1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_mount.h" 25 #include "xfs_inode.h" 26 #include "xfs_trans.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_trans_priv.h" 29 #include "xfs_error.h" 30 #include "xfs_trace.h" 31 32 /* 33 * Check to see if a buffer matching the given parameters is already 34 * a part of the given transaction. 35 */ 36 STATIC struct xfs_buf * 37 xfs_trans_buf_item_match( 38 struct xfs_trans *tp, 39 struct xfs_buftarg *target, 40 struct xfs_buf_map *map, 41 int nmaps) 42 { 43 struct xfs_log_item *lip; 44 struct xfs_buf_log_item *blip; 45 int len = 0; 46 int i; 47 48 for (i = 0; i < nmaps; i++) 49 len += map[i].bm_len; 50 51 list_for_each_entry(lip, &tp->t_items, li_trans) { 52 blip = (struct xfs_buf_log_item *)lip; 53 if (blip->bli_item.li_type == XFS_LI_BUF && 54 blip->bli_buf->b_target == target && 55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 56 blip->bli_buf->b_length == len) { 57 ASSERT(blip->bli_buf->b_map_count == nmaps); 58 return blip->bli_buf; 59 } 60 } 61 62 return NULL; 63 } 64 65 /* 66 * Add the locked buffer to the transaction. 67 * 68 * The buffer must be locked, and it cannot be associated with any 69 * transaction. 70 * 71 * If the buffer does not yet have a buf log item associated with it, 72 * then allocate one for it. Then add the buf item to the transaction. 73 */ 74 STATIC void 75 _xfs_trans_bjoin( 76 struct xfs_trans *tp, 77 struct xfs_buf *bp, 78 int reset_recur) 79 { 80 struct xfs_buf_log_item *bip; 81 82 ASSERT(bp->b_transp == NULL); 83 84 /* 85 * The xfs_buf_log_item pointer is stored in b_log_item. If 86 * it doesn't have one yet, then allocate one and initialize it. 87 * The checks to see if one is there are in xfs_buf_item_init(). 88 */ 89 xfs_buf_item_init(bp, tp->t_mountp); 90 bip = bp->b_log_item; 91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 94 if (reset_recur) 95 bip->bli_recur = 0; 96 97 /* 98 * Take a reference for this transaction on the buf item. 99 */ 100 atomic_inc(&bip->bli_refcount); 101 102 /* 103 * Attach the item to the transaction so we can find it in 104 * xfs_trans_get_buf() and friends. 105 */ 106 xfs_trans_add_item(tp, &bip->bli_item); 107 bp->b_transp = tp; 108 109 } 110 111 void 112 xfs_trans_bjoin( 113 struct xfs_trans *tp, 114 struct xfs_buf *bp) 115 { 116 _xfs_trans_bjoin(tp, bp, 0); 117 trace_xfs_trans_bjoin(bp->b_log_item); 118 } 119 120 /* 121 * Get and lock the buffer for the caller if it is not already 122 * locked within the given transaction. If it is already locked 123 * within the transaction, just increment its lock recursion count 124 * and return a pointer to it. 125 * 126 * If the transaction pointer is NULL, make this just a normal 127 * get_buf() call. 128 */ 129 struct xfs_buf * 130 xfs_trans_get_buf_map( 131 struct xfs_trans *tp, 132 struct xfs_buftarg *target, 133 struct xfs_buf_map *map, 134 int nmaps, 135 xfs_buf_flags_t flags) 136 { 137 xfs_buf_t *bp; 138 struct xfs_buf_log_item *bip; 139 140 if (!tp) 141 return xfs_buf_get_map(target, map, nmaps, flags); 142 143 /* 144 * If we find the buffer in the cache with this transaction 145 * pointer in its b_fsprivate2 field, then we know we already 146 * have it locked. In this case we just increment the lock 147 * recursion count and return the buffer to the caller. 148 */ 149 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 150 if (bp != NULL) { 151 ASSERT(xfs_buf_islocked(bp)); 152 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 153 xfs_buf_stale(bp); 154 bp->b_flags |= XBF_DONE; 155 } 156 157 ASSERT(bp->b_transp == tp); 158 bip = bp->b_log_item; 159 ASSERT(bip != NULL); 160 ASSERT(atomic_read(&bip->bli_refcount) > 0); 161 bip->bli_recur++; 162 trace_xfs_trans_get_buf_recur(bip); 163 return bp; 164 } 165 166 bp = xfs_buf_get_map(target, map, nmaps, flags); 167 if (bp == NULL) { 168 return NULL; 169 } 170 171 ASSERT(!bp->b_error); 172 173 _xfs_trans_bjoin(tp, bp, 1); 174 trace_xfs_trans_get_buf(bp->b_log_item); 175 return bp; 176 } 177 178 /* 179 * Get and lock the superblock buffer of this file system for the 180 * given transaction. 