1 /* 2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_log.h" 22 #include "xfs_trans.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_bmap_btree.h" 27 #include "xfs_alloc_btree.h" 28 #include "xfs_ialloc_btree.h" 29 #include "xfs_dinode.h" 30 #include "xfs_inode.h" 31 #include "xfs_buf_item.h" 32 #include "xfs_trans_priv.h" 33 #include "xfs_error.h" 34 #include "xfs_trace.h" 35 36 /* 37 * Check to see if a buffer matching the given parameters is already 38 * a part of the given transaction. 39 */ 40 STATIC struct xfs_buf * 41 xfs_trans_buf_item_match( 42 struct xfs_trans *tp, 43 struct xfs_buftarg *target, 44 struct xfs_buf_map *map, 45 int nmaps) 46 { 47 struct xfs_log_item_desc *lidp; 48 struct xfs_buf_log_item *blip; 49 int len = 0; 50 int i; 51 52 for (i = 0; i < nmaps; i++) 53 len += map[i].bm_len; 54 55 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 56 blip = (struct xfs_buf_log_item *)lidp->lid_item; 57 if (blip->bli_item.li_type == XFS_LI_BUF && 58 blip->bli_buf->b_target == target && 59 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn && 60 blip->bli_buf->b_length == len) { 61 ASSERT(blip->bli_buf->b_map_count == nmaps); 62 return blip->bli_buf; 63 } 64 } 65 66 return NULL; 67 } 68 69 /* 70 * Add the locked buffer to the transaction. 71 * 72 * The buffer must be locked, and it cannot be associated with any 73 * transaction. 74 * 75 * If the buffer does not yet have a buf log item associated with it, 76 * then allocate one for it. Then add the buf item to the transaction. 77 */ 78 STATIC void 79 _xfs_trans_bjoin( 80 struct xfs_trans *tp, 81 struct xfs_buf *bp, 82 int reset_recur) 83 { 84 struct xfs_buf_log_item *bip; 85 86 ASSERT(bp->b_transp == NULL); 87 88 /* 89 * The xfs_buf_log_item pointer is stored in b_fsprivate. If 90 * it doesn't have one yet, then allocate one and initialize it. 91 * The checks to see if one is there are in xfs_buf_item_init(). 92 */ 93 xfs_buf_item_init(bp, tp->t_mountp); 94 bip = bp->b_fspriv; 95 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 96 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 97 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 98 if (reset_recur) 99 bip->bli_recur = 0; 100 101 /* 102 * Take a reference for this transaction on the buf item. 103 */ 104 atomic_inc(&bip->bli_refcount); 105 106 /* 107 * Get a log_item_desc to point at the new item. 108 */ 109 xfs_trans_add_item(tp, &bip->bli_item); 110 111 /* 112 * Initialize b_fsprivate2 so we can find it with incore_match() 113 * in xfs_trans_get_buf() and friends above. 114 */ 115 bp->b_transp = tp; 116 117 } 118 119 void 120 xfs_trans_bjoin( 121 struct xfs_trans *tp, 122 struct xfs_buf *bp) 123 { 124 _xfs_trans_bjoin(tp, bp, 0); 125 trace_xfs_trans_bjoin(bp->b_fspriv); 126 } 127 128 /* 129 * Get and lock the buffer for the caller if it is not already 130 * locked within the given transaction. If it is already locked 131 * within the transaction, just increment its lock recursion count 132 * and return a pointer to it. 133 * 134 * If the transaction pointer is NULL, make this just a normal 135 * get_buf() call. 136 */ 137 struct xfs_buf * 138 xfs_trans_get_buf_map( 139 struct xfs_trans *tp, 140 struct xfs_buftarg *target, 141 struct xfs_buf_map *map, 142 int nmaps, 143 xfs_buf_flags_t flags) 144 { 145 xfs_buf_t *bp; 146 xfs_buf_log_item_t *bip; 147 148 if (!tp) 149 return xfs_buf_get_map(target, map, nmaps, flags); 150 151 /* 152 * If we find the buffer in the cache with this transaction 153 * pointer in its b_fsprivate2 field, then we know we already 154 * have it locked. In this case we just increment the lock 155 * recursion count and return the buffer to the caller. 