226 */ 227 xfs_buf_item_init(bp, mp); 228 229 /* 230 * Set the recursion count for the buffer within this transaction 231 * to 0. 232 */ 233 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 234 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 235 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 236 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 237 bip->bli_recur = 0; 238 239 /* 240 * Take a reference for this transaction on the buf item. 241 */ 242 atomic_inc(&bip->bli_refcount); 243 244 /* 245 * Get a log_item_desc to point at the new item. 246 */ 247 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 248 249 /* 250 * Initialize b_fsprivate2 so we can find it with incore_match() 251 * above. 252 */ 253 XFS_BUF_SET_FSPRIVATE2(bp, tp); 254 255 xfs_buf_item_trace("GETSB", bip); 256 return (bp); 257 } 258 259 #ifdef DEBUG 260 xfs_buftarg_t *xfs_error_target; 261 int xfs_do_error; 262 int xfs_req_num; 263 int xfs_error_mod = 33; 264 #endif 265 266 /* 267 * Get and lock the buffer for the caller if it is not already 268 * locked within the given transaction. If it has not yet been 269 * read in, read it from disk. If it is already locked 270 * within the transaction and already read in, just increment its 271 * lock recursion count and return a pointer to it. 272 * 273 * Use the fast path function xfs_trans_buf_item_match() or the buffer 274 * cache routine incore_match() to find the buffer 275 * if it is already owned by this transaction. 276 * 277 * If we don't already own the buffer, use read_buf() to get it. 278 * If it doesn't yet have an associated xfs_buf_log_item structure, 279 * then allocate one and add the item to this transaction. 280 * 281 * If the transaction pointer is NULL, make this just a normal 282 * read_buf() call. 283 */ 284 int 285 xfs_trans_read_buf( 286 xfs_mount_t *mp, 287 xfs_trans_t *tp, 288 xfs_buftarg_t *target, 289 xfs_daddr_t blkno, 290 int len, 291 uint flags, 292 xfs_buf_t **bpp) 293 { 294 xfs_buf_t *bp; 295 xfs_buf_log_item_t *bip; 296 int error; 297 298 if (flags == 0) 299 flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; 300 301 /* 302 * Default to a normal get_buf() call if the tp is NULL. 303 */ 304 if (tp == NULL) { 305 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); 306 if (!bp) 307 return XFS_ERROR(ENOMEM); 308 309 if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { 310 xfs_ioerror_alert("xfs_trans_read_buf", mp, 311 bp, blkno); 312 error = XFS_BUF_GETERROR(bp); 313 xfs_buf_relse(bp); 314 return error; 315 } 316 #ifdef DEBUG 317 if (xfs_do_error && (bp != NULL)) { 318 if (xfs_error_target == target) { 319 if (((xfs_req_num++) % xfs_error_mod) == 0) { 320 xfs_buf_relse(bp); 321 cmn_err(CE_DEBUG, "Returning error!\n"); 322 return XFS_ERROR(EIO); 323 } 324 } 325 } 326 #endif 327 if (XFS_FORCED_SHUTDOWN(mp)) 328 goto shutdown_abort; 329 *bpp = bp; 330 return 0; 331 } 332 333 /* 334 * If we find the buffer in the cache with this transaction 335 * pointer in its b_fsprivate2 field, then we know we already 336 * have it locked. If it is already read in we just increment 337 * the lock recursion count and return the buffer to the caller. 338 * If the buffer is not yet read in, then we read it in, increment 339 * the lock recursion count, and return it to the caller. 340 */ 341 if (tp->t_items.lic_next == NULL) { 342 bp = xfs_trans_buf_item_match(tp, target, blkno, len); 343 } else { 344 bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); 345 } 346 if (bp != NULL) { 347 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 348 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 349 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 350 ASSERT((XFS_BUF_ISERROR(bp)) == 0); 351 if (!