181 * 182 * We don't need to use incore_match() here, because the superblock 183 * buffer is a private buffer which we keep a pointer to in the 184 * mount structure. 185 */ 186 xfs_buf_t * 187 xfs_trans_getsb( 188 xfs_trans_t *tp, 189 struct xfs_mount *mp, 190 int flags) 191 { 192 xfs_buf_t *bp; 193 struct xfs_buf_log_item *bip; 194 195 /* 196 * Default to just trying to lock the superblock buffer 197 * if tp is NULL. 198 */ 199 if (tp == NULL) 200 return xfs_getsb(mp, flags); 201 202 /* 203 * If the superblock buffer already has this transaction 204 * pointer in its b_fsprivate2 field, then we know we already 205 * have it locked. In this case we just increment the lock 206 * recursion count and return the buffer to the caller. 207 */ 208 bp = mp->m_sb_bp; 209 if (bp->b_transp == tp) { 210 bip = bp->b_log_item; 211 ASSERT(bip != NULL); 212 ASSERT(atomic_read(&bip->bli_refcount) > 0); 213 bip->bli_recur++; 214 trace_xfs_trans_getsb_recur(bip); 215 return bp; 216 } 217 218 bp = xfs_getsb(mp, flags); 219 if (bp == NULL) 220 return NULL; 221 222 _xfs_trans_bjoin(tp, bp, 1); 223 trace_xfs_trans_getsb(bp->b_log_item); 224 return bp; 225 } 226 227 /* 228 * Get and lock the buffer for the caller if it is not already 229 * locked within the given transaction. If it has not yet been 230 * read in, read it from disk. If it is already locked 231 * within the transaction and already read in, just increment its 232 * lock recursion count and return a pointer to it. 233 * 234 * If the transaction pointer is NULL, make this just a normal 235 * read_buf() call. 236 */ 237 int 238 xfs_trans_read_buf_map( 239 struct xfs_mount *mp, 240 struct xfs_trans *tp, 241 struct xfs_buftarg *target, 242 struct xfs_buf_map *map, 243 int nmaps, 244 xfs_buf_flags_t flags, 245 struct xfs_buf **bpp, 246 const struct xfs_buf_ops *ops) 247 { 248 struct xfs_buf *bp = NULL; 249 struct xfs_buf_log_item *bip; 250 int error; 251 252 *bpp = NULL; 253 /* 254 * If we find the buffer in the cache with this transaction 255 * pointer in its b_fsprivate2 field, then we know we already 256 * have it locked. If it is already read in we just increment 257 * the lock recursion count and return the buffer to the caller. 258 * If the buffer is not yet read in, then we read it in, increment 259 * the lock recursion count, and return it to the caller. 260 */ 261 if (tp) 262 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 263 if (bp) { 264 ASSERT(xfs_buf_islocked(bp)); 265 ASSERT(bp->b_transp == tp); 266 ASSERT(bp->b_log_item != NULL); 267 ASSERT(!bp->b_error); 268 ASSERT(bp->b_flags & XBF_DONE); 269 270 /* 271 * We never locked this buf ourselves, so we shouldn't 272 * brelse it either. Just get out. 273 */ 274 if (XFS_FORCED_SHUTDOWN(mp)) { 275 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 276 return -EIO; 277 } 278 279 bip = bp->b_log_item; 280 bip->bli_recur++; 281 282 ASSERT(atomic_read(&bip->bli_refcount) > 0); 283 trace_xfs_trans_read_buf_recur(bip); 284 *bpp = bp; 285 return 0; 286 } 287 288 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 289 if (!bp) { 290 if (!(flags & XBF_TRYLOCK)) 291 return -ENOMEM; 292 return tp ? 0 : -EAGAIN; 293 } 294 295 /* 296 * If we've had a read error, then the contents of the buffer are 297 * invalid and should not be used. To ensure that a followup read tries 298 * to pull the buffer from disk again, we clear the XBF_DONE flag and 299 * mark the buffer stale. This ensures that anyone who has a current 300 * reference to the buffer will interpret it's contents correctly and 301 * future cache lookups will also treat it as an empty, uninitialised 302 * buffer. 