156 */ 157 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 158 if (bp != NULL) { 159 ASSERT(xfs_buf_islocked(bp)); 160 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { 161 xfs_buf_stale(bp); 162 XFS_BUF_DONE(bp); 163 } 164 165 ASSERT(bp->b_transp == tp); 166 bip = bp->b_fspriv; 167 ASSERT(bip != NULL); 168 ASSERT(atomic_read(&bip->bli_refcount) > 0); 169 bip->bli_recur++; 170 trace_xfs_trans_get_buf_recur(bip); 171 return (bp); 172 } 173 174 bp = xfs_buf_get_map(target, map, nmaps, flags); 175 if (bp == NULL) { 176 return NULL; 177 } 178 179 ASSERT(!bp->b_error); 180 181 _xfs_trans_bjoin(tp, bp, 1); 182 trace_xfs_trans_get_buf(bp->b_fspriv); 183 return (bp); 184 } 185 186 /* 187 * Get and lock the superblock buffer of this file system for the 188 * given transaction. 189 * 190 * We don't need to use incore_match() here, because the superblock 191 * buffer is a private buffer which we keep a pointer to in the 192 * mount structure. 193 */ 194 xfs_buf_t * 195 xfs_trans_getsb(xfs_trans_t *tp, 196 struct xfs_mount *mp, 197 int flags) 198 { 199 xfs_buf_t *bp; 200 xfs_buf_log_item_t *bip; 201 202 /* 203 * Default to just trying to lock the superblock buffer 204 * if tp is NULL. 205 */ 206 if (tp == NULL) { 207 return (xfs_getsb(mp, flags)); 208 } 209 210 /* 211 * If the superblock buffer already has this transaction 212 * pointer in its b_fsprivate2 field, then we know we already 213 * have it locked. In this case we just increment the lock 214 * recursion count and return the buffer to the caller. 215 */ 216 bp = mp->m_sb_bp; 217 if (bp->b_transp == tp) { 218 bip = bp->b_fspriv; 219 ASSERT(bip != NULL); 220 ASSERT(atomic_read(&bip->bli_refcount) > 0); 221 bip->bli_recur++; 222 trace_xfs_trans_getsb_recur(bip); 223 return (bp); 224 } 225 226 bp = xfs_getsb(mp, flags); 227 if (bp == NULL) 228 return NULL; 229 230 _xfs_trans_bjoin(tp, bp, 1); 231 trace_xfs_trans_getsb(bp->b_fspriv); 232 return (bp); 233 } 234 235 #ifdef DEBUG 236 xfs_buftarg_t *xfs_error_target; 237 int xfs_do_error; 238 int xfs_req_num; 239 int xfs_error_mod = 33; 240 #endif 241 242 /* 243 * Get and lock the buffer for the caller if it is not already 244 * locked within the given transaction. If it has not yet been 245 * read in, read it from disk. If it is already locked 246 * within the transaction and already read in, just increment its 247 * lock recursion count and return a pointer to it. 248 * 249 * If the transaction pointer is NULL, make this just a normal 250 * read_buf() call. 251 */ 252 int 253 xfs_trans_read_buf_map( 254 struct xfs_mount *mp, 255 struct xfs_trans *tp, 256 struct xfs_buftarg *target, 257 struct xfs_buf_map *map, 258 int nmaps, 259 xfs_buf_flags_t flags, 260 struct xfs_buf **bpp, 261 const struct xfs_buf_ops *ops) 262 { 263 xfs_buf_t *bp; 264 xfs_buf_log_item_t *bip; 265 int error; 266 267 *bpp = NULL; 268 if (!tp) { 269 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 270 if (!bp) 271 return (flags & XBF_TRYLOCK) ? 272 EAGAIN : XFS_ERROR(ENOMEM); 273 274 if (bp->b_error) { 275 error = bp->b_error; 276 xfs_buf_ioerror_alert(bp, __func__); 277 XFS_BUF_UNDONE(bp); 278 xfs_buf_stale(bp); 279 xfs_buf_relse(bp); 280 return error; 281 } 282 #ifdef DEBUG 283 if (xfs_do_error) { 284 if (xfs_error_target == target) { 285 if (((xfs_req_num++) % xfs_error_mod) == 0) { 286 xfs_buf_relse(bp); 287 xfs_debug(mp, "Returning error!"); 288 return XFS_ERROR(EIO); 289 } 290 } 291 } 292 #endif 293 if (XFS_FORCED_SHUTDOWN(mp)) 294 goto shutdown_abort; 295 *bpp = bp; 296 return 0; 297 } 298 299 /* 300 * If we find the buffer in the cache with this transaction 301 * pointer in its b_fsprivate2 field, then we know we already 302 * have it locked. If it is already read in we just increment 303 * the lock recursion count and return the buffer to the caller. 