(XFS_BUF_ISDONE(bp))) { 352 xfs_buftrace("READ_BUF_INCORE !DONE", bp); 353 ASSERT(!XFS_BUF_ISASYNC(bp)); 354 XFS_BUF_READ(bp); 355 xfsbdstrat(tp->t_mountp, bp); 356 xfs_iowait(bp); 357 if (XFS_BUF_GETERROR(bp) != 0) { 358 xfs_ioerror_alert("xfs_trans_read_buf", mp, 359 bp, blkno); 360 error = XFS_BUF_GETERROR(bp); 361 xfs_buf_relse(bp); 362 /* 363 * We can gracefully recover from most 364 * read errors. Ones we can't are those 365 * that happen after the transaction's 366 * already dirty. 367 */ 368 if (tp->t_flags & XFS_TRANS_DIRTY) 369 xfs_force_shutdown(tp->t_mountp, 370 SHUTDOWN_META_IO_ERROR); 371 return error; 372 } 373 } 374 /* 375 * We never locked this buf ourselves, so we shouldn't 376 * brelse it either. Just get out. 377 */ 378 if (XFS_FORCED_SHUTDOWN(mp)) { 379 xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); 380 *bpp = NULL; 381 return XFS_ERROR(EIO); 382 } 383 384 385 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 386 bip->bli_recur++; 387 388 ASSERT(atomic_read(&bip->bli_refcount) > 0); 389 xfs_buf_item_trace("READ RECUR", bip); 390 *bpp = bp; 391 return 0; 392 } 393 394 /* 395 * We always specify the BUF_BUSY flag within a transaction so 396 * that get_buf does not try to push out a delayed write buffer 397 * which might cause another transaction to take place (if the 398 * buffer was delayed alloc). Such recursive transactions can 399 * easily deadlock with our current transaction as well as cause 400 * us to run out of stack space. 401 */ 402 bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); 403 if (bp == NULL) { 404 *bpp = NULL; 405 return 0; 406 } 407 if (XFS_BUF_GETERROR(bp) != 0) { 408 XFS_BUF_SUPER_STALE(bp); 409 xfs_buftrace("READ ERROR", bp); 410 error = XFS_BUF_GETERROR(bp); 411 412 xfs_ioerror_alert("xfs_trans_read_buf", mp, 413 bp, blkno); 414 if (tp->t_flags & XFS_TRANS_DIRTY) 415 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 416 xfs_buf_relse(bp); 417 return error; 418 } 419 #ifdef DEBUG 420 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 421 if (xfs_error_target == target) { 422 if (((xfs_req_num++) % xfs_error_mod) == 0) { 423 xfs_force_shutdown(tp->t_mountp, 424 SHUTDOWN_META_IO_ERROR); 425 xfs_buf_relse(bp); 426 cmn_err(CE_DEBUG, "Returning trans error!\n"); 427 return XFS_ERROR(EIO); 428 } 429 } 430 } 431 #endif 432 if (XFS_FORCED_SHUTDOWN(mp)) 433 goto shutdown_abort; 434 435 /* 436 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 437 * it doesn't have one yet, then allocate one and initialize it. 438 * The checks to see if one is there are in xfs_buf_item_init(). 439 */ 440 xfs_buf_item_init(bp, tp->t_mountp); 441 442 /* 443 * Set the recursion count for the buffer within this transaction 444 * to 0. 445 */ 446 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); 447 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 448 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 449 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 450 bip->bli_recur = 0; 451 452 /* 453 * Take a reference for this transaction on the buf item. 454 */ 455 atomic_inc(&bip->bli_refcount); 456 457 /* 458 * Get a log_item_desc to point at the new item. 459 */ 460 (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); 461 462 /* 463 * Initialize b_fsprivate2 so we can find it with incore_match() 464 * above. 465 */ 466 XFS_BUF_SET_FSPRIVATE2(bp, tp); 467 468 xfs_buftrace("TRANS READ", bp); 469 xfs_buf_item_trace("READ", bip); 470 *bpp = bp; 471 return 0; 472 473 shutdown_abort: 474 /* 475 * the theory here is that buffer is good but we're 476 * bailing out because the filesystem is being forcibly 477 * shut down. So we should leave the b_flags alone since 478 * the buffer's not staled and just get out. 479 */ 480 #if defined(DEBUG) 481 if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) 482 cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); 483 #endif 484 ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != 485 (XFS_B_STALE|XFS_B_DELWRI)); 486 487 xfs_buftrace("READ_BUF XFSSHUTDN", bp); 488 xfs_buf_relse(bp); 489 *bpp = NULL; 490 return XFS_ERROR(EIO); 491 } 492 493 494 /* 495 * Release the buffer bp which was previously acquired with one of the 496 * xfs_trans_... buffer allocation routines if the buffer has not 497 * been modified within this transaction. If the buffer is modified 498 * within this transaction, do decrement the recursion count but do 499 * not release the buffer even if the count goes to 0. If the buffer is not 500 * modified within the transaction, decrement the recursion count and 501 * release the buffer if the recursion count goes to 0. 502 * 503 * If the buffer is to be released and it was not modified before 504 * this transaction began, then free the buf_log_item associated with it. 505 * 506 * If the transaction pointer is NULL, make this just a normal 507 * brelse() call. 508 */ 509 void 510 xfs_trans_brelse(xfs_trans_t *tp, 511 xfs_buf_t *bp) 512 { 513 xfs_buf_log_item_t *bip; 514 xfs_log_item_t *lip; 515 xfs_log_item_desc_t *lidp; 516 517 /* 518 * Default to a normal brelse() call if the tp is NULL. 519 */ 520 if (tp == NULL) { 521 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); 522 /* 523 * If there's a buf log item attached to the buffer, 524 * then let the AIL know that the buffer is being 525 * unlocked. 526 */ 527 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { 528 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); 529 if (lip->li_type == XFS_LI_BUF) { 530 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); 531 xfs_trans_unlocked_item( 532 bip->bli_item.li_mountp, 533 lip); 534 } 535 } 536 xfs_buf_relse(bp); 537 return; 538 } 539 540 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 541 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 542 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 543 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 544 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 545 ASSERT(atomic_read(&bip->bli_refcount) > 0); 546 547 /* 548 * Find the item descriptor pointing to this buffer's 549 * log item. It must be there. 550 */ 551 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 552 ASSERT(lidp != NULL); 553 554 /* 555 * If the release is just for a recursive lock, 556 * then decrement the count and return. 557 */ 558 if (bip->bli_recur > 0) { 559 bip->bli_recur--; 560 xfs_buf_item_trace("RELSE RECUR", bip); 561 return; 562 } 563 564 /* 565 * If the buffer is dirty within this transaction, we can't 566 * release it until we commit. 567 */ 568 if (lidp->lid_flags & XFS_LID_DIRTY) { 569 xfs_buf_item_trace("RELSE DIRTY", bip); 570 return; 571 } 572 573 /* 574 * If the buffer has been invalidated, then we can't release 575 * it until the transaction commits to disk unless it is re-dirtied 576 * as part of this transaction. This prevents us from pulling 577 * the item from the AIL before we should. 578 */ 579 if (bip->bli_flags & XFS_BLI_STALE) { 580 xfs_buf_item_trace("RELSE STALE", bip); 581 return; 582 } 583 584 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 585 xfs_buf_item_trace("RELSE", bip); 586 587 /* 588 * Free up the log item descriptor tracking the released item. 589 */ 590 xfs_trans_free_item(tp, lidp); 591 592 /* 593 * Clear the hold flag in the buf log item if it is set. 594 * We wouldn't want the next user of the buffer to 595 * get confused. 596 */ 597 if (bip->bli_flags & XFS_BLI_HOLD) { 598 bip->bli_flags &= ~XFS_BLI_HOLD; 599 } 600 601 /* 602 * Drop our reference to the buf log item. 603 */ 604 atomic_dec(&bip->bli_refcount); 605 606 /* 607 * If the buf item is not tracking data in the log, then 608 * we must free it before releasing the buffer back to the 609 * free pool. Before releasing the buffer to the free pool, 610 * clear the transaction pointer in b_fsprivate2 to dissolve 611 * its relation to this transaction. 612 */ 613 if (!xfs_buf_item_dirty(bip)) { 614 /*** 615 ASSERT(bp->b_pincount == 0); 616 ***/ 617 ASSERT(atomic_read(&bip->bli_refcount) == 0); 618 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 619 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 620 xfs_buf_item_relse(bp); 621 bip = NULL; 622 } 623 XFS_BUF_SET_FSPRIVATE2(bp, NULL); 624 625 /* 626 * If we've still got a buf log item on the buffer, then 627 * tell the AIL that the buffer is being unlocked. 