303 */ 304 if (bp->b_error) { 305 error = bp->b_error; 306 if (!XFS_FORCED_SHUTDOWN(mp)) 307 xfs_buf_ioerror_alert(bp, __func__); 308 bp->b_flags &= ~XBF_DONE; 309 xfs_buf_stale(bp); 310 311 if (tp && (tp->t_flags & XFS_TRANS_DIRTY)) 312 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 313 xfs_buf_relse(bp); 314 315 /* bad CRC means corrupted metadata */ 316 if (error == -EFSBADCRC) 317 error = -EFSCORRUPTED; 318 return error; 319 } 320 321 if (XFS_FORCED_SHUTDOWN(mp)) { 322 xfs_buf_relse(bp); 323 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 324 return -EIO; 325 } 326 327 if (tp) { 328 _xfs_trans_bjoin(tp, bp, 1); 329 trace_xfs_trans_read_buf(bp->b_log_item); 330 } 331 *bpp = bp; 332 return 0; 333 334 } 335 336 /* 337 * Release the buffer bp which was previously acquired with one of the 338 * xfs_trans_... buffer allocation routines if the buffer has not 339 * been modified within this transaction. If the buffer is modified 340 * within this transaction, do decrement the recursion count but do 341 * not release the buffer even if the count goes to 0. If the buffer is not 342 * modified within the transaction, decrement the recursion count and 343 * release the buffer if the recursion count goes to 0. 344 * 345 * If the buffer is to be released and it was not modified before 346 * this transaction began, then free the buf_log_item associated with it. 347 * 348 * If the transaction pointer is NULL, make this just a normal 349 * brelse() call. 350 */ 351 void 352 xfs_trans_brelse( 353 xfs_trans_t *tp, 354 xfs_buf_t *bp) 355 { 356 struct xfs_buf_log_item *bip; 357 int freed; 358 359 /* 360 * Default to a normal brelse() call if the tp is NULL. 361 */ 362 if (tp == NULL) { 363 ASSERT(bp->b_transp == NULL); 364 xfs_buf_relse(bp); 365 return; 366 } 367 368 ASSERT(bp->b_transp == tp); 369 bip = bp->b_log_item; 370 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 371 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 372 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 373 ASSERT(atomic_read(&bip->bli_refcount) > 0); 374 375 trace_xfs_trans_brelse(bip); 376 377 /* 378 * If the release is just for a recursive lock, 379 * then decrement the count and return. 380 */ 381 if (bip->bli_recur > 0) { 382 bip->bli_recur--; 383 return; 384 } 385 386 /* 387 * If the buffer is dirty within this transaction, we can't 388 * release it until we commit. 389 */ 390 if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)) 391 return; 392 393 /* 394 * If the buffer has been invalidated, then we can't release 395 * it until the transaction commits to disk unless it is re-dirtied 396 * as part of this transaction. This prevents us from pulling 397 * the item from the AIL before we should. 398 */ 399 if (bip->bli_flags & XFS_BLI_STALE) 400 return; 401 402 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 403 404 /* 405 * Free up the log item descriptor tracking the released item. 406 */ 407 xfs_trans_del_item(&bip->bli_item); 408 409 /* 410 * Clear the hold flag in the buf log item if it is set. 411 * We wouldn't want the next user of the buffer to 412 * get confused. 413 */ 414 if (bip->bli_flags & XFS_BLI_HOLD) { 415 bip->bli_flags &= ~XFS_BLI_HOLD; 416 } 417 418 /* 419 * Drop our reference to the buf log item. 420 */ 421 freed = atomic_dec_and_test(&bip->bli_refcount); 422 423 /* 424 * If the buf item is not tracking data in the log, then we must free it 425 * before releasing the buffer back to the free pool. 426 * 427 * If the fs has shutdown and we dropped the last reference, it may fall 428 * on us to release a (possibly dirty) bli if it never made it to the 429 * AIL (e.g., the aborted unpin already happened and didn't release it 430 * due to our reference). Since we're already shutdown and need 431 * ail_lock, just force remove from the AIL and release the bli here. 432 */ 433 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) { 434 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR); 435 xfs_buf_item_relse(bp); 436 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) { 437 /*** 438 ASSERT(bp->b_pincount == 0); 439 ***/ 440 ASSERT(atomic_read(&bip->bli_refcount) == 0); 441 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 442 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 443 xfs_buf_item_relse(bp); 444 } 445 446 bp->b_transp = NULL; 447 xfs_buf_relse(bp); 448 } 449 450 /* 451 * Mark the buffer as not needing to be unlocked when the buf item's 452 * iop_unlock() routine is called. The buffer must already be locked 453 * and associated with the given transaction. 