304 * If the buffer is not yet read in, then we read it in, increment 305 * the lock recursion count, and return it to the caller. 306 */ 307 bp = xfs_trans_buf_item_match(tp, target, map, nmaps); 308 if (bp != NULL) { 309 ASSERT(xfs_buf_islocked(bp)); 310 ASSERT(bp->b_transp == tp); 311 ASSERT(bp->b_fspriv != NULL); 312 ASSERT(!bp->b_error); 313 if (!(XFS_BUF_ISDONE(bp))) { 314 trace_xfs_trans_read_buf_io(bp, _RET_IP_); 315 ASSERT(!XFS_BUF_ISASYNC(bp)); 316 ASSERT(bp->b_iodone == NULL); 317 XFS_BUF_READ(bp); 318 bp->b_ops = ops; 319 xfsbdstrat(tp->t_mountp, bp); 320 error = xfs_buf_iowait(bp); 321 if (error) { 322 xfs_buf_ioerror_alert(bp, __func__); 323 xfs_buf_relse(bp); 324 /* 325 * We can gracefully recover from most read 326 * errors. Ones we can't are those that happen 327 * after the transaction's already dirty. 328 */ 329 if (tp->t_flags & XFS_TRANS_DIRTY) 330 xfs_force_shutdown(tp->t_mountp, 331 SHUTDOWN_META_IO_ERROR); 332 return error; 333 } 334 } 335 /* 336 * We never locked this buf ourselves, so we shouldn't 337 * brelse it either. Just get out. 338 */ 339 if (XFS_FORCED_SHUTDOWN(mp)) { 340 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 341 *bpp = NULL; 342 return XFS_ERROR(EIO); 343 } 344 345 346 bip = bp->b_fspriv; 347 bip->bli_recur++; 348 349 ASSERT(atomic_read(&bip->bli_refcount) > 0); 350 trace_xfs_trans_read_buf_recur(bip); 351 *bpp = bp; 352 return 0; 353 } 354 355 bp = xfs_buf_read_map(target, map, nmaps, flags, ops); 356 if (bp == NULL) { 357 *bpp = NULL; 358 return (flags & XBF_TRYLOCK) ? 359 0 : XFS_ERROR(ENOMEM); 360 } 361 if (bp->b_error) { 362 error = bp->b_error; 363 xfs_buf_stale(bp); 364 XFS_BUF_DONE(bp); 365 xfs_buf_ioerror_alert(bp, __func__); 366 if (tp->t_flags & XFS_TRANS_DIRTY) 367 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); 368 xfs_buf_relse(bp); 369 return error; 370 } 371 #ifdef DEBUG 372 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { 373 if (xfs_error_target == target) { 374 if (((xfs_req_num++) % xfs_error_mod) == 0) { 375 xfs_force_shutdown(tp->t_mountp, 376 SHUTDOWN_META_IO_ERROR); 377 xfs_buf_relse(bp); 378 xfs_debug(mp, "Returning trans error!"); 379 return XFS_ERROR(EIO); 380 } 381 } 382 } 383 #endif 384 if (XFS_FORCED_SHUTDOWN(mp)) 385 goto shutdown_abort; 386 387 _xfs_trans_bjoin(tp, bp, 1); 388 trace_xfs_trans_read_buf(bp->b_fspriv); 389 390 *bpp = bp; 391 return 0; 392 393 shutdown_abort: 394 trace_xfs_trans_read_buf_shut(bp, _RET_IP_); 395 xfs_buf_relse(bp); 396 *bpp = NULL; 397 return XFS_ERROR(EIO); 398 } 399 400 /* 401 * Release the buffer bp which was previously acquired with one of the 402 * xfs_trans_... buffer allocation routines if the buffer has not 403 * been modified within this transaction. If the buffer is modified 404 * within this transaction, do decrement the recursion count but do 405 * not release the buffer even if the count goes to 0. If the buffer is not 406 * modified within the transaction, decrement the recursion count and 407 * release the buffer if the recursion count goes to 0. 