628 */ 629 if (bip != NULL) { 630 xfs_trans_unlocked_item(bip->bli_item.li_mountp, 631 (xfs_log_item_t*)bip); 632 } 633 634 xfs_buf_relse(bp); 635 return; 636 } 637 638 /* 639 * Add the locked buffer to the transaction. 640 * The buffer must be locked, and it cannot be associated with any 641 * transaction. 642 * 643 * If the buffer does not yet have a buf log item associated with it, 644 * then allocate one for it. Then add the buf item to the transaction. 645 */ 646 void 647 xfs_trans_bjoin(xfs_trans_t *tp, 648 xfs_buf_t *bp) 649 { 650 xfs_buf_log_item_t *bip; 651 652 ASSERT(XFS_BUF_ISBUSY(bp)); 653 ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); 654 655 /* 656 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 657 * it doesn't have one yet, then allocate one and initialize it. 658 * The checks to see if one is there are in xfs_buf_item_init(). 659 */ 660 xfs_buf_item_init(bp, tp->t_mountp); 661 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 662 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 663 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 664 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 665 666 /* 667 * Take a reference for this transaction on the buf item. 668 */ 669 atomic_inc(&bip->bli_refcount); 670 671 /* 672 * Get a log_item_desc to point at the new item. 673 */ 674 (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); 675 676 /* 677 * Initialize b_fsprivate2 so we can find it with incore_match() 678 * in xfs_trans_get_buf() and friends above. 679 */ 680 XFS_BUF_SET_FSPRIVATE2(bp, tp); 681 682 xfs_buf_item_trace("BJOIN", bip); 683 } 684 685 /* 686 * Mark the buffer as not needing to be unlocked when the buf item's 687 * IOP_UNLOCK() routine is called. The buffer must already be locked 688 * and associated with the given transaction. 689 */ 690 /* ARGSUSED */ 691 void 692 xfs_trans_bhold(xfs_trans_t *tp, 693 xfs_buf_t *bp) 694 { 695 xfs_buf_log_item_t *bip; 696 697 ASSERT(XFS_BUF_ISBUSY(bp)); 698 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 699 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 700 701 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 702 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 703 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 704 ASSERT(atomic_read(&bip->bli_refcount) > 0); 705 bip->bli_flags |= XFS_BLI_HOLD; 706 xfs_buf_item_trace("BHOLD", bip); 707 } 708 709 /* 710 * Cancel the previous buffer hold request made on this buffer 711 * for this transaction. 712 */ 713 void 714 xfs_trans_bhold_release(xfs_trans_t *tp, 715 xfs_buf_t *bp) 716 { 717 xfs_buf_log_item_t *bip; 718 719 ASSERT(XFS_BUF_ISBUSY(bp)); 720 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 721 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 722 723 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 724 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 725 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); 726 ASSERT(atomic_read(&bip->bli_refcount) > 0); 727 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 728 bip->bli_flags &= ~XFS_BLI_HOLD; 729 xfs_buf_item_trace("BHOLD RELEASE", bip); 730 } 731 732 /* 733 * This is called to mark bytes first through last inclusive of the given 734 * buffer as needing to be logged when the transaction is committed. 735 * The buffer must already be associated with the given transaction. 736 * 737 * First and last are numbers relative to the beginning of this buffer, 738 * so the first byte in the buffer is numbered 0 regardless of the 739 * value of b_blkno. 