454 */ 455 /* ARGSUSED */ 456 void 457 xfs_trans_bhold( 458 xfs_trans_t *tp, 459 xfs_buf_t *bp) 460 { 461 struct xfs_buf_log_item *bip = bp->b_log_item; 462 463 ASSERT(bp->b_transp == tp); 464 ASSERT(bip != NULL); 465 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 466 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 467 ASSERT(atomic_read(&bip->bli_refcount) > 0); 468 469 bip->bli_flags |= XFS_BLI_HOLD; 470 trace_xfs_trans_bhold(bip); 471 } 472 473 /* 474 * Cancel the previous buffer hold request made on this buffer 475 * for this transaction. 476 */ 477 void 478 xfs_trans_bhold_release( 479 xfs_trans_t *tp, 480 xfs_buf_t *bp) 481 { 482 struct xfs_buf_log_item *bip = bp->b_log_item; 483 484 ASSERT(bp->b_transp == tp); 485 ASSERT(bip != NULL); 486 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 487 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 488 ASSERT(atomic_read(&bip->bli_refcount) > 0); 489 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 490 491 bip->bli_flags &= ~XFS_BLI_HOLD; 492 trace_xfs_trans_bhold_release(bip); 493 } 494 495 /* 496 * Mark a buffer dirty in the transaction. 497 */ 498 void 499 xfs_trans_dirty_buf( 500 struct xfs_trans *tp, 501 struct xfs_buf *bp) 502 { 503 struct xfs_buf_log_item *bip = bp->b_log_item; 504 505 ASSERT(bp->b_transp == tp); 506 ASSERT(bip != NULL); 507 ASSERT(bp->b_iodone == NULL || 508 bp->b_iodone == xfs_buf_iodone_callbacks); 509 510 /* 511 * Mark the buffer as needing to be written out eventually, 512 * and set its iodone function to remove the buffer's buf log 513 * item from the AIL and free it when the buffer is flushed 514 * to disk. See xfs_buf_attach_iodone() for more details 515 * on li_cb and xfs_buf_iodone_callbacks(). 516 * If we end up aborting this transaction, we trap this buffer 517 * inside the b_bdstrat callback so that this won't get written to 518 * disk. 519 */ 520 bp->b_flags |= XBF_DONE; 521 522 ASSERT(atomic_read(&bip->bli_refcount) > 0); 523 bp->b_iodone = xfs_buf_iodone_callbacks; 524 bip->bli_item.li_cb = xfs_buf_iodone; 525 526 /* 527 * If we invalidated the buffer within this transaction, then 528 * cancel the invalidation now that we're dirtying the buffer 529 * again. There are no races with the code in xfs_buf_item_unpin(), 530 * because we have a reference to the buffer this entire time. 531 */ 532 if (bip->bli_flags & XFS_BLI_STALE) { 533 bip->bli_flags &= ~XFS_BLI_STALE; 534 ASSERT(bp->b_flags & XBF_STALE); 535 bp->b_flags &= ~XBF_STALE; 536 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 537 } 538 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 539 540 tp->t_flags |= XFS_TRANS_DIRTY; 541 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 542 } 543 544 /* 545 * This is called to mark bytes first through last inclusive of the given 546 * buffer as needing to be logged when the transaction is committed. 547 * The buffer must already be associated with the given transaction. 548 * 549 * First and last are numbers relative to the beginning of this buffer, 550 * so the first byte in the buffer is numbered 0 regardless of the 551 * value of b_blkno. 552 */ 553 void 554 xfs_trans_log_buf( 555 struct xfs_trans *tp, 556 struct xfs_buf *bp, 557 uint first, 558 uint last) 559 { 560 struct xfs_buf_log_item *bip = bp->b_log_item; 561 562 ASSERT(first <= last && last < BBTOB(bp->b_length)); 563 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED)); 564 565 xfs_trans_dirty_buf(tp, bp); 566 567 trace_xfs_trans_log_buf(bip); 568 xfs_buf_item_log(bip, first, last); 569 } 570 571 572 /* 573 * Invalidate a buffer that is being used within a transaction. 