408 * 409 * If the buffer is to be released and it was not modified before 410 * this transaction began, then free the buf_log_item associated with it. 411 * 412 * If the transaction pointer is NULL, make this just a normal 413 * brelse() call. 414 */ 415 void 416 xfs_trans_brelse(xfs_trans_t *tp, 417 xfs_buf_t *bp) 418 { 419 xfs_buf_log_item_t *bip; 420 421 /* 422 * Default to a normal brelse() call if the tp is NULL. 423 */ 424 if (tp == NULL) { 425 ASSERT(bp->b_transp == NULL); 426 xfs_buf_relse(bp); 427 return; 428 } 429 430 ASSERT(bp->b_transp == tp); 431 bip = bp->b_fspriv; 432 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 433 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 434 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 435 ASSERT(atomic_read(&bip->bli_refcount) > 0); 436 437 trace_xfs_trans_brelse(bip); 438 439 /* 440 * If the release is just for a recursive lock, 441 * then decrement the count and return. 442 */ 443 if (bip->bli_recur > 0) { 444 bip->bli_recur--; 445 return; 446 } 447 448 /* 449 * If the buffer is dirty within this transaction, we can't 450 * release it until we commit. 451 */ 452 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY) 453 return; 454 455 /* 456 * If the buffer has been invalidated, then we can't release 457 * it until the transaction commits to disk unless it is re-dirtied 458 * as part of this transaction. This prevents us from pulling 459 * the item from the AIL before we should. 460 */ 461 if (bip->bli_flags & XFS_BLI_STALE) 462 return; 463 464 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); 465 466 /* 467 * Free up the log item descriptor tracking the released item. 468 */ 469 xfs_trans_del_item(&bip->bli_item); 470 471 /* 472 * Clear the hold flag in the buf log item if it is set. 473 * We wouldn't want the next user of the buffer to 474 * get confused. 475 */ 476 if (bip->bli_flags & XFS_BLI_HOLD) { 477 bip->bli_flags &= ~XFS_BLI_HOLD; 478 } 479 480 /* 481 * Drop our reference to the buf log item. 482 */ 483 atomic_dec(&bip->bli_refcount); 484 485 /* 486 * If the buf item is not tracking data in the log, then 487 * we must free it before releasing the buffer back to the 488 * free pool. Before releasing the buffer to the free pool, 489 * clear the transaction pointer in b_fsprivate2 to dissolve 490 * its relation to this transaction. 491 */ 492 if (!xfs_buf_item_dirty(bip)) { 493 /*** 494 ASSERT(bp->b_pincount == 0); 495 ***/ 496 ASSERT(atomic_read(&bip->bli_refcount) == 0); 497 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); 498 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); 499 xfs_buf_item_relse(bp); 500 } 501 502 bp->b_transp = NULL; 503 xfs_buf_relse(bp); 504 } 505 506 /* 507 * Mark the buffer as not needing to be unlocked when the buf item's 508 * iop_unlock() routine is called. The buffer must already be locked 509 * and associated with the given transaction. 510 */ 511 /* ARGSUSED */ 512 void 513 xfs_trans_bhold(xfs_trans_t *tp, 514 xfs_buf_t *bp) 515 { 516 xfs_buf_log_item_t *bip = bp->b_fspriv; 517 518 ASSERT(bp->b_transp == tp); 519 ASSERT(bip != NULL); 520 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 521 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 522 ASSERT(atomic_read(&bip->bli_refcount) > 0); 523 524 bip->bli_flags |= XFS_BLI_HOLD; 525 trace_xfs_trans_bhold(bip); 526 } 527 528 /* 529 * Cancel the previous buffer hold request made on this buffer 530 * for this transaction. 531 */ 532 void 533 xfs_trans_bhold_release(xfs_trans_t *tp, 534 xfs_buf_t *bp) 535 { 536 xfs_buf_log_item_t *bip = bp->b_fspriv; 537 538 ASSERT(bp->b_transp == tp); 539 ASSERT(bip != NULL); 540 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 541 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 542 ASSERT(atomic_read(&bip->bli_refcount) > 0); 543 ASSERT(bip->bli_flags & XFS_BLI_HOLD); 544 545 bip->bli_flags &= ~XFS_BLI_HOLD; 546 trace_xfs_trans_bhold_release(bip); 547 } 548 549 /* 550 * This is called to mark bytes first through last inclusive of the given 551 * buffer as needing to be logged when the transaction is committed. 