740 */ 741 void 742 xfs_trans_log_buf(xfs_trans_t *tp, 743 xfs_buf_t *bp, 744 uint first, 745 uint last) 746 { 747 xfs_buf_log_item_t *bip; 748 xfs_log_item_desc_t *lidp; 749 750 ASSERT(XFS_BUF_ISBUSY(bp)); 751 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 752 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 753 ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); 754 ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || 755 (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); 756 757 /* 758 * Mark the buffer as needing to be written out eventually, 759 * and set its iodone function to remove the buffer's buf log 760 * item from the AIL and free it when the buffer is flushed 761 * to disk. See xfs_buf_attach_iodone() for more details 762 * on li_cb and xfs_buf_iodone_callbacks(). 763 * If we end up aborting this transaction, we trap this buffer 764 * inside the b_bdstrat callback so that this won't get written to 765 * disk. 766 */ 767 XFS_BUF_DELAYWRITE(bp); 768 XFS_BUF_DONE(bp); 769 770 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 771 ASSERT(atomic_read(&bip->bli_refcount) > 0); 772 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); 773 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; 774 775 /* 776 * If we invalidated the buffer within this transaction, then 777 * cancel the invalidation now that we're dirtying the buffer 778 * again. There are no races with the code in xfs_buf_item_unpin(), 779 * because we have a reference to the buffer this entire time. 780 */ 781 if (bip->bli_flags & XFS_BLI_STALE) { 782 xfs_buf_item_trace("BLOG UNSTALE", bip); 783 bip->bli_flags &= ~XFS_BLI_STALE; 784 ASSERT(XFS_BUF_ISSTALE(bp)); 785 XFS_BUF_UNSTALE(bp); 786 bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; 787 } 788 789 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 790 ASSERT(lidp != NULL); 791 792 tp->t_flags |= XFS_TRANS_DIRTY; 793 lidp->lid_flags |= XFS_LID_DIRTY; 794 lidp->lid_flags &= ~XFS_LID_BUF_STALE; 795 bip->bli_flags |= XFS_BLI_LOGGED; 796 xfs_buf_item_log(bip, first, last); 797 xfs_buf_item_trace("BLOG", bip); 798 } 799 800 801 /* 802 * This called to invalidate a buffer that is being used within 803 * a transaction. Typically this is because the blocks in the 804 * buffer are being freed, so we need to prevent it from being 805 * written out when we're done. Allowing it to be written again 806 * might overwrite data in the free blocks if they are reallocated 807 * to a file. 808 * 809 * We prevent the buffer from being written out by clearing the 810 * B_DELWRI flag. We can't always 811 * get rid of the buf log item at this point, though, because 812 * the buffer may still be pinned by another transaction. If that 813 * is the case, then we'll wait until the buffer is committed to 814 * disk for the last time (we can tell by the ref count) and 815 * free it in xfs_buf_item_unpin(). Until it is cleaned up we 816 * will keep the buffer locked so that the buffer and buf log item 817 * are not reused. 818 */ 819 void 820 xfs_trans_binval( 821 xfs_trans_t *tp, 822 xfs_buf_t *bp) 823 { 824 xfs_log_item_desc_t *lidp; 825 xfs_buf_log_item_t *bip; 826 827 ASSERT(XFS_BUF_ISBUSY(bp)); 828 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 829 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 830 831 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 832 lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); 833 ASSERT(lidp != NULL); 834 ASSERT(atomic_read(&bip->bli_refcount) > 0); 835 836 if (bip->bli_flags & XFS_BLI_STALE) { 837 /* 838 * If the buffer is already invalidated, then 839 * just return. 840 */ 841 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 842 ASSERT(XFS_BUF_ISSTALE(bp)); 843 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 844 ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); 845 ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); 846 ASSERT(lidp->lid_flags & XFS_LID_DIRTY); 847 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 848 xfs_buftrace("XFS_BINVAL RECUR", bp); 849 xfs_buf_item_trace("BINVAL RECUR", bip); 850 return; 851 } 852 853 /* 854 * Clear the dirty bit in the buffer and set the STALE flag 855 * in the buf log item. The STALE flag will be used in 856 * xfs_buf_item_unpin() to determine if it should clean up 857 * when the last reference to the buf item is given up. 858 * We set the XFS_BLI_CANCEL flag in the buf log format structure 859 * and log the buf item. This will be used at recovery time 860 * to determine that copies of the buffer in the log before 861 * this should not be replayed. 