xref: /openbmc/linux/fs/xfs/xfs_trans_buf.c (revision 565d76cb)
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dinode.h"
32 #include "xfs_inode.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_error.h"
36 #include "xfs_rw.h"
37 #include "xfs_trace.h"
38 
39 /*
40  * Check to see if a buffer matching the given parameters is already
41  * a part of the given transaction.
42  */
43 STATIC struct xfs_buf *
44 xfs_trans_buf_item_match(
45 	struct xfs_trans	*tp,
46 	struct xfs_buftarg	*target,
47 	xfs_daddr_t		blkno,
48 	int			len)
49 {
50 	struct xfs_log_item_desc *lidp;
51 	struct xfs_buf_log_item	*blip;
52 
53 	len = BBTOB(len);
54 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
55 		blip = (struct xfs_buf_log_item *)lidp->lid_item;
56 		if (blip->bli_item.li_type == XFS_LI_BUF &&
57 		    XFS_BUF_TARGET(blip->bli_buf) == target &&
58 		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
59 		    XFS_BUF_COUNT(blip->bli_buf) == len)
60 			return blip->bli_buf;
61 	}
62 
63 	return NULL;
64 }
65 
66 /*
67  * Add the locked buffer to the transaction.
68  *
69  * The buffer must be locked, and it cannot be associated with any
70  * transaction.
71  *
72  * If the buffer does not yet have a buf log item associated with it,
73  * then allocate one for it.  Then add the buf item to the transaction.
74  */
75 STATIC void
76 _xfs_trans_bjoin(
77 	struct xfs_trans	*tp,
78 	struct xfs_buf		*bp,
79 	int			reset_recur)
80 {
81 	struct xfs_buf_log_item	*bip;
82 
83 	ASSERT(XFS_BUF_ISBUSY(bp));
84 	ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
85 
86 	/*
87 	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
88 	 * it doesn't have one yet, then allocate one and initialize it.
89 	 * The checks to see if one is there are in xfs_buf_item_init().
90 	 */
91 	xfs_buf_item_init(bp, tp->t_mountp);
92 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
93 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
94 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
95 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
96 	if (reset_recur)
97 		bip->bli_recur = 0;
98 
99 	/*
100 	 * Take a reference for this transaction on the buf item.
101 	 */
102 	atomic_inc(&bip->bli_refcount);
103 
104 	/*
105 	 * Get a log_item_desc to point at the new item.
106 	 */
107 	xfs_trans_add_item(tp, &bip->bli_item);
108 
109 	/*
110 	 * Initialize b_fsprivate2 so we can find it with incore_match()
111 	 * in xfs_trans_get_buf() and friends above.
112 	 */
113 	XFS_BUF_SET_FSPRIVATE2(bp, tp);
114 
115 }
116 
117 void
118 xfs_trans_bjoin(
119 	struct xfs_trans	*tp,
120 	struct xfs_buf		*bp)
121 {
122 	_xfs_trans_bjoin(tp, bp, 0);
123 	trace_xfs_trans_bjoin(bp->b_fspriv);
124 }
125 
126 /*
127  * Get and lock the buffer for the caller if it is not already
128  * locked within the given transaction.  If it is already locked
129  * within the transaction, just increment its lock recursion count
130  * and return a pointer to it.
131  *
132  * If the transaction pointer is NULL, make this just a normal
133  * get_buf() call.
134  */
135 xfs_buf_t *
136 xfs_trans_get_buf(xfs_trans_t	*tp,
137 		  xfs_buftarg_t	*target_dev,
138 		  xfs_daddr_t	blkno,
139 		  int		len,
140 		  uint		flags)
141 {
142 	xfs_buf_t		*bp;
143 	xfs_buf_log_item_t	*bip;
144 
145 	if (flags == 0)
146 		flags = XBF_LOCK | XBF_MAPPED;
147 
148 	/*
149 	 * Default to a normal get_buf() call if the tp is NULL.