552 * The buffer must already be associated with the given transaction. 553 * 554 * First and last are numbers relative to the beginning of this buffer, 555 * so the first byte in the buffer is numbered 0 regardless of the 556 * value of b_blkno. 557 */ 558 void 559 xfs_trans_log_buf(xfs_trans_t *tp, 560 xfs_buf_t *bp, 561 uint first, 562 uint last) 563 { 564 xfs_buf_log_item_t *bip = bp->b_fspriv; 565 566 ASSERT(bp->b_transp == tp); 567 ASSERT(bip != NULL); 568 ASSERT(first <= last && last < BBTOB(bp->b_length)); 569 ASSERT(bp->b_iodone == NULL || 570 bp->b_iodone == xfs_buf_iodone_callbacks); 571 572 /* 573 * Mark the buffer as needing to be written out eventually, 574 * and set its iodone function to remove the buffer's buf log 575 * item from the AIL and free it when the buffer is flushed 576 * to disk. See xfs_buf_attach_iodone() for more details 577 * on li_cb and xfs_buf_iodone_callbacks(). 578 * If we end up aborting this transaction, we trap this buffer 579 * inside the b_bdstrat callback so that this won't get written to 580 * disk. 581 */ 582 XFS_BUF_DONE(bp); 583 584 ASSERT(atomic_read(&bip->bli_refcount) > 0); 585 bp->b_iodone = xfs_buf_iodone_callbacks; 586 bip->bli_item.li_cb = xfs_buf_iodone; 587 588 trace_xfs_trans_log_buf(bip); 589 590 /* 591 * If we invalidated the buffer within this transaction, then 592 * cancel the invalidation now that we're dirtying the buffer 593 * again. There are no races with the code in xfs_buf_item_unpin(), 594 * because we have a reference to the buffer this entire time. 595 */ 596 if (bip->bli_flags & XFS_BLI_STALE) { 597 bip->bli_flags &= ~XFS_BLI_STALE; 598 ASSERT(XFS_BUF_ISSTALE(bp)); 599 XFS_BUF_UNSTALE(bp); 600 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL; 601 } 602 603 tp->t_flags |= XFS_TRANS_DIRTY; 604 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 605 606 /* 607 * If we have an ordered buffer we are not logging any dirty range but 608 * it still needs to be marked dirty and that it has been logged. 609 */ 610 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED; 611 if (!(bip->bli_flags & XFS_BLI_ORDERED)) 612 xfs_buf_item_log(bip, first, last); 613 } 614 615 616 /* 617 * Invalidate a buffer that is being used within a transaction. 618 * 619 * Typically this is because the blocks in the buffer are being freed, so we 620 * need to prevent it from being written out when we're done. Allowing it 621 * to be written again might overwrite data in the free blocks if they are 622 * reallocated to a file. 623 * 624 * We prevent the buffer from being written out by marking it stale. We can't 625 * get rid of the buf log item at this point because the buffer may still be 626 * pinned by another transaction. If that is the case, then we'll wait until 627 * the buffer is committed to disk for the last time (we can tell by the ref 628 * count) and free it in xfs_buf_item_unpin(). Until that happens we will 629 * keep the buffer locked so that the buffer and buf log item are not reused. 630 * 631 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log 632 * the buf item. This will be used at recovery time to determine that copies 633 * of the buffer in the log before this should not be replayed. 