574 * 575 * Typically this is because the blocks in the buffer are being freed, so we 576 * need to prevent it from being written out when we're done. Allowing it 577 * to be written again might overwrite data in the free blocks if they are 578 * reallocated to a file. 579 * 580 * We prevent the buffer from being written out by marking it stale. We can't 581 * get rid of the buf log item at this point because the buffer may still be 582 * pinned by another transaction. If that is the case, then we'll wait until 583 * the buffer is committed to disk for the last time (we can tell by the ref 584 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 585 * keep the buffer locked so that the buffer and buf log item are not reused. 586 * 587 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 588 * the buf item. This will be used at recovery time to determine that copies 589 * of the buffer in the log before this should not be replayed. 590 * 591 * We mark the item descriptor and the transaction dirty so that we'll hold 592 * the buffer until after the commit. 593 * 594 * Since we're invalidating the buffer, we also clear the state about which 595 * parts of the buffer have been logged. We also clear the flag indicating 596 * that this is an inode buffer since the data in the buffer will no longer 597 * be valid. 598 * 599 * We set the stale bit in the buffer as well since we're getting rid of it. 600 */ 601 void 602 xfs_trans_binval( 603 xfs_trans_t *tp, 604 xfs_buf_t *bp) 605 { 606 struct xfs_buf_log_item *bip = bp->b_log_item; 607 int i; 608 609 ASSERT(bp->b_transp == tp); 610 ASSERT(bip != NULL); 611 ASSERT(atomic_read(&bip->bli_refcount) > 0); 612 613 trace_xfs_trans_binval(bip); 614 615 if (bip->bli_flags & XFS_BLI_STALE) { 616 /* 617 * If the buffer is already invalidated, then 618 * just return. 619 */ 620 ASSERT(bp->b_flags & XBF_STALE); 621 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 622 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 623 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 624 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 625 ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags)); 626 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 627 return; 628 } 629 630 xfs_buf_stale(bp); 631 632 bip->bli_flags |= XFS_BLI_STALE; 633 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 634 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 635 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 636 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 637 for (i = 0; i < bip->bli_format_count; i++) { 638 memset(bip->bli_formats[i].blf_data_map, 0, 639 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 640 } 641 set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags); 642 tp->t_flags |= XFS_TRANS_DIRTY; 643 } 644 645 /* 646 * This call is used to indicate that the buffer contains on-disk inodes which 647 * must be handled specially during recovery. They require special handling 648 * because only the di_next_unlinked from the inodes in the buffer should be 649 * recovered. The rest of the data in the buffer is logged via the inodes 650 * themselves. 651 * 652 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 653 * transferred to the buffer's log format structure so that we'll know what to 654 * do at recovery time. 655 */ 656 void 657 xfs_trans_inode_buf( 658 xfs_trans_t *tp, 659 xfs_buf_t *bp) 660 { 661 struct xfs_buf_log_item *bip = bp->b_log_item; 662 663 ASSERT(bp->b_transp == tp); 664 ASSERT(bip != NULL); 665 ASSERT(atomic_read(&bip->bli_refcount) > 0); 666 667 bip->bli_flags |= XFS_BLI_INODE_BUF; 668 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 669 } 670 671 /* 672 * This call is used to indicate that the buffer is going to 673 * be staled and was an inode buffer. This means it gets 674 * special processing during unpin - where any inodes 675 * associated with the buffer should be removed from ail. 676 * There is also special processing during recovery, 677 * any replay of the inodes in the buffer needs to be 678 * prevented as the buffer may have been reused. 