150 	 */
151 	if (tp == NULL)
152 		return xfs_buf_get(target_dev, blkno, len,
153 				   flags | XBF_DONT_BLOCK);
154 
155 	/*
156 	 * If we find the buffer in the cache with this transaction
157 	 * pointer in its b_fsprivate2 field, then we know we already
158 	 * have it locked.  In this case we just increment the lock
159 	 * recursion count and return the buffer to the caller.
160 	 */
161 	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
162 	if (bp != NULL) {
163 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
164 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
165 			XFS_BUF_SUPER_STALE(bp);
166 
167 		/*
168 		 * If the buffer is stale then it was binval'ed
169 		 * since last read.  This doesn't matter since the
170 		 * caller isn't allowed to use the data anyway.
171 		 */
172 		else if (XFS_BUF_ISSTALE(bp))
173 			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
174 
175 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
176 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
177 		ASSERT(bip != NULL);
178 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
179 		bip->bli_recur++;
180 		trace_xfs_trans_get_buf_recur(bip);
181 		return (bp);
182 	}
183 
184 	/*
185 	 * We always specify the XBF_DONT_BLOCK flag within a transaction
186 	 * so that get_buf does not try to push out a delayed write buffer
187 	 * which might cause another transaction to take place (if the
188 	 * buffer was delayed alloc).  Such recursive transactions can
189 	 * easily deadlock with our current transaction as well as cause
190 	 * us to run out of stack space.
191 	 */
192 	bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
193 	if (bp == NULL) {
194 		return NULL;
195 	}
196 
197 	ASSERT(!XFS_BUF_GETERROR(bp));
198 
199 	_xfs_trans_bjoin(tp, bp, 1);
200 	trace_xfs_trans_get_buf(bp->b_fspriv);
201 	return (bp);
202 }
203 
204 /*
205  * Get and lock the superblock buffer of this file system for the
206  * given transaction.
207  *
208  * We don't need to use incore_match() here, because the superblock
209  * buffer is a private buffer which we keep a pointer to in the
210  * mount structure.
211  */
212 xfs_buf_t *
213 xfs_trans_getsb(xfs_trans_t	*tp,
214 		struct xfs_mount *mp,
215 		int		flags)
216 {
217 	xfs_buf_t		*bp;
218 	xfs_buf_log_item_t	*bip;
219 
220 	/*
221 	 * Default to just trying to lock the superblock buffer
222 	 * if tp is NULL.
223 	 */
224 	if (tp == NULL) {
225 		return (xfs_getsb(mp, flags));
226 	}
227 
228 	/*
229 	 * If the superblock buffer already has this transaction
230 	 * pointer in its b_fsprivate2 field, then we know we already
231 	 * have it locked.  In this case we just increment the lock
232 	 * recursion count and return the buffer to the caller.
233 	 */
234 	bp = mp->m_sb_bp;
235 	if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
236 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
237 		ASSERT(bip != NULL);
238 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
239 		bip->bli_recur++;
240 		trace_xfs_trans_getsb_recur(bip);
241 		return (bp);
242 	}
243 
244 	bp = xfs_getsb(mp, flags);
245 	if (bp == NULL)
246 		return NULL;
247 
248 	_xfs_trans_bjoin(tp, bp, 1);
249 	trace_xfs_trans_getsb(bp->b_fspriv);
250 	return (bp);
251 }
252 
253 #ifdef DEBUG
254 xfs_buftarg_t *xfs_error_target;
255 int	xfs_do_error;
256 int	xfs_req_num;
257 int	xfs_error_mod = 33;
258 #endif
259 
260 /*
261  * Get and lock the buffer for the caller if it is not already
262  * locked within the given transaction.  If it has not yet been
263  * read in, read it from disk. If it is already locked
264  * within the transaction and already read in, just increment its
265  * lock recursion count and return a pointer to it.
266  *
267  * If the transaction pointer is NULL, make this just a normal
268  * read_buf() call.