634 * 635 * We mark the item descriptor and the transaction dirty so that we'll hold 636 * the buffer until after the commit. 637 * 638 * Since we're invalidating the buffer, we also clear the state about which 639 * parts of the buffer have been logged. We also clear the flag indicating 640 * that this is an inode buffer since the data in the buffer will no longer 641 * be valid. 642 * 643 * We set the stale bit in the buffer as well since we're getting rid of it. 644 */ 645 void 646 xfs_trans_binval( 647 xfs_trans_t *tp, 648 xfs_buf_t *bp) 649 { 650 xfs_buf_log_item_t *bip = bp->b_fspriv; 651 int i; 652 653 ASSERT(bp->b_transp == tp); 654 ASSERT(bip != NULL); 655 ASSERT(atomic_read(&bip->bli_refcount) > 0); 656 657 trace_xfs_trans_binval(bip); 658 659 if (bip->bli_flags & XFS_BLI_STALE) { 660 /* 661 * If the buffer is already invalidated, then 662 * just return. 663 */ 664 ASSERT(XFS_BUF_ISSTALE(bp)); 665 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); 666 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF)); 667 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK)); 668 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 669 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY); 670 ASSERT(tp->t_flags & XFS_TRANS_DIRTY); 671 return; 672 } 673 674 xfs_buf_stale(bp); 675 676 bip->bli_flags |= XFS_BLI_STALE; 677 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); 678 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; 679 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL; 680 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK; 681 for (i = 0; i < bip->bli_format_count; i++) { 682 memset(bip->bli_formats[i].blf_data_map, 0, 683 (bip->bli_formats[i].blf_map_size * sizeof(uint))); 684 } 685 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY; 686 tp->t_flags |= XFS_TRANS_DIRTY; 687 } 688 689 /* 690 * This call is used to indicate that the buffer contains on-disk inodes which 691 * must be handled specially during recovery. They require special handling 692 * because only the di_next_unlinked from the inodes in the buffer should be 693 * recovered. The rest of the data in the buffer is logged via the inodes 694 * themselves. 695 * 696 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be 697 * transferred to the buffer's log format structure so that we'll know what to 698 * do at recovery time. 699 */ 700 void 701 xfs_trans_inode_buf( 702 xfs_trans_t *tp, 703 xfs_buf_t *bp) 704 { 705 xfs_buf_log_item_t *bip = bp->b_fspriv; 706 707 ASSERT(bp->b_transp == tp); 708 ASSERT(bip != NULL); 709 ASSERT(atomic_read(&bip->bli_refcount) > 0); 710 711 bip->bli_flags |= XFS_BLI_INODE_BUF; 712 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 713 } 714 715 /* 716 * This call is used to indicate that the buffer is going to 717 * be staled and was an inode buffer. This means it gets 718 * special processing during unpin - where any inodes 719 * associated with the buffer should be removed from ail. 720 * There is also special processing during recovery, 721 * any replay of the inodes in the buffer needs to be 722 * prevented as the buffer may have been reused. 723 */ 724 void 725 xfs_trans_stale_inode_buf( 726 xfs_trans_t *tp, 727 xfs_buf_t *bp) 728 { 729 xfs_buf_log_item_t *bip = bp->b_fspriv; 730 731 ASSERT(bp->b_transp == tp); 732 ASSERT(bip != NULL); 733 ASSERT(atomic_read(&bip->bli_refcount) > 0); 734 735 bip->bli_flags |= XFS_BLI_STALE_INODE; 736 bip->bli_item.li_cb = xfs_buf_iodone; 737 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 738 } 739 740 /* 741 * Mark the buffer as being one which contains newly allocated 742 * inodes. We need to make sure that even if this buffer is 743 * relogged as an 'inode buf' we still recover all of the inode 744 * images in the face of a crash. This works in coordination with 745 * xfs_buf_item_committed() to ensure that the buffer remains in the 746 * AIL at its original location even after it has been relogged. 