862 * We mark the item descriptor and the transaction dirty so 863 * that we'll hold the buffer until after the commit. 864 * 865 * Since we're invalidating the buffer, we also clear the state 866 * about which parts of the buffer have been logged. We also 867 * clear the flag indicating that this is an inode buffer since 868 * the data in the buffer will no longer be valid. 869 * 870 * We set the stale bit in the buffer as well since we're getting 871 * rid of it. 872 */ 873 XFS_BUF_UNDELAYWRITE(bp); 874 XFS_BUF_STALE(bp); 875 bip->bli_flags |= XFS_BLI_STALE; 876 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); 877 bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; 878 bip->bli_format.blf_flags |= XFS_BLI_CANCEL; 879 memset((char *)(bip->bli_format.blf_data_map), 0, 880 (bip->bli_format.blf_map_size * sizeof(uint))); 881 lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; 882 tp->t_flags |= XFS_TRANS_DIRTY; 883 xfs_buftrace("XFS_BINVAL", bp); 884 xfs_buf_item_trace("BINVAL", bip); 885 } 886 887 /* 888 * This call is used to indicate that the buffer contains on-disk 889 * inodes which must be handled specially during recovery. They 890 * require special handling because only the di_next_unlinked from 891 * the inodes in the buffer should be recovered. The rest of the 892 * data in the buffer is logged via the inodes themselves. 893 * 894 * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log 895 * format structure so that we'll know what to do at recovery time. 896 */ 897 /* ARGSUSED */ 898 void 899 xfs_trans_inode_buf( 900 xfs_trans_t *tp, 901 xfs_buf_t *bp) 902 { 903 xfs_buf_log_item_t *bip; 904 905 ASSERT(XFS_BUF_ISBUSY(bp)); 906 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 907 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 908 909 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 910 ASSERT(atomic_read(&bip->bli_refcount) > 0); 911 912 bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; 913 } 914 915 /* 916 * This call is used to indicate that the buffer is going to 917 * be staled and was an inode buffer. This means it gets 918 * special processing during unpin - where any inodes 919 * associated with the buffer should be removed from ail. 920 * There is also special processing during recovery, 921 * any replay of the inodes in the buffer needs to be 922 * prevented as the buffer may have been reused. 923 */ 924 void 925 xfs_trans_stale_inode_buf( 926 xfs_trans_t *tp, 927 xfs_buf_t *bp) 928 { 929 xfs_buf_log_item_t *bip; 930 931 ASSERT(XFS_BUF_ISBUSY(bp)); 932 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 933 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 934 935 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 936 ASSERT(atomic_read(&bip->bli_refcount) > 0); 937 938 bip->bli_flags |= XFS_BLI_STALE_INODE; 939 bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) 940 xfs_buf_iodone; 941 } 942 943 944 945 /* 946 * Mark the buffer as being one which contains newly allocated 947 * inodes. We need to make sure that even if this buffer is 948 * relogged as an 'inode buf' we still recover all of the inode 949 * images in the face of a crash. This works in coordination with 950 * xfs_buf_item_committed() to ensure that the buffer remains in the 951 * AIL at its original location even after it has been relogged. 