269  */
270 int
271 xfs_trans_read_buf(
272 	xfs_mount_t	*mp,
273 	xfs_trans_t	*tp,
274 	xfs_buftarg_t	*target,
275 	xfs_daddr_t	blkno,
276 	int		len,
277 	uint		flags,
278 	xfs_buf_t	**bpp)
279 {
280 	xfs_buf_t		*bp;
281 	xfs_buf_log_item_t	*bip;
282 	int			error;
283 
284 	if (flags == 0)
285 		flags = XBF_LOCK | XBF_MAPPED;
286 
287 	/*
288 	 * Default to a normal get_buf() call if the tp is NULL.
289 	 */
290 	if (tp == NULL) {
291 		bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
292 		if (!bp)
293 			return (flags & XBF_TRYLOCK) ?
294 					EAGAIN : XFS_ERROR(ENOMEM);
295 
296 		if (XFS_BUF_GETERROR(bp) != 0) {
297 			xfs_ioerror_alert("xfs_trans_read_buf", mp,
298 					  bp, blkno);
299 			error = XFS_BUF_GETERROR(bp);
300 			xfs_buf_relse(bp);
301 			return error;
302 		}
303 #ifdef DEBUG
304 		if (xfs_do_error) {
305 			if (xfs_error_target == target) {
306 				if (((xfs_req_num++) % xfs_error_mod) == 0) {
307 					xfs_buf_relse(bp);
308 					xfs_debug(mp, "Returning error!");
309 					return XFS_ERROR(EIO);
310 				}
311 			}
312 		}
313 #endif
314 		if (XFS_FORCED_SHUTDOWN(mp))
315 			goto shutdown_abort;
316 		*bpp = bp;
317 		return 0;
318 	}
319 
320 	/*
321 	 * If we find the buffer in the cache with this transaction
322 	 * pointer in its b_fsprivate2 field, then we know we already
323 	 * have it locked.  If it is already read in we just increment
324 	 * the lock recursion count and return the buffer to the caller.
325 	 * If the buffer is not yet read in, then we read it in, increment
326 	 * the lock recursion count, and return it to the caller.
327 	 */
328 	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
329 	if (bp != NULL) {
330 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
331 		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
332 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
333 		ASSERT((XFS_BUF_ISERROR(bp)) == 0);
334 		if (!(XFS_BUF_ISDONE(bp))) {
335 			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
336 			ASSERT(!XFS_BUF_ISASYNC(bp));
337 			XFS_BUF_READ(bp);
338 			xfsbdstrat(tp->t_mountp, bp);
339 			error = xfs_buf_iowait(bp);
340 			if (error) {
341 				xfs_ioerror_alert("xfs_trans_read_buf", mp,
342 						  bp, blkno);
343 				xfs_buf_relse(bp);
344 				/*
345 				 * We can gracefully recover from most read
346 				 * errors. Ones we can't are those that happen
347 				 * after the transaction's already dirty.
348 				 */
349 				if (tp->t_flags & XFS_TRANS_DIRTY)
350 					xfs_force_shutdown(tp->t_mountp,
351 							SHUTDOWN_META_IO_ERROR);
352 				return error;
353 			}
354 		}
355 		/*
356 		 * We never locked this buf ourselves, so we shouldn't
357 		 * brelse it either. Just get out.
358 		 */
359 		if (XFS_FORCED_SHUTDOWN(mp)) {
360 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
361 			*bpp = NULL;
362 			return XFS_ERROR(EIO);
363 		}
364 
365 
366 		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
367 		bip->bli_recur++;
368 
369 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
370 		trace_xfs_trans_read_buf_recur(bip);
371 		*bpp = bp;
372 		return 0;
373 	}
374 
375 	/*
376 	 * We always specify the XBF_DONT_BLOCK flag within a transaction
377 	 * so that get_buf does not try to push out a delayed write buffer
378 	 * which might cause another transaction to take place (if the
379 	 * buffer was delayed alloc).  Such recursive transactions can
380 	 * easily deadlock with our current transaction as well as cause
381 	 * us to run out of stack space.