679 */ 680 void 681 xfs_trans_stale_inode_buf( 682 xfs_trans_t *tp, 683 xfs_buf_t *bp) 684 { 685 struct xfs_buf_log_item *bip = bp->b_log_item; 686 687 ASSERT(bp->b_transp == tp); 688 ASSERT(bip != NULL); 689 ASSERT(atomic_read(&bip->bli_refcount) > 0); 690 691 bip->bli_flags |= XFS_BLI_STALE_INODE; 692 bip->bli_item.li_cb = xfs_buf_iodone; 693 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 694 } 695 696 /* 697 * Mark the buffer as being one which contains newly allocated 698 * inodes. We need to make sure that even if this buffer is 699 * relogged as an 'inode buf' we still recover all of the inode 700 * images in the face of a crash. This works in coordination with 701 * xfs_buf_item_committed() to ensure that the buffer remains in the 702 * AIL at its original location even after it has been relogged. 703 */ 704 /* ARGSUSED */ 705 void 706 xfs_trans_inode_alloc_buf( 707 xfs_trans_t *tp, 708 xfs_buf_t *bp) 709 { 710 struct xfs_buf_log_item *bip = bp->b_log_item; 711 712 ASSERT(bp->b_transp == tp); 713 ASSERT(bip != NULL); 714 ASSERT(atomic_read(&bip->bli_refcount) > 0); 715 716 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 717 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 718 } 719 720 /* 721 * Mark the buffer as ordered for this transaction. This means that the contents 722 * of the buffer are not recorded in the transaction but it is tracked in the 723 * AIL as though it was. This allows us to record logical changes in 724 * transactions rather than the physical changes we make to the buffer without 725 * changing writeback ordering constraints of metadata buffers. 726 */ 727 bool 728 xfs_trans_ordered_buf( 729 struct xfs_trans *tp, 730 struct xfs_buf *bp) 731 { 732 struct xfs_buf_log_item *bip = bp->b_log_item; 733 734 ASSERT(bp->b_transp == tp); 735 ASSERT(bip != NULL); 736 ASSERT(atomic_read(&bip->bli_refcount) > 0); 737 738 if (xfs_buf_item_dirty_format(bip)) 739 return false; 740 741 bip->bli_flags |= XFS_BLI_ORDERED; 742 trace_xfs_buf_item_ordered(bip); 743 744 /* 745 * We don't log a dirty range of an ordered buffer but it still needs 746 * to be marked dirty and that it has been logged. 747 */ 748 xfs_trans_dirty_buf(tp, bp); 749 return true; 750 } 751 752 /* 753 * Set the type of the buffer for log recovery so that it can correctly identify 754 * and hence attach the correct buffer ops to the buffer after replay. 755 */ 756 void 757 xfs_trans_buf_set_type( 758 struct xfs_trans *tp, 759 struct xfs_buf *bp, 760 enum xfs_blft type) 761 { 762 struct xfs_buf_log_item *bip = bp->b_log_item; 763 764 if (!tp) 765 return; 766 767 ASSERT(bp->b_transp == tp); 768 ASSERT(bip != NULL); 769 ASSERT(atomic_read(&bip->bli_refcount) > 0); 770 771 xfs_blft_to_flags(&bip->__bli_format, type); 772 } 773 774 void 775 xfs_trans_buf_copy_type( 776 struct xfs_buf *dst_bp, 777 struct xfs_buf *src_bp) 778 { 779 struct xfs_buf_log_item *sbip = src_bp->b_log_item; 780 struct xfs_buf_log_item *dbip = dst_bp->b_log_item; 781 enum xfs_blft type; 782 783 type = xfs_blft_from_flags(&sbip->__bli_format); 784 xfs_blft_to_flags(&dbip->__bli_format, type); 785 } 786 787 /* 788 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 789 * dquots. However, unlike in inode buffer recovery, dquot buffers get 790 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 791 * The only thing that makes dquot buffers different from regular 792 * buffers is that we must not replay dquot bufs when recovering 793 * if a _corresponding_ quotaoff has happened. We also have to distinguish 794 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 795 * can be turned off independently. 796 */ 797 /* ARGSUSED */ 798 void 799 xfs_trans_dquot_buf( 800 xfs_trans_t *tp, 801 xfs_buf_t *bp, 802 uint type) 803 { 804 struct xfs_buf_log_item *bip = bp->b_log_item; 805 806 ASSERT(type == XFS_BLF_UDQUOT_BUF || 807 type == XFS_BLF_PDQUOT_BUF || 808 type == XFS_BLF_GDQUOT_BUF); 809 810 bip->__bli_format.blf_flags |= type; 811 812 switch (type) { 813 case XFS_BLF_UDQUOT_BUF: 814 type = XFS_BLFT_UDQUOT_BUF; 815 break; 816 case XFS_BLF_PDQUOT_BUF: 817 type = XFS_BLFT_PDQUOT_BUF; 818 break; 819 case XFS_BLF_GDQUOT_BUF: 820 type = XFS_BLFT_GDQUOT_BUF; 821 break; 822 default: 823 type = XFS_BLFT_UNKNOWN_BUF; 824 break; 825 } 826 827 xfs_trans_buf_set_type(tp, bp, type); 828 } 829