952 */ 953 /* ARGSUSED */ 954 void 955 xfs_trans_inode_alloc_buf( 956 xfs_trans_t *tp, 957 xfs_buf_t *bp) 958 { 959 xfs_buf_log_item_t *bip; 960 961 ASSERT(XFS_BUF_ISBUSY(bp)); 962 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 963 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 964 965 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 966 ASSERT(atomic_read(&bip->bli_refcount) > 0); 967 968 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 969 } 970 971 972 /* 973 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 974 * dquots. However, unlike in inode buffer recovery, dquot buffers get 975 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 976 * The only thing that makes dquot buffers different from regular 977 * buffers is that we must not replay dquot bufs when recovering 978 * if a _corresponding_ quotaoff has happened. We also have to distinguish 979 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 980 * can be turned off independently. 981 */ 982 /* ARGSUSED */ 983 void 984 xfs_trans_dquot_buf( 985 xfs_trans_t *tp, 986 xfs_buf_t *bp, 987 uint type) 988 { 989 xfs_buf_log_item_t *bip; 990 991 ASSERT(XFS_BUF_ISBUSY(bp)); 992 ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); 993 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); 994 ASSERT(type == XFS_BLI_UDQUOT_BUF || 995 type == XFS_BLI_PDQUOT_BUF || 996 type == XFS_BLI_GDQUOT_BUF); 997 998 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); 999 ASSERT(atomic_read(&bip->bli_refcount) > 0); 1000 1001 bip->bli_format.blf_flags |= type; 1002 } 1003 1004 /* 1005 * Check to see if a buffer matching the given parameters is already 1006 * a part of the given transaction. Only check the first, embedded 1007 * chunk, since we don't want to spend all day scanning large transactions. 1008 */ 1009 STATIC xfs_buf_t * 1010 xfs_trans_buf_item_match( 1011 xfs_trans_t *tp, 1012 xfs_buftarg_t *target, 1013 xfs_daddr_t blkno, 1014 int len) 1015 { 1016 xfs_log_item_chunk_t *licp; 1017 xfs_log_item_desc_t *lidp; 1018 xfs_buf_log_item_t *blip; 1019 xfs_buf_t *bp; 1020 int i; 1021 1022 bp = NULL; 1023 len = BBTOB(len); 1024 licp = &tp->t_items; 1025 if (!XFS_LIC_ARE_ALL_FREE(licp)) { 1026 for (i = 0; i < licp->lic_unused; i++) { 1027 /* 1028 * Skip unoccupied slots. 1029 */ 1030 if (XFS_LIC_ISFREE(licp, i)) { 1031 continue; 1032 } 1033 1034 lidp = XFS_LIC_SLOT(licp, i); 1035 blip = (xfs_buf_log_item_t *)lidp->lid_item; 1036 if (blip->bli_item.li_type != XFS_LI_BUF) { 1037 continue; 1038 } 1039 1040 bp = blip->bli_buf; 1041 if ((XFS_BUF_TARGET(bp) == target) && 1042 (XFS_BUF_ADDR(bp) == blkno) && 1043 (XFS_BUF_COUNT(bp) == len)) { 1044 /* 1045 * We found it. Break out and 1046 * return the pointer to the buffer. 1047 */ 1048 break; 1049 } else { 1050 bp = NULL; 1051 } 1052 } 1053 } 1054 return bp; 1055 } 1056 1057 /* 1058 * Check to see if a buffer matching the given parameters is already 1059 * a part of the given transaction. Check all the chunks, we 1060 * want to be thorough. 1061 */ 1062 STATIC xfs_buf_t * 1063 xfs_trans_buf_item_match_all( 1064 xfs_trans_t *tp, 1065 xfs_buftarg_t *target, 1066 xfs_daddr_t blkno, 1067 int len) 1068 { 1069 xfs_log_item_chunk_t *licp; 1070 xfs_log_item_desc_t *lidp; 1071 xfs_buf_log_item_t *blip; 1072 xfs_buf_t *bp; 1073 int i; 1074 1075 bp = NULL; 1076 len = BBTOB(len); 1077 for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { 1078 if (XFS_LIC_ARE_ALL_FREE(licp)) { 1079 ASSERT(licp == &tp->t_items); 1080 ASSERT(licp->lic_next == NULL); 1081 return NULL; 1082 } 1083 for (i = 0; i < licp->lic_unused; i++) { 1084 /* 1085 * Skip unoccupied slots. 1086 */ 1087 if (XFS_LIC_ISFREE(licp, i)) { 1088 continue; 1089 } 1090 1091 lidp = XFS_LIC_SLOT(licp, i); 1092 blip = (xfs_buf_log_item_t *)lidp->lid_item; 1093 if (blip->bli_item.li_type != XFS_LI_BUF) { 1094 continue; 1095 } 1096 1097 bp = blip->bli_buf; 1098 if ((XFS_BUF_TARGET(bp) == target) && 1099 (XFS_BUF_ADDR(bp) == blkno) && 1100 (XFS_BUF_COUNT(bp) == len)) { 1101 /* 1102 * We found it. Break out and 1103 * return the pointer to the buffer. 1104 */ 1105 return bp; 1106 } 1107 } 1108 } 1109 return NULL; 1110 } 1111