382 	 */
383 	bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
384 	if (bp == NULL) {
385 		*bpp = NULL;
386 		return 0;
387 	}
388 	if (XFS_BUF_GETERROR(bp) != 0) {
389 	    XFS_BUF_SUPER_STALE(bp);
390 		error = XFS_BUF_GETERROR(bp);
391 
392 		xfs_ioerror_alert("xfs_trans_read_buf", mp,
393 				  bp, blkno);
394 		if (tp->t_flags & XFS_TRANS_DIRTY)
395 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
396 		xfs_buf_relse(bp);
397 		return error;
398 	}
399 #ifdef DEBUG
400 	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
401 		if (xfs_error_target == target) {
402 			if (((xfs_req_num++) % xfs_error_mod) == 0) {
403 				xfs_force_shutdown(tp->t_mountp,
404 						   SHUTDOWN_META_IO_ERROR);
405 				xfs_buf_relse(bp);
406 				xfs_debug(mp, "Returning trans error!");
407 				return XFS_ERROR(EIO);
408 			}
409 		}
410 	}
411 #endif
412 	if (XFS_FORCED_SHUTDOWN(mp))
413 		goto shutdown_abort;
414 
415 	_xfs_trans_bjoin(tp, bp, 1);
416 	trace_xfs_trans_read_buf(bp->b_fspriv);
417 
418 	*bpp = bp;
419 	return 0;
420 
421 shutdown_abort:
422 	/*
423 	 * the theory here is that buffer is good but we're
424 	 * bailing out because the filesystem is being forcibly
425 	 * shut down.  So we should leave the b_flags alone since
426 	 * the buffer's not staled and just get out.
427 	 */
428 #if defined(DEBUG)
429 	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
430 		xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
431 #endif
432 	ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) !=
433 				     (XBF_STALE|XBF_DELWRI));
434 
435 	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
436 	xfs_buf_relse(bp);
437 	*bpp = NULL;
438 	return XFS_ERROR(EIO);
439 }
440 
441 
442 /*
443  * Release the buffer bp which was previously acquired with one of the
444  * xfs_trans_... buffer allocation routines if the buffer has not
445  * been modified within this transaction.  If the buffer is modified
446  * within this transaction, do decrement the recursion count but do
447  * not release the buffer even if the count goes to 0.  If the buffer is not
448  * modified within the transaction, decrement the recursion count and
449  * release the buffer if the recursion count goes to 0.
450  *
451  * If the buffer is to be released and it was not modified before
452  * this transaction began, then free the buf_log_item associated with it.
453  *
454  * If the transaction pointer is NULL, make this just a normal
455  * brelse() call.
456  */
457 void
458 xfs_trans_brelse(xfs_trans_t	*tp,
459 		 xfs_buf_t	*bp)
460 {
461 	xfs_buf_log_item_t	*bip;
462 	xfs_log_item_t		*lip;
463 
464 	/*
465 	 * Default to a normal brelse() call if the tp is NULL.
466 	 */
467 	if (tp == NULL) {
468 		ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
469 		/*
470 		 * If there's a buf log item attached to the buffer,
471 		 * then let the AIL know that the buffer is being
472 		 * unlocked.
473 		 */
474 		if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
475 			lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
476 			if (lip->li_type == XFS_LI_BUF) {
477 				bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
478 				xfs_trans_unlocked_item(bip->bli_item.li_ailp,
479 							lip);
480 			}
481 		}
482 		xfs_buf_relse(bp);
483 		return;
484 	}
485 
486 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
487 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
488 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
489 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
490 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
491 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
492 
493 	trace_xfs_trans_brelse(bip);
494 
495 	/*
496 	 * If the release is just for a recursive lock,
497 	 * then decrement the count and return.
498 	 */
499 	if (bip->bli_recur > 0) {
500 		bip->bli_recur--;
501 		return;
502 	}
503 
504 	/*
505 	 * If the buffer is dirty within this transaction, we can't
506 	 * release it until we commit.