747 */ 748 /* ARGSUSED */ 749 void 750 xfs_trans_inode_alloc_buf( 751 xfs_trans_t *tp, 752 xfs_buf_t *bp) 753 { 754 xfs_buf_log_item_t *bip = bp->b_fspriv; 755 756 ASSERT(bp->b_transp == tp); 757 ASSERT(bip != NULL); 758 ASSERT(atomic_read(&bip->bli_refcount) > 0); 759 760 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; 761 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF); 762 } 763 764 /* 765 * Mark the buffer as ordered for this transaction. This means 766 * that the contents of the buffer are not recorded in the transaction 767 * but it is tracked in the AIL as though it was. This allows us 768 * to record logical changes in transactions rather than the physical 769 * changes we make to the buffer without changing writeback ordering 770 * constraints of metadata buffers. 771 */ 772 void 773 xfs_trans_ordered_buf( 774 struct xfs_trans *tp, 775 struct xfs_buf *bp) 776 { 777 struct xfs_buf_log_item *bip = bp->b_fspriv; 778 779 ASSERT(bp->b_transp == tp); 780 ASSERT(bip != NULL); 781 ASSERT(atomic_read(&bip->bli_refcount) > 0); 782 783 bip->bli_flags |= XFS_BLI_ORDERED; 784 trace_xfs_buf_item_ordered(bip); 785 } 786 787 /* 788 * Set the type of the buffer for log recovery so that it can correctly identify 789 * and hence attach the correct buffer ops to the buffer after replay. 790 */ 791 void 792 xfs_trans_buf_set_type( 793 struct xfs_trans *tp, 794 struct xfs_buf *bp, 795 enum xfs_blft type) 796 { 797 struct xfs_buf_log_item *bip = bp->b_fspriv; 798 799 if (!tp) 800 return; 801 802 ASSERT(bp->b_transp == tp); 803 ASSERT(bip != NULL); 804 ASSERT(atomic_read(&bip->bli_refcount) > 0); 805 806 xfs_blft_to_flags(&bip->__bli_format, type); 807 } 808 809 void 810 xfs_trans_buf_copy_type( 811 struct xfs_buf *dst_bp, 812 struct xfs_buf *src_bp) 813 { 814 struct xfs_buf_log_item *sbip = src_bp->b_fspriv; 815 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv; 816 enum xfs_blft type; 817 818 type = xfs_blft_from_flags(&sbip->__bli_format); 819 xfs_blft_to_flags(&dbip->__bli_format, type); 820 } 821 822 /* 823 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of 824 * dquots. However, unlike in inode buffer recovery, dquot buffers get 825 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). 826 * The only thing that makes dquot buffers different from regular 827 * buffers is that we must not replay dquot bufs when recovering 828 * if a _corresponding_ quotaoff has happened. We also have to distinguish 829 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas 830 * can be turned off independently. 831 */ 832 /* ARGSUSED */ 833 void 834 xfs_trans_dquot_buf( 835 xfs_trans_t *tp, 836 xfs_buf_t *bp, 837 uint type) 838 { 839 struct xfs_buf_log_item *bip = bp->b_fspriv; 840 841 ASSERT(type == XFS_BLF_UDQUOT_BUF || 842 type == XFS_BLF_PDQUOT_BUF || 843 type == XFS_BLF_GDQUOT_BUF); 844 845 bip->__bli_format.blf_flags |= type; 846 847 switch (type) { 848 case XFS_BLF_UDQUOT_BUF: 849 type = XFS_BLFT_UDQUOT_BUF; 850 break; 851 case XFS_BLF_PDQUOT_BUF: 852 type = XFS_BLFT_PDQUOT_BUF; 853 break; 854 case XFS_BLF_GDQUOT_BUF: 855 type = XFS_BLFT_GDQUOT_BUF; 856 break; 857 default: 858 type = XFS_BLFT_UNKNOWN_BUF; 859 break; 860 } 861 862 xfs_trans_buf_set_type(tp, bp, type); 863 } 864