507 	 */
508 	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
509 		return;
510 
511 	/*
512 	 * If the buffer has been invalidated, then we can't release
513 	 * it until the transaction commits to disk unless it is re-dirtied
514 	 * as part of this transaction.  This prevents us from pulling
515 	 * the item from the AIL before we should.
516 	 */
517 	if (bip->bli_flags & XFS_BLI_STALE)
518 		return;
519 
520 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
521 
522 	/*
523 	 * Free up the log item descriptor tracking the released item.
524 	 */
525 	xfs_trans_del_item(&bip->bli_item);
526 
527 	/*
528 	 * Clear the hold flag in the buf log item if it is set.
529 	 * We wouldn't want the next user of the buffer to
530 	 * get confused.
531 	 */
532 	if (bip->bli_flags & XFS_BLI_HOLD) {
533 		bip->bli_flags &= ~XFS_BLI_HOLD;
534 	}
535 
536 	/*
537 	 * Drop our reference to the buf log item.
538 	 */
539 	atomic_dec(&bip->bli_refcount);
540 
541 	/*
542 	 * If the buf item is not tracking data in the log, then
543 	 * we must free it before releasing the buffer back to the
544 	 * free pool.  Before releasing the buffer to the free pool,
545 	 * clear the transaction pointer in b_fsprivate2 to dissolve
546 	 * its relation to this transaction.
547 	 */
548 	if (!xfs_buf_item_dirty(bip)) {
549 /***
550 		ASSERT(bp->b_pincount == 0);
551 ***/
552 		ASSERT(atomic_read(&bip->bli_refcount) == 0);
553 		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
554 		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
555 		xfs_buf_item_relse(bp);
556 		bip = NULL;
557 	}
558 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
559 
560 	/*
561 	 * If we've still got a buf log item on the buffer, then
562 	 * tell the AIL that the buffer is being unlocked.
563 	 */
564 	if (bip != NULL) {
565 		xfs_trans_unlocked_item(bip->bli_item.li_ailp,
566 					(xfs_log_item_t*)bip);
567 	}
568 
569 	xfs_buf_relse(bp);
570 	return;
571 }
572 
573 /*
574  * Mark the buffer as not needing to be unlocked when the buf item's
575  * IOP_UNLOCK() routine is called.  The buffer must already be locked
576  * and associated with the given transaction.
577  */
578 /* ARGSUSED */
579 void
580 xfs_trans_bhold(xfs_trans_t	*tp,
581 		xfs_buf_t	*bp)
582 {
583 	xfs_buf_log_item_t	*bip;
584 
585 	ASSERT(XFS_BUF_ISBUSY(bp));
586 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
587 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
588 
589 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
590 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
591 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
592 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
593 	bip->bli_flags |= XFS_BLI_HOLD;
594 	trace_xfs_trans_bhold(bip);
595 }
596 
597 /*
598  * Cancel the previous buffer hold request made on this buffer
599  * for this transaction.
600  */
601 void
602 xfs_trans_bhold_release(xfs_trans_t	*tp,
603 			xfs_buf_t	*bp)
604 {
605 	xfs_buf_log_item_t	*bip;
606 
607 	ASSERT(XFS_BUF_ISBUSY(bp));
608 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
609 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
610 
611 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
612 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
613 	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
614 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
615 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
616 	bip->bli_flags &= ~XFS_BLI_HOLD;
617 
618 	trace_xfs_trans_bhold_release(bip);
619 }
620 
621 /*
622  * This is called to mark bytes first through last inclusive of the given
623  * buffer as needing to be logged when the transaction is committed.
624  * The buffer must already be associated with the given transaction.
625  *
626  * First and last are numbers relative to the beginning of this buffer,
627  * so the first byte in the buffer is numbered 0 regardless of the
628  * value of b_blkno.
629  */
630 void
631 xfs_trans_log_buf(xfs_trans_t	*tp,
632 		  xfs_buf_t	*bp,
633 		  uint		first,
634 		  uint		last)
635 {
636 	xfs_buf_log_item_t	*bip;
637 
638 	ASSERT(XFS_BUF_ISBUSY(bp));
639 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
640 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
641 	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
642 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
643 	       (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
644 
645 	/*
646 	 * Mark the buffer as needing to be written out eventually,
647 	 * and set its iodone function to remove the buffer's buf log
648 	 * item from the AIL and free it when the buffer is flushed
649 	 * to disk.  See xfs_buf_attach_iodone() for more details
650 	 * on li_cb and xfs_buf_iodone_callbacks().
651 	 * If we end up aborting this transaction, we trap this buffer
652 	 * inside the b_bdstrat callback so that this won't get written to
653 	 * disk.
654 	 */
655 	XFS_BUF_DELAYWRITE(bp);
656 	XFS_BUF_DONE(bp);
657 
658 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
659 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
660 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
661 	bip->bli_item.li_cb = xfs_buf_iodone;
662 
663 	trace_xfs_trans_log_buf(bip);
664 
665 	/*
666 	 * If we invalidated the buffer within this transaction, then
667 	 * cancel the invalidation now that we're dirtying the buffer
668 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
669 	 * because we have a reference to the buffer this entire time.
670 	 */
671 	if (bip->bli_flags & XFS_BLI_STALE) {
672 		bip->bli_flags &= ~XFS_BLI_STALE;
673 		ASSERT(XFS_BUF_ISSTALE(bp));
674 		XFS_BUF_UNSTALE(bp);
675 		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
676 	}
677 
678 	tp->t_flags |= XFS_TRANS_DIRTY;
679 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
680 	bip->bli_flags |= XFS_BLI_LOGGED;
681 	xfs_buf_item_log(bip, first, last);
682 }
683 
684 
685 /*
686  * This called to invalidate a buffer that is being used within
687  * a transaction.  Typically this is because the blocks in the
688  * buffer are being freed, so we need to prevent it from being
689  * written out when we're done.  Allowing it to be written again
690  * might overwrite data in the free blocks if they are reallocated
691  * to a file.
692  *
693  * We prevent the buffer from being written out by clearing the
694  * B_DELWRI flag.  We can't always
695  * get rid of the buf log item at this point, though, because
696  * the buffer may still be pinned by another transaction.  If that
697  * is the case, then we'll wait until the buffer is committed to
698  * disk for the last time (we can tell by the ref count) and
699  * free it in xfs_buf_item_unpin().  Until it is cleaned up we
700  * will keep the buffer locked so that the buffer and buf log item
701  * are not reused.
702  */
703 void
704 xfs_trans_binval(
705 	xfs_trans_t	*tp,
706 	xfs_buf_t	*bp)
707 {
708 	xfs_buf_log_item_t	*bip;
709 
710 	ASSERT(XFS_BUF_ISBUSY(bp));
711 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
712 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
713 
714 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
715 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
716 
717 	trace_xfs_trans_binval(bip);
718 
719 	if (bip->bli_flags & XFS_BLI_STALE) {
720 		/*
721 		 * If the buffer is already invalidated, then
722 		 * just return.
723 		 */
724 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
725 		ASSERT(XFS_BUF_ISSTALE(bp));
726 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
727 		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
728 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
729 		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
730 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
731 		return;
732 	}
733 
734 	/*
735 	 * Clear the dirty bit in the buffer and set the STALE flag
736 	 * in the buf log item.  The STALE flag will be used in
737 	 * xfs_buf_item_unpin() to determine if it should clean up
738 	 * when the last reference to the buf item is given up.
739 	 * We set the XFS_BLF_CANCEL flag in the buf log format structure
740 	 * and log the buf item.  This will be used at recovery time
741 	 * to determine that copies of the buffer in the log before
742 	 * this should not be replayed.
743 	 * We mark the item descriptor and the transaction dirty so
744 	 * that we'll hold the buffer until after the commit.
745 	 *
746 	 * Since we're invalidating the buffer, we also clear the state
747 	 * about which parts of the buffer have been logged.  We also
748 	 * clear the flag indicating that this is an inode buffer since
749 	 * the data in the buffer will no longer be valid.
750 	 *
751 	 * We set the stale bit in the buffer as well since we're getting
752 	 * rid of it.
753 	 */
754 	XFS_BUF_UNDELAYWRITE(bp);
755 	XFS_BUF_STALE(bp);
756 	bip->bli_flags |= XFS_BLI_STALE;
757 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
758 	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
759 	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
760 	memset((char *)(bip->bli_format.blf_data_map), 0,
761 	      (bip->bli_format.blf_map_size * sizeof(uint)));
762 	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
763 	tp->t_flags |= XFS_TRANS_DIRTY;
764 }
765 
766 /*
767  * This call is used to indicate that the buffer contains on-disk inodes which
768  * must be handled specially during recovery.  They require special handling
769  * because only the di_next_unlinked from the inodes in the buffer should be
770  * recovered.  The rest of the data in the buffer is logged via the inodes
771  * themselves.
772  *
773  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
774  * transferred to the buffer's log format structure so that we'll know what to
775  * do at recovery time.
776  */
777 void
778 xfs_trans_inode_buf(
779 	xfs_trans_t	*tp,
780 	xfs_buf_t	*bp)
781 {
782 	xfs_buf_log_item_t	*bip;
783 
784 	ASSERT(XFS_BUF_ISBUSY(bp));
785 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
786 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
787 
788 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
789 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
790 
791 	bip->bli_flags |= XFS_BLI_INODE_BUF;
792 }
793 
794 /*
795  * This call is used to indicate that the buffer is going to
796  * be staled and was an inode buffer. This means it gets
797  * special processing during unpin - where any inodes
798  * associated with the buffer should be removed from ail.
799  * There is also special processing during recovery,
800  * any replay of the inodes in the buffer needs to be
801  * prevented as the buffer may have been reused.
802  */
803 void
804 xfs_trans_stale_inode_buf(
805 	xfs_trans_t	*tp,
806 	xfs_buf_t	*bp)
807 {
808 	xfs_buf_log_item_t	*bip;
809 
810 	ASSERT(XFS_BUF_ISBUSY(bp));
811 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
812 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
813 
814 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
815 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
816 
817 	bip->bli_flags |= XFS_BLI_STALE_INODE;
818 	bip->bli_item.li_cb = xfs_buf_iodone;
819 }
820 
821 /*
822  * Mark the buffer as being one which contains newly allocated
823  * inodes.  We need to make sure that even if this buffer is
824  * relogged as an 'inode buf' we still recover all of the inode
825  * images in the face of a crash.  This works in coordination with
826  * xfs_buf_item_committed() to ensure that the buffer remains in the
827  * AIL at its original location even after it has been relogged.
828  */
829 /* ARGSUSED */
830 void
831 xfs_trans_inode_alloc_buf(
832 	xfs_trans_t	*tp,
833 	xfs_buf_t	*bp)
834 {
835 	xfs_buf_log_item_t	*bip;
836 
837 	ASSERT(XFS_BUF_ISBUSY(bp));
838 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
839 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
840 
841 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
842 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
843 
844 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
845 }
846 
847 
848 /*
849  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
850  * dquots. However, unlike in inode buffer recovery, dquot buffers get
851  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
852  * The only thing that makes dquot buffers different from regular
853  * buffers is that we must not replay dquot bufs when recovering
854  * if a _corresponding_ quotaoff has happened. We also have to distinguish
855  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
856  * can be turned off independently.
857  */
858 /* ARGSUSED */
859 void
860 xfs_trans_dquot_buf(
861 	xfs_trans_t	*tp,
862 	xfs_buf_t	*bp,
863 	uint		type)
864 {
865 	xfs_buf_log_item_t	*bip;
866 
867 	ASSERT(XFS_BUF_ISBUSY(bp));
868 	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
869 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
870 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
871 	       type == XFS_BLF_PDQUOT_BUF ||
872 	       type == XFS_BLF_GDQUOT_BUF);
873 
874 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
875 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
876 
877 	bip->bli_format